

Strange loops in design and technology

Giovanni De Micheli

What are we talking about?

- Inspiration:
 - Alberto Sangiovanni's 40th DAC keynote: The Tides of EDA
 - Douglas Hofstadter's Pulitzer prize winning book: Gödel, Escher, Bach
- Strange loop:
 - Hierarchy of cycles, each linked to each other by some relation
 - Classic concept in cognitive science: emergence of consciousness
- Thesis of this talk:
 - Cross breeding of technology and design leads to superior systems

The tides of EDA

- Vico's historical cycles (corsi e ricorsi della storia):
 - History repeats itself with a regular spiral-like pattern [Scientia Nova 1650]
- The three ages of EDA:
 - Age of gods (Pioneers laid foundations)
 - Age of heroes (Enterpreneurs founded leading companies)
 - Age of man (Maturity and evolution)

What will the new tide bring to us?

Hofstadter's message

- Loops are present in arts and science
 - Music: canon and fugue
 - Repeated music piece with variations
 - Painting:
 - 2-D pictures can convey a 3-D impression
 - Mathematics:
 - In any consistent system, there exist propositions that cannot be proven
- Loops show us features in a new dimension and we may discover further possibilities
 - Stimulus for creation

The actors in the EDA ecosystem

The engineering universe

Calling the questions

- Will silicon and CMOS be our workhorse forever?
 - How can new technologies emerge as competive solutions?
- Will classical computing be superseeded by new paradigms?
 - Will we change our computational thinking?
- Will living matter and computers merge?
 - How will we enable an evolution of the human species?

Will post-CMOS tecnologies be always the technologies of the future?

[Hills, Nature 19]

CMOS today: FINFETs, NanoWires and NanoSheets

[INTEL, 2017]

CMOS today: FINFETs, NanoWires and NanoSheets

[INTEL, 2017]

Tomorrow?

A plurality of technologies may be combined to achieve acceleration of computation and communication

[Shulaker, MIT 2021]

[Boybat, IBM 2020]

[RFSQ, Lincoln Labs, 2020]

[Ramey, Hot Chips, 2020]

[Kis, Nature, 2011]

[Kis Nature, 2020]

The challenge

- Where is the competitive advantage?
 - Application-specific accelerators
- What is the effort to design in a new technlogy?
 - New models
 - Adapting/creating EDA tools
- Is this a new design paradigm?
 - How disruptive/instructive is the new technology?

Loop CMOS **EDA for CMOS** NEW TECH EDA for NEW TECH

Controlled-polarity xtors on Si NanoWires

[De Marchi, IEDM, 2012]

Controlled-polarity xtors on Si NanoWires

- Electrostatic doping
- Electrically program the transistor to either n-type or p-type
- Comparator-activated switch

Controlled-polarity xtors

New gate topologies

Cell library in WSe₂

[Resta et al. ACS Nano, 2018]

The logic abstraction

- We have designed for decades with NANDs/NORs in mind
- The majority operator is
 - Key to all arithmetic block design (e.g., carry function)
 - Native model for superconductors, non-volatile LiM, controlled-polarity transistors
- The majority Boolean algebra has strong properties
 - Majority-based EDA tools perform better in synthesis
 - In emerging and established technologies

EDA for emerging => established technologies

MIG

Error A

MIG

Error B

- Models
 - The majority algebra
 - Majority inverter graph
 - Reachability property
- Algorithms
 - Algebraic rewriting
 - Based on axioms and combination thereof
 - Boolean methods
 - Exploit redundancy of majority function
 - Boolean substitution

EDA for emerging => established technologies

Majority-based algorithms:

improve commercial and academic logic synthesis for **CMOS** 15-20% delay reduction as compared to earlier methods

are very successful for many emerging technologies, like:

superconducting electronics optical/wave based computing logic in memory

Back to the future

Superconducting electronics

- Technology
 - No parasitic resistance at low temperature (4K)
 - Information by *quantized pulses* $\int V(t)dt = \phi_0 = h/2e = 2.07 \text{ mv ps}$
- Design features
 - Classic computing paradigm with deep pipelined logic
 - Ultrafast computation with small energy consumption
 - Many variants including adiabatic operation
- Majority logic is the native abstraction in some realizations

47 GHz SFQ FFT Processor [Ke et al.,2021]

2.5 GHz 4-bit RÍSC [Ayala et al.,2021]

Achievements

Synopsys SuperTools Superconducting Electronics Phase 2A Program

First Fully Automated Superconducting Microcontroller Design Demonstration with Fusion Compiler

