Progressive Decomposition: A Heuristic to Structure Arithmetic Circuits

Ajay K. Verma, Philip Brisk and Paolo Ienne

Processor Architecture Laboratory (LAP) & Centre for Advanced Digital Systems (CSDA)

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Logic Synthesis: Unable to Impose Hierarchy and Structure

- Logic synthesis tools
 - Local optimization via Boolean minimization
 - Lacking for arithmetic circuits

 $ab(a + b) + ca + \overline{c} \longrightarrow a + \overline{c}$

- Architectural transformation
 - Not with logic synthesis

Our contribution

Leading Zero Detector (LZD)

• Finds the position of the most significant non-zero bit

 $x_i = \overline{a_{15}} \overline{a_{14}} \dots \overline{a_{15-(i-2)}} \overline{a_{15-(i-1)}} a_{15-i}$

LZD: A Better Implementation [Oklobdzija94]

- Divide 16 bits into 4 blocks
 - For each block compute the following:
 - Position of the most significant non-zero bit
 - Control bit V_i is TRUE if at least one bit in this block is one

What is the Bottom Line?

Outline

- Related Work
- Architectural optimization
 - How to impose hierarchy?
- Properties of Algebra
 - Ring structure of Boolean expressions
- Progressive Decomposition Algorithm
- Results
- Conclusions

Related Work

- Manual approaches for optimizing circuits of interest
 - The entire field of computer arithmetic
 - Great ideas by really smart people!
- Algorithmic approaches for a particular class of circuits
 - Variable group size CLA adder [Lee91]
 - Irregular partial product compressors [Stelling98]
- Heuristics to optimize general classes of circuits
 - Kernel and co-kernel extraction [Brayton82]
 - Architecture exploration via exhaustive search [Verma06]

Input Condensation

Leader expressions:

- Sufficient to evaluate the whole of an expression
- Once you evaluate them, you can discard the input bits

Hierarchical Circuit Construction

Theorem: This approach plessions can built the approach plessions can be built the ball the b

Reed-Muller Form

- XOR-of-Product Form
 - Better suits arithmetic circuits
 - Forms a ring under the operations XOR and AND
 - Boolean properties exploited by our algorithm
 - Identities
 - Null Spaces
 - Linear Dependence
- Before

 $X = [a_{1}b_{1} + (a_{1} + b_{1})a_{0}b_{0}]$ $\oplus [(a_{1} \oplus b_{1} \oplus a_{0}b_{0})c_{1} + c_{0}(a_{0} \oplus b_{0})(c_{1} + (a_{1} \oplus b_{1} \oplus a_{0}b_{0}))]$ After

$$X = a_1 b_1 \oplus a_0 a_1 b_0 \oplus a_0 b_0 b_1 \oplus a_1 c_1 \oplus b_1 c_1 \oplus a_0 b_0 c_1 \oplus a_0 c_0 c_1 \oplus a_0 a_1 c_0$$
$$\oplus a_0 b_1 c_0 \oplus a_0 b_0 c_0 \oplus b_0 c_0 c_1 \oplus a_1 b_0 c_0 \oplus b_0 b_1 c_0$$

Progressive Decomposition: Algorithm Overview

- Find leader expressions
- Chopsenazevhastoleinput pippoperties
 - · How menythiss?
- Rewits circuit presentations

Finding Leader Expressions

Similar to kernel extraction in algebraic factorization

$$X = ad \oplus aef \oplus bcd \oplus abe \oplus ace \oplus bcef$$

$$X = (a \oplus bc)d \oplus (a \oplus bc)ef \oplus (ab \oplus ac)e$$

$$X = (a \oplus bc)(d \oplus ef) \oplus (ab \oplus ac)e$$

$$\{(a, d), (a, ef), (bc, d), (ab, e), (ac, e), (bc, ef)\}$$

$$\{(a \oplus bc, d), (a \oplus bc, ef), (ab \oplus ac, e)\}$$

$$\{(a \oplus bc, d \oplus ef), (ab \oplus ac, e)\}$$

 $L(X, \{a, b, c\}) = ?$

Leader expression of X using inputs {a, b, c}

Hierarchy and Circuit Structure

Example: Ternary Adder (3rd Output)

