Progressive Decomposition: A Heuristic to Structure Arithmetic Circuits

Ajay K. Verma, Philip Brisk and Paolo Ienne

-p csda

Processor Architecture Laboratory (LAP) \& Centre for Advanced Digital Systems (CSDA)

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Logic Synthesis: Unable to Impose Hierarchy and Structure

- Logic synthesis tools
- Local optimization via Boolean minimization
- Lacking for arithmetic circuits

$$
a b(a+b)+c a+\bar{c} \longrightarrow a+\bar{c}
$$

- Architectural transformation
- Not with logic synthesis

Our contribution

Leading Zero Detector (LZD)

- Finds the position of the most significant non-zero bit

$$
x_{i}=\bar{a}_{15} \bar{a}_{14} \ldots \overline{a_{15-(i-2)}} \overline{a_{15-(i-1)}} a_{15-i}
$$

x_{i} is TRUE if $(\mathrm{i}+1)^{\text {th }}$ most-significant bit is the leading non-zero bit

Large fan-in dependencies

- Convert x_{i} to a binary number

LZD: A Better Implementation [Oklobdzija94]

- Divide 16 bits into 4 blocks
- For each block compute the following:
- Position of the most significant non-zero bit
- Control bit V_{i} is TRUE if at least one bit in this block is one
- Similar in principle to
 carry-lookahead addition

Reduced fan-in dependencies

What is the Bottom Line?

0.36 ns
 (426.8 $\mu \mathrm{m}^{2}$)

0.30 ns
 (392.3 $\mu \mathrm{m}^{2}$)

16\% faster, 8\% smaller

Outline

- Related Work
- Architectural optimization
- How to impose hierarchy?
- Properties of Algebra
- Ring structure of Boolean expressions
- Progressive Decomposition Algorithm
- Results
- Conclusions

Related Work

- Manual approaches for optimizing circuits of interest
- The entire field of computer arithmetic
- Great ideas by really smart people!
- Algorithmic approaches for a particular class of circuits
- Variable group size CLA adder [Lee91]
- Irregular partial product compressors [Stelling98]
- Heuristics to optimize general classes of circuits
- Kernel and co-kernel extraction [Brayton82]
- Architecture exploration via exhaustive search [Verma06]

Input Condensation

Leader expressions:

- Sufficient to evaluate the whole of an expression
- Once you evaluate them, you can discard the input bits

Compute all leader expressions in parallel

Hierarchical Circuit Construction

Theorem: Thise qeapteadx that have an "efffeckis/eoointipesadgrneitarechy

Reed-Muller Form

- XOR-of-Product Form
- Better suits arithmetic circuits
- Forms a ring under the operations XOR and AND
- Boolean properties exploited by our algorithm
- Identities
- Null Spaces
- Linear Dependence
- Before

$$
\begin{aligned}
& X=\left[a_{1} b_{1}+\left(a_{1}+b_{1}\right) a_{0} b_{0}\right] \\
& \quad \oplus\left[\left(a_{1} \oplus b_{1} \oplus a_{0} b_{0}\right) c_{1}+c_{0}\left(a_{0} \oplus b_{0}\right)\left(c_{1}+\left(a_{1} \oplus b_{1} \oplus a_{0} b_{0}\right)\right)\right]
\end{aligned}
$$

- After

$$
\begin{gathered}
X=a_{1} b_{1} \oplus a_{0} a_{1} b_{0} \oplus a_{0} b_{0} b_{1} \oplus a_{1} c_{1} \oplus b_{1} c_{1} \oplus a_{0} b_{0} c_{1} \oplus a_{0} c_{0} c_{1} \oplus a_{0} a_{1} c_{0} \\
\oplus a_{0} b_{1} c_{0} \oplus a_{0} b_{0} c_{0} \oplus b_{0} c_{0} c_{1} \oplus a_{1} b_{0} c_{0} \oplus b_{0} b_{1} c_{0}
\end{gathered}
$$

Progressive Decomposition: Algorithm Overview

- Find leader expressions
- ChopfemazELasesbefeiaphtigitfoperties

8 FRiw mannixthits?

Finding Leader Expressions

- Similar to kernel extraction in algebraic factorization
$X=a d \oplus a e f \oplus b c d \oplus a b e \oplus$ ace $\oplus b c e f$
 $\{(a, d),(a, e f),(b c, d),(a b, e),(a c, e),(b c, e f)\}$

$\{(a \oplus b c, d),(a \oplus b c, e f),(a b \oplus a c, e)\}$

$\{(a \oplus b c, d \oplus e f),(a b \oplus a c, e)\}$

$$
L(X,\{a, b, c\})=?
$$

Leader expression of X using inputs $\{a, b, c\}$

$$
\alpha \alpha \beta \oplus \beta \alpha y \rightarrow(c(\beta+\varphi+\beta) \eta)
$$

Hierarchy and Circuit Structure

Example: Ternary Adder (3 ${ }^{\text {rd }}$ Output)

$$
\begin{aligned}
& X=\left[a_{1} b_{1}+\left(a_{1}+b_{1}\right) a_{0} b_{0}\right] \\
& \oplus\left[\left(a_{1} \oplus b_{1} \oplus a_{0} b_{0}\right) c_{1}+c_{0}\left(a_{0} \oplus b_{0}\right)\left(c_{1}+\left(a_{1} \oplus b_{1} \oplus a_{0} b_{0}\right)\right)\right] \\
& L\left(X,\left\{a_{1}, b_{1}, c_{1}\right\}\right)=\left\{a_{1} \oplus b_{1} \oplus c_{1}, \quad \underline{a_{1} b_{1} \oplus b_{1} c_{1} \oplus a_{1} c_{1}}\right\} \\
& \text { sum carry Carry-save adder } \\
& \text { BiRpTormpmesshetder } \\
& \text { Ripple-Carry Adder }
\end{aligned}
$$