The First Fully-Automated ERSFQ Microcontroller Circuit including CTS, Splitter Insertion, Power Delivery and PTL Routing – all desired features for SCE Technology automation

Fully synthesisized AMD 2901 [Amaru et al., 2021]

(c) Giovanni De Micheli

Superconducting electronics

Logic	Clock Freq. [GHz]	$E_bit/I_c\Phi_0$	Typical I _c [mA]	EDP [aJ·ps]
CMOS	4	-	-	~10 ⁵
RSFQ [1]	50	19	150	120
eSFQ [2]	20	0.8	150	12
RQL [3]	10	0.33	150	10
LV-RSFQ [4]	20	3.5	150	54
AQFP [5]	5	0.0083	50	0.086
Quantum limit	-	-	-	5.3 × 10 ⁻⁵

^[1] X. Peng et al., IEICE Trans. Electron. **E97.C**, 188 (2014).

^[2] M. H. Volkmann et al., Supercond. Sci. Technol. 26, 015002 (2013).

^[3] Q. P. Herr et al., J. Appl. Phys. 109, 103903 (2011).

^[4] M. Tanaka et al., IEEE Trans. Appl. Supercond. 23, 1701104 (2013).

^[5] N. Takeuchi et al., Supercond. Sci. Technol. 28, 015003 (2015).

Superconducting electronics

Superconducting electronics:

gives a support for ultrafast accelerators low-power consumption bridge to quantum computing chips

Requires

new EDA toolchain improvement in refrigeration technology

The broader impact

- EDA is a technology enabler
 - Early evaluation of emerging technologies
- Virtual laboratory for technology evolution
 - Physical models of emerging technologies
 Motivates new abstractions and computational methods
- New algorithms have beneficial effects on established technologies as well
 - Despite decades of progress in EDA, we are still far from optimality in many directions

The broader impact

The combination of:

new application requirements

new emerging technologies

new design tools

will enable us to design new families of computing systems

Progress will be on a spiral, and EDA is the compass

Calling the questions

- Will silicon and CMOS be our workhorse forever?
 - How can new technologies emerge as solutions?
- Will classical computing be superseeded by new paradigms?
 - Will we change our computational thinking?
- Will living matter and computers merge?
 - How will we enable an evolution of the human species?

Quantum or not quantum? This is the question!

Quantum computing

- Why?
 - Our insatiable appetite for computing power
 - Most problems that are relevant are also computationally intractable

- QC provides an accelerator technology that is applicable to some problems
 - Factoring (post-quantum security)
 - Searching (universally used)
 - Quantum algorithm zoo (useful reference website)
- Today (2022) quantum computing is still a complex and fragile technology
 - Requires a specific environment (refrigeration or vacuum)
 - Limited by coherence time and error rates
- Several QC chips have proven to be successful and likely to scale-up

Loop PROBLEMS COMPLEXITY COMPUTING Paradigm change SUPERPOSITION & ENTANGLEMENT

Relevant issues

- How will we conceive algorithms for quantum computing?
- How will we create an environment for quantum coding and debugging
 - Languages, abstractions, cross-layer design
- Quantum compilation
 - Retargetable optimizing compilation
- Physical design of quantum chips and interfaces

Parallelism, superposition and entanglement

- How far can we think in a parallel way?
 - Can we envision a multiverse with exponentially-growing situations?
- How easily can we abstract parallel computation
 - Language and graphic models
 - High-level and low-level primitives
- How can we compile a model?
 - Technology-independent optimization
 - Reversible logic synthesis
 - Gate library and mapping
 - Clifford+T

Quantum compilation

[Source: IBM]

Quantum physical design

- Regular topology
 - Placement, routing
- Satisfying coupling constraints
 - Embedding coupling graph into mesh
- Interfacing
 - Analog, RF design and interfacing computation
- Determining temperature transition boundaries
 - Move control electronics to intermediate temperature
 - Move QC to higher temperature

[IBM Q20]

IBM's Q

[Courtesy: IBM]

Quantum EDA

- Using QC for EDA:
 - Quantum optimizers for combinatorial optimization
 - Faster, not necessarily exponential advantage
 - Quantum semidefinite programming
 - Approximate solutions with exponential advantage
 - Searching
 - Grover's algorithm with square root advantage
- Most EDA problems do not need exact solutions
 - But need fast execution on large problem instances
- Enabler to build 'better' computers!