 $X = [a_1b_1 + (a_1 + b_1)a_0b_0] \\ \oplus [(a_1 \oplus b_1 \oplus a_0b_0)c_1 + c_0(a_0 \oplus b_0)(c_1 + (a_1 \oplus b_1 \oplus a_0b_0))]$

Exploiting the Null Space

- Null space of P, N(P):
 - All expressions that satisfy PX = 0

 $X = \mathbf{s} [(\mathbf{x} \oplus \mathbf{d}]) \oplus \mathbf{s} (\mathbf{a} \oplus \mathbf{b}) (\mathbf{a} \oplus \mathbf{b} \oplus \mathbf{c}) \oplus \mathbf{d} \mathbf{e} \oplus \mathbf{d} \mathbf{e}$ $\underbrace{X(X_t j(\mathfrak{g}_1 \oplus) \mathbf{e}) = \oplus (\mathfrak{g}_1 g_2 g \oplus \mathbf{e}) g_2}{X_{\cdot} = (c \oplus d)(s_1 \oplus s_{e_1}) = \oplus (\mathfrak{g}_1 g_2 g \oplus s_{e_1}) \oplus (\mathfrak{g}_2 g \oplus s_{e_1}) \oplus (\mathfrak{g}_2 g \oplus s_{e_1}) \oplus (\mathfrak{g}_2 g \oplus \mathfrak{g}_2) \oplus \mathfrak{g}_1 \oplus$

Combine expressions:

 $\{(\alpha, \gamma), (\beta, \gamma)\} \rightarrow \{(\alpha \oplus \beta, \gamma)\}$

Linear Independence

- Linear dependence
 - Between leader expressions
 - Or between their corresponding coefficients
 - Rewrite some elements in terms of others

• LZD

- Initial basis: $\{V_0, P_{00}, P_{01}, V_0 \oplus P_{00}, V_0 \oplus P_{01}\}$
- Reduces to: $\{V_0, P_{00}, P_{01}\}$

7-bit Majority Function

• Returns 1 if at least 4 bits are 1; 0 otherwise

$L(X, \{a_1, a_2, a_3, a_4\}) = \{s_1, s_2, s_3, s_4\}$				
$s_1 = a_1 \oplus a_2 \oplus a_3 \oplus a_4$				
$s_2 = a_1 a_2 \oplus a_1 a_3 \oplus a_1 a_4 \oplus a_2 a_3 \oplus a_2 a_4 \oplus a_3 a_4$				
$s_3 = a_1 a_2 a_3 \oplus a_1 a_2 a_4 \oplus a_1 a_3 a_4 \oplus a_2 a_3 a_4$				
$\begin{array}{ccc} s_4 = a_4 a_3 a_4 \\ s_1, s_2 \in \mathcal{N}(s_4) & s_4 \in \mathcal{N}(s_1) & s_4 \in \mathcal{N}(s_2) \end{array}$				
$a_4 \ a_3 \ a_2 \ a_1$ $s_3 = s_1 s_2$ $s_4 \ s_2 \ s_1$				

a ₄ a ₃ a ₂ a ₁	S ₄	S ₃	s ₂	S ₁
0000	0	0		0
0001	0 0	0 0	0 0	1
0010	0	0	1	0
0011	0	0	1	1
0100	0	0	0	1
0101	0	0	1	0
0110	0	0	1	0
0111	0	1	1	1
1000	0	0	0	1
1001	0	0	1	0
1010	0	0	1	0
1011	0	1	1	1
1100	0	0	1	0
1101	0	1	1	1
1110	0	1	1	1
1111	1	0	0	0

Propagation of Null Space Information

 $X = ap \oplus bp \oplus cp \oplus ax \oplus ay \oplus by \oplus bz \oplus cx \oplus cz \qquad \{az = 0, bx = 0, cy = 0\}$ $L(X, \{a, b, c\}) = ?$

Experimental Setup

Results

Conclusion

- Progressive Decomposition Algorithm
 - Arithmetic circuits
 - Previously, hard to optimize
 - Expert ideas can be generalized and automated
 - Automatically infers successful circuit designs from the literature
 - Carry-lookahead adder
 - Structured LZD circuit
 - Carry-save addition
 - Parallel counters
- Long-term goal
 - Replace manual circuit design with automated tools