Exploiting the Null Space

- Null space of $\mathrm{P}, \mathrm{N}(\mathrm{P})$:
- All expressions that satisfy PX $=0$

$X .=(c \oplus d)\left(s_{1} \oplus_{s_{1}} e\right)=\oplus_{a} G^{d} s_{2} \oplus_{2} e_{2} \mathfrak{a} \oplus b \quad \longrightarrow s_{1} \in N\left(s_{2}\right)$

$$
\begin{aligned}
& L\left(X,\left\{s_{2}, t_{2}\right\}\right)=? t_{1}=c d \quad t_{2}=c \oplus d \quad \longrightarrow t_{1} \in N\left(t_{2}\right) \\
& \left\{\left(s_{2}, t_{1} \oplus e\right),\left(t_{2}, s_{1} \oplus e\right)\right\} \\
& \left.\left\{\left(s_{2}, s_{1} \oplus t_{1} \oplus e\right),\left(t_{2}, s_{1} \oplus e\right) \oplus e\right)\right\} \\
& \downarrow s_{1} \in N(s)+\in \mathbb{N}\left(t_{2}\right) \\
& \left\{\left(s_{2} \oplus t_{2}, s_{1} \oplus t_{1} \oplus e\right)\right\}
\end{aligned}
$$

Conbinine expressions:

$$
\{(\alpha, \gamma),(\beta, \gamma)\} \rightarrow\{(\alpha \oplus \beta, \gamma)\}
$$

Linear Independence

- Linear dependence
- Between leader expressions
- Or between their corresponding coefficients
- Rewrite some elements in terms of others

$$
\begin{aligned}
& \{a \oplus b, b \oplus c, c \rightarrow a\} \\
& c \oplus a=(a \oplus b) \oplus(b \oplus c)
\end{aligned}
$$

- LZD
- Initial basis: $\left\{V_{0,} P_{00}, P_{01}, V_{0} \oplus P_{00,}, V_{0} \oplus P_{01}\right\}$
- Reduces to: $\left\{V_{0,} P_{o 0,} P_{o l s}\right\}$

7-bit Majority Function

- Returns 1 if at least 4 bits are $1 ; 0$ otherwise

$$
\begin{aligned}
& L\left(X,\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}\right)=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\} \\
& s_{1}=a_{1} \oplus a_{2} \oplus a_{3} \oplus a_{4} \\
& s_{2}=a_{1} a_{2} \oplus a_{1} a_{3} \oplus a_{1} a_{4} \oplus a_{2} a_{3} \oplus a_{2} a_{4} \oplus a_{3} a_{4} \\
& s_{3}=a_{1} a_{2} a_{3} \oplus a_{1} a_{2} a_{4} \oplus a_{1} a_{3} a_{4} \oplus a_{2} a_{3} a_{4} \\
& \frac{S_{S}^{4},}{=_{2}} a_{2} a_{2} a_{1} a_{3} \quad s_{4} \in N\left(s_{1}\right) \quad s_{4} \in N\left(s_{2}\right)
\end{aligned}
$$

$\mathrm{a}_{4} \mathrm{a}_{3} \mathrm{a}_{2} \mathrm{a}_{1}$	$\mathrm{~s}_{4}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{2}$	$\mathrm{~s}_{1}$
0000	0	0	0	0
0001	0	0	0	1
0010	0	0	1	0
0011	0	0	1	1
0100	0	0	0	1
0101	0	0	1	0
0110	0	0	1	0
0111	0	1	1	1
1000	0	0	0	1
1001	0	0	1	0
1010	0	0	1	0
1011	0	1	1	1
1100	0	0	1	0
1101	0	1	1	1
1110	0	1	1	1
1111	1	0	0	0

Propagation of Null Space Information

$X=a p \oplus b p \oplus c p \oplus a x \oplus a y \oplus b y \oplus b z \oplus c x \oplus c z \quad\{a z=0, b x=0, c y=0\}$
$L(X,\{a, b, c\})=$?

$\begin{aligned} & \{(a, p \oplus x \oplus y) \\ & \{(a, p \oplus x \oplus y \oplus z), \end{aligned}$	$\begin{aligned} & (b, p \oplus y \oplus z) \\ & (b, p \oplus x \oplus y \oplus z) \end{aligned}$	$\begin{aligned} & (c, p \oplus x \oplus z)\} \\ & (c, p \oplus x \oplus z) \end{aligned}$
$\{(a \oplus b, p \oplus x \oplus y \oplus z),(c, p \oplus x \oplus z)\}$$\{(a \oplus b, p \oplus x \oplus y \oplus z),(c, p \oplus x \oplus y \oplus z)\}$		
		$(c, p \oplus x \oplus z)\}$
$\{(a \oplus b \oplus c, p \oplus x \oplus y \oplus z)\}$		
$\begin{aligned} & X=(a \oplus b \oplus c)(p \oplus x \oplus y \oplus z) \\ & L(X,\{a, b, c\})=\{a \oplus b \oplus c\} \end{aligned}$		

Combine expressions: $\quad\{(\alpha, \gamma),(\beta, \gamma)\} \rightarrow\{(\alpha \oplus \beta, \gamma)\}$

Experimental Setup

Results

Conclusion

- Progressive Decomposition Algorithm
- Arithmetic circuits
- Previously, hard to optimize
- Expert ideas can be generalized and automated
- Automatically infers successful circuit designs from the literature
- Carry-lookahead adder
- Structured LZD circuit
- Carry-save addition
- Parallel counters
- Long-term goal
- Replace manual circuit design with automated tools