[Ragunathan and Stok 2020]

Back to the future

The broader impact

- Advances in theory of computation
 - BQP bounded error quantum poly time includes P but not (?) NP
- Evolution in security
 - Post-quantum cryptography
- Solutions (approximate) to quantum chemistry and physics problems
 - NISQ noisy intermediate-scale quantum computing
- Solutions (exact) to large instances of computation
 - Quantum error correction is needed
 - Practical demonstration of large-scale quantum chips yet

PROBLEMS

The broader impact

The combination of:

new computational problems

new computing paradigms

new design tools

will enable us to design new families of computing systems

Progress will be on a spiral, and EDA is the compass

Calling the questions

- Will silicon and CMOS be our workhorse forever?
 - How can new technologies emerge as solutions?
- Will classical computing be superseeded by new models?
 - Will we change our computational thinking?
- Will living matter and computers merge?
 - How will we enable an evolution of the human species ?

Science for life, life for science

[The "Mask of youth" by Math Collischaw, 2018]

Loop HUMANS TECHNOLOGY **EVOLUTION** CORRECTION & ENHANCEMENT

From biodiscovery to synthetic biology

- DNA microarrays and sequencing chips
 - Cluster analysis
- Bio-sensors for proteins and ions
 - Fusing electronics with sensor technology
- Design automation support for gene editing
 - CRISPR/CAS9 technology
- Synthetic biology
 - Creating artificial forms of life

Dimension reduction

[Meng & Ellis, The second decade of synthetic biology. Nat Commun]

Tele-medicine: monitoring chronic patients

- Non-invasive monitors
 - Heart rate, SpO₂, blood pressure
- Implanted monitors:
 - Metabolites: glucose, lactate, cholesterol
 - Continuous measurements transmitted off body
- Wireless challenges
 - Secure transmission
 - Remote powering
- Closing the feedback loop?
 - Artificial organs (e.g., pancreas)

[Courtesy: Smartcardia]

Precision medicine: anesthesia control

[F. Stradolini, E. Lavalle, et al., EAI Mobihealth 2016]

Where is EDA in bio-engineering?

- Model, analyisis and design of new circuits and architectures
 - Linking living matter to computational systems
 - Low-power, low-noise circuits, flexible electronics
- Support the co-design of sensors and electronics
 - Integrated sensing units with regular design
- Semicustom design for integrated sensing units
 - Cell libraries of CMOS compatible sensors
 - Reduce non-recurrent engineering costs (NRE) of integrated sensors

[Baj-Rossi et al, 2016]

The ultimate challenge: the brain

- Understanding and mimicking the brain
 - Decoding and understanding the brain signals
 - Developing neuromorphic computing and learning models
- Brain-machine interfacing goals:
 - Controllability, observabity and connection
- Stimulating the human brain
 - Treatment of Parkinson and amyotrophic lateral sclerosis (ALS) diseases
- Brain on a chip:
 - Electronics communicating with neurons grown on chip

Restoring locomotion

Restoring locomotion

Human enhanchement

- Reproductive enhanchement
 - In vitro technonologies
- Physical enhanchement
 - Cosmetic/orthotic prostethics, artificial organs
- Mental enhanchement
 - Nootropics, supplements to mental functions
 - Tablets, phones, watches
- Challenges
 - Extend our thinking depth and breath
 - Create seamless interconnection

Back to the future

The broader impact

- Technology allows us to interface to living matter
 - Enormous progress in medicine and in biodiscovery
- EDA is a fundamental enabler
 - To design new architectures that interface and connect to living bodies
- The next level:
 - From brain to mind
 - Connecting artificial and natural intelligence

The broader impact

The combination of:

advances in biology and medicine new electronic and interfacing technologies

will enable us to design bio-medical systems to live better

It will enable us to connect the ... dots

CORRECTION & ENHANCEMENT

Summary and conclusions

- Natura non facit saltus nature does not make jumps
 - Engineering evolution is a spiral process involving various domains
- Natura facit saltus nature makes jumps
 - Quantum mechanics brings us new way of understanding and computing
- Bridging quantum and classic domains is an unsolved problem in physics
 - Many phenomena are not yet understood still we leverage them
- Connecting humans to computing systems is a broad timely challenge
 - To better human existence with smart medicine and to enable our evolution

Thank You

SYNOPSYS®

