
Ajay K. Verma, Philip Brisk and Paolo Ienne

Processor Architecture Laboratory (LAP)
& Centre for Advanced Digital Systems (CSDA)

Ecole Polytechnique Fédérale de Lausanne (EPFL)

csdacsda

Progressive Decomposition: A HeuristicProgressive Decomposition: A Heuristic
to Structure Arithmetic Circuitsto Structure Arithmetic Circuits

2

Logic Synthesis: Unable to ImposeLogic Synthesis: Unable to Impose
Hierarchy and StructureHierarchy and Structure

Ripple-Carry Adder Carry-Lookahead Adder

Our contribution

 Logic synthesis tools
 Local optimization via Boolean minimization
 Lacking for arithmetic circuits

 Architectural transformation
 Not with logic synthesis

ab(a + b) + ca + c a + c

3

Leading Zero Detector (LZD)Leading Zero Detector (LZD)

 Finds the position of the most significant non-zero bit

xi is TRUE if (i+1)th most-significant
bit is the leading non-zero bit

Large fan-in
dependencies

Convert xi to a
binary number

xi = a15a14 … a15-(i-2)a15-(i-1)a15-i

4

LZD: A Better ImplementationLZD: A Better Implementation
[Oklobdzija94][Oklobdzija94]

 Divide 16 bits into 4 blocks
 For each block compute the following:

 Position of the most significant non-zero bit
 Control bit Vi is TRUE if at least one bit in this block is one

Reduced fan-in
dependencies

 Similar in principle to
carry-lookahead
addition

5

What is the Bottom Line?What is the Bottom Line?

0.30 ns
(392.3 μm2)

0.36 ns
(426.8 μm2)

16% faster, 8% smaller

6

OutlineOutline

 Related Work

 Architectural optimization
 How to impose hierarchy?

 Properties of Algebra
 Ring structure of Boolean expressions

 Progressive Decomposition Algorithm

 Results

 Conclusions

7

Related WorkRelated Work

 Manual approaches for optimizing circuits of interest
 The entire field of computer arithmetic

 Great ideas by really smart people!

 Algorithmic approaches for a particular class of circuits
 Variable group size CLA adder [Lee91]
 Irregular partial product compressors [Stelling98]

 Heuristics to optimize general classes of circuits
 Kernel and co-kernel extraction [Brayton82]
 Architecture exploration via exhaustive search [Verma06]

8

Input CondensationInput Condensation

Leader expressions:
• Sufficient to evaluate the whole of an expression
• Once you evaluate them, you can discard the input bits

Compute all leader expressions in parallel

Recursively compute
leader expressions again

IN

One
Big

Circuit

Leader Expressions

OUT

IN

L |L| < |IN|

Smaller Circuit

OUT

sc

8-input parallel counter

(Leader Expressions)

9

Hierarchical Circuit ConstructionHierarchical Circuit Construction

Use leader expressions as building
blocks to impose hierarchy

Theorem: This approach always generalizes to circuits
that have an “effective online algorithm”

10

Reed-Muller FormReed-Muller Form

 XOR-of-Product Form
 Better suits arithmetic circuits

 Forms a ring under the operations XOR and AND

 Boolean properties exploited by our algorithm
 Identities
 Null Spaces
 Linear Dependence

 Before

 After

X = [a1b1 + (a1 + b1)a0b0]
 ⊕ [(a1 ⊕ b1 ⊕ a0b0)c1 + c0(a0 ⊕ b0)(c1 + (a1 ⊕ b1 ⊕ a0b0))]

X = a1b1 ⊕ a0a1b0 ⊕ a0b0b1 ⊕ a1c1 ⊕ b1c1 ⊕ a0b0c1 ⊕ a0c0c1 ⊕ a0a1c0
⊕ a0b1c0 ⊕ a0b0c0 ⊕ b0c0c1 ⊕ a1b0c0 ⊕ b0b1c0

11

Progressive Decomposition:Progressive Decomposition:
Algorithm OverviewAlgorithm Overview

 Choose a subset of input bits
 How many bits?

 Many different combinations?

 Find leader expressions
 Optimize via Boolean ring properties

 Find identities
 Discard dependent expressions

x y z
z = f(x, y)

 Rewrite circuit in terms of leader expressions Recursively process the remaining circuit

12

Finding Leader ExpressionsFinding Leader Expressions

 Similar to kernel extraction in algebraic factorization
X = ad ⊕ aef ⊕ bcd ⊕ abe ⊕ ace ⊕ bcef L(X, {a, b, c}) = ?

Separate product terms: (chosen, not chosen) input bits

X = ad ⊕ aef ⊕ bcd ⊕ abe ⊕ ace ⊕ bcef

{(a, d), (a, ef), (bc, d), (ab, e), (ac, e), (bc, ef)}{(a, d), (a, ef), (bc, d), (ab, e), (ac, e), (bc, ef)}

{(α, γ), (β, γ)} → {(α ⊕ β, γ)}Combine expressions:

{(a, d), (a, ef), (bc, d), (ab, e), (ac, e), (bc, ef)}

{(a ⊕ bc, d),

{(a, d), (a, ef), (bc, d), (ab, e), (ac, e), (bc, ef)}

{(a ⊕ bc, d), (a ⊕ bc, ef),

{(a, d), (a, ef), (bc, d), (ab, e), (ac, e), (bc, ef)}

{(a ⊕ bc, d), (a ⊕ bc, ef), (ab ⊕ ac, e)} {(a ⊕ bc, d), (a ⊕ bc, ef), (ab ⊕ ac, e)}

{(α, β), (α, γ)} → {(α, β ⊕ γ)}Combine expressions:

{(a ⊕ bc, d), (a ⊕ bc, ef), (ab ⊕ ac, e)}

{(a ⊕ bc, d ⊕ ef), (ab ⊕ ac, e)} {(a ⊕ bc, d ⊕ ef), (ab ⊕ ac, e)}

Leader expression of X
using inputs {a, b, c}

αβ ⊕ αγ → α(β ⊕ γ)αγ ⊕ βγ → (α ⊕ β)γ

X = (a ⊕ bc)d ⊕ (a ⊕ bc)ef ⊕ (ab ⊕ ac)e
 X = (a ⊕ bc)(d ⊕ ef) ⊕ (ab ⊕ ac)e

13

Hierarchy and Circuit StructureHierarchy and Circuit Structure

X = ad ⊕ aef ⊕ bcd ⊕ abe ⊕ ace ⊕ bcef

X = s1(d ⊕ ef) ⊕ s2e

L(X, {a, b, c}) = {a ⊕ bc, ab ⊕ ac}
s1 = a ⊕ bc
s2 = ab ⊕ ac

a b c d e f

s1 s2

X

a b c d e f

X

a b c d e f

X

14

Example: Ternary Adder (3Example: Ternary Adder (3rdrd Output) Output)

X = [a1b1 + (a1 + b1)a0b0]
 ⊕ [(a1 ⊕ b1 ⊕ a0b0)c1 + c0(a0 ⊕ b0)(c1 + (a1 ⊕ b1 ⊕ a0b0))]

Ripple-Carry Adder

L(X, {a1, b1, c1}) = {a1 ⊕ b1 ⊕ c1, a1b1 ⊕ b1c1 ⊕ a1c1}

sum carry Carry-save adder

0

++

X

++

a0 b0a1 b1

+

c1 c0

0

0Ripple-Carry Adder

3:2 Compressor CSA

a0 b0 c0

CSA

a1 b1 c1

++

0

0

X

15

Exploiting the Null SpaceExploiting the Null Space

 Null space of P, N(P):
 All expressions that satisfy PX = 0

X = ab(c ⊕ d) ⊕ (a ⊕ b)(cd ⊕ e) ⊕ ce ⊕ de
L(X, {a, b}) = {ab, a ⊕ b}

s1 ∈ N(s2)

X = s1(c ⊕ d) ⊕ s2(cd ⊕ e) ⊕ ce ⊕ de

s1 = ab s2 = a ⊕ b
…
X = (c ⊕ d)(s1 ⊕ e) ⊕ cds2 ⊕ es2

L(X, {c, d}) = {cd, c ⊕ d}

t1 ∈ N(t2)t1 = cd t2 = c ⊕ d

X =t2(s1 ⊕ e) ⊕ t1s2 ⊕ es2
…
X = s2(t1 ⊕ e) ⊕ t2(s1 ⊕ e)

L(X, {s2, t2}) = ?

{(s2, t1 ⊕ e), (t2, s1 ⊕ e)}
{(s2, s1 ⊕ t1 ⊕ e), (t2, s1 ⊕ t1 ⊕ e)}{(s2, s1 ⊕ t1 ⊕ e), (t2, s1 ⊕ e)}

s1 ∈ N(s2)

{(s2, s1 ⊕ t1 ⊕ e), (t2, s1 ⊕ t1 ⊕ e)}
t1 ∈ N(t2)

{(s2 ⊕ t2, s1 ⊕ t1 ⊕ e)}

{(s2, s1 ⊕ t1 ⊕ e), (t2, s1 ⊕ t1 ⊕ e)}

{(s2 ⊕ t2, s1 ⊕ t1 ⊕ e)}

{(α, γ), (β, γ)} → {(α ⊕ β, γ)}Combine expressions:X = (s2 ⊕ t2)(s1 ⊕ t1 ⊕ e)

16

Linear IndependenceLinear Independence

 Linear dependence
 Between leader expressions

 Or between their corresponding coefficients

 Rewrite some elements in terms of others

 LZD

 Initial basis:

 Reduces to:

{V0, P00, P01, V0 ⊕ P00, V0 ⊕ P01}

{V0, P00, P01}

{a ⊕ b, b ⊕ c, c ⊕ a}
c ⊕ a = (a ⊕ b) ⊕ (b ⊕ c)

{a ⊕ b, b ⊕ c}

17

7-bit Majority Function7-bit Majority Function

s1
0
1
0
1
1
0
0
1
1
0
0
1
0
1
1
0

s2
0
0
1
1
0
1
1
1
0
1
1
1
1
1
1
0

s3
0
0
0
0
0
0
0
1
0
0
0
1
0
1
1
0

s4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

a4a3a2a1
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

s3 = s1s2

s1 = a1 ⊕ a2 ⊕ a3 ⊕ a4

s2 = a1a2 ⊕ a1a3 ⊕ a1a4 ⊕ a2a3 ⊕ a2a4 ⊕ a3a4
s3 = a1a2a3 ⊕ a1a2a4 ⊕ a1a3a4 ⊕ a2a3a4

s4 = a1a2a3a4

L(X, {a1, a2, a3, a4}) = {s1, s2, s3, s4}

s1, s2 ∈ N(s4) s4 ∈ N(s1) s4 ∈ N(s2)

4:3 Parallel
Counter

a4 a3 a2 a1

s4 s2 s1

 Returns 1 if at least 4 bits are 1; 0 otherwise

18

Propagation of Null Space InformationPropagation of Null Space Information
X = ap ⊕ bp ⊕ cp ⊕ ax ⊕ ay ⊕ by ⊕ bz ⊕ cx ⊕ cz {az = 0, bx = 0, cy = 0}

{(a, p ⊕ x ⊕ y), (b, p ⊕ y ⊕ z), (c, p ⊕ x ⊕ z)}

L(X, {a, b, c}) = ?

{(a, p ⊕ x ⊕ y ⊕ z), (b, p ⊕ x ⊕ y ⊕ z), (c, p ⊕ x ⊕ z)}

x∈ N(b)

{(a, p ⊕ x ⊕ y ⊕ z), (b, p ⊕ x ⊕ y ⊕ z), {(a, p ⊕ x ⊕ y ⊕ z),

z∈ N(a)

{(α, γ), (β, γ)} → {(α ⊕ β, γ)}Combine expressions:

{(a ⊕ b, p ⊕ x ⊕ y ⊕ z), (c, p ⊕ x ⊕ z)}

{(a, p ⊕ x ⊕ y ⊕ z), (b, p ⊕ x ⊕ y ⊕ z), (c, p ⊕ x ⊕ z)}

{(a ⊕ b, p ⊕ x ⊕ y ⊕ z), (c, p ⊕ x ⊕ z)}
{(a ⊕ b, p ⊕ x ⊕ y ⊕ z), (c, p ⊕ x ⊕ y ⊕ z)}{(a ⊕ b, p ⊕ x ⊕ y ⊕ z), (c, p ⊕ x ⊕ y ⊕ z)}

y∈ N(c)

{(a ⊕ b ⊕ c, p ⊕ x ⊕ y ⊕ z)}

{(a ⊕ b, p ⊕ x ⊕ y ⊕ z), (c, p ⊕ x ⊕ y ⊕ z)}

{(a ⊕ b ⊕ c, p ⊕ x ⊕ y ⊕ z)}

L(X, {a, b, c}) = {a ⊕ b ⊕ c}
X = (a ⊕ b ⊕ c)(p ⊕ x ⊕ y ⊕ z)

19

Experimental SetupExperimental Setup
Circuit written by hand

Sum-of-product form

Known Arithmetic Circuits

Progressive
Decomposition

Synopsis Design Compiler
 - compile_ultra
 - minimize delay

Artisan Standard Cells
UMC (0.13µm)

1 2 3

20

ResultsResults
D

el
ay

 (
ns

)
Ar

ea
 (
μm

2)

TGA

DesignWare

carry
(A-B)

CSA
Unoptimized

Progressive
decomposition

Manual
implementation

16-bit LZD/LOD

15-bit comparator

16-bit adder

16:5 parallel counter

15-bit majority function

32-bit LOD

12-bit 3-input adder

21

ConclusionConclusion

 Progressive Decomposition Algorithm

 Arithmetic circuits
 Previously, hard to optimize
 Expert ideas can be generalized and automated

 Automatically infers successful circuit designs from the literature
 Carry-lookahead adder
 Structured LZD circuit
 Carry-save addition
 Parallel counters

 Long-term goal
 Replace manual circuit design with automated tools

