CMOS Quantum Imagers for Picosecond Sensing Applications

Edoardo Charbon

Ecole Polytechnique Fédérale, Lausanne (EPFL)

Emerging Imaging Needs

- <u>*ultra-fast, time-correlated,*</u> molecular processes in physics and the life-sciences
- *quantitative* bio-chemistry and molecular biology
- New class of problems addressed by precision imaging techniques

Precision Imaging

- Quantum sensitivity *single photon resolution*
- Picosecond *timing accuracy*
- Over 100,000 frames per second
- Over 5 decades of dynamic range

All of the above: *in massive pixel arrays!*

Applications

- Vision
 - Nightvision
 - 3D vision, HCIs
 - Security, automotive
- Engineering
 - Fluid-dynamics
 - Energy
 - Bioimaging
- Medical / Research
 - Molecular imaging
 - Functional neuro-scanning
 - Microscopy, spectroscopy

Human-Computer Interfaces

3D Vision: Biometrics & Gaming

© A3Vision

Fluid-dynamics

Combustion Engine Dynamics

[Eisenberg 2005]

Functional Neuro-scanning

Molecular Imaging

Fluorescence Correlation Spectroscopy (FCS)

[Gösch, et al., 2003]

In Vivo Bioimaging

[Jie Yao, Nature 2006]

- Salivary glands of Drosophila larvae with giant chromosomes
- Two-photon fluoerscence lifetime imaging (FLIM) enables avoiding to break nuclei for "2D spreading"

Outline

- Single Photon Detection
- Single Photon Imagers
- Some Applications
- Next Generation Systems
- Conclusions

Single Photon Detection

Silicon Avalanche Photodiodes

• <u>Review</u>:

Photon to electron - Secondary electron - Multiplication Multiplication in depletion region by *impact ionization*

Silicon Avalanche Photodiodes

Operating in Geiger Mode

Quenching the Avalanche

- Thermally generated carriers dark counts

SPAD Implementation in CMOS

Other quenching techniques exist: e.g. active FB [Cova et al., Rochas et al., etc.]

Fabrication Issues

- p- guard ring for electric field reduction in edges
- Prevention of premature edge discharge
- Creation of zone with constant electric field

Original idea proposed in the 1960s by Haitz and others

SEM Micrograph

[Niclass and Charbon, ISSCC05]

SPAD Salient Parameters

Dark counts

Spurious pulses unrelated to photons

• Photon detection probability (PDP)

- Probability of a photon triggering an avalanche

Timing resolution

- Uncertainty betw. photon arrival and pulse generation

Cross-talk

- Optical & electrical cross-pixel interference

Afterpulsing

- Spurious pulses related to photons
- Dead time

Dark Counts

Traps capture photocharges and release them randomly \rightarrow avalanche is triggered \rightarrow spurious pulses

Mechanisms:

- Tunneling generation
- Trap-assisted thermal generation
- Trap/tunneling assisted generation

Photon Detection Probability

Time Resolution

Crosstalk

- Electrical cross-talk reduced by potential barrier
- Optical cross-talk alleviated by reduced number of carriers in avalanche

[Niclass, Charbon et al., JSSC 2005]

Effects of Miniaturization

- Single photon counting can be performed on a small surface
- Reduced parasitic capacitance
 - Reduced dead time
 - Smaller photoemission due to avalanche, thus reduced probability of secondary avalanches
 - Reduced probability of afterpulses and optical cross-talk

Technology Migration

Single Photon Imagers

Challenges of Large Arrays

SPADs are digital, dynamical devices, they must be treated as such in designing the sensor architecture

Architectures

- Complexity in pixel
 - Fast (full parallelism)
 - Large pixels, small arrays
 - In general, low post-layout flexibility
- Complexity in readout
 - Small pixels, large arrays
 - Slower processing
 - More post-layout flexibility

Architectures depend on implementation

Readout Mechanisms

- Random access (sequential) readout
 - Column parallel
 - Pixel based
- Event-driven readout
- Pipelined readout

Random Access Readout

Pixel based readout (no parallelism)

Column parallel readout (Imtd parallelism)

[Niclass, Charbon, ISSCC 05]

Event-Driven Readout

- Principle
 - Column becomes a timing preserving bus
 - A pixel hit by a photon transmits its ID
 - Timing pulse travels through the bus and is measured outside array

CMOS 64x48 Pixel Array

6mm

[Niclass, Sergio, Charbon, Esscirc 06]

Digital Pixel vs. Digital Readout

Pipelined Readout

- Principle
 - Column becomes a timing preserving bus
 - A pixel hit by a photon transmits the pulse in TDMA
 - Timing pulse travels through the bus and is measured outside array

CMOS 128x2 Pixel Array

Quenching

Gating

25 um

Fabrication:

0.35μm CMOS technology 4.1 x 1.1mm²

[Sergio, Niclass, Charbon, ISSCC 07]

Dark Count Rate (DCR)

DCR Distribution

Some Applications

- \Rightarrow 3D Vision
- ⇒ LLL/Ultrafast cameras
- \Rightarrow Room/T chemiluminescence detection
- ⇒ Multi-photon fluorescence
- \Rightarrow In situ single-photon counting

3D Vision: Time-of-Flight

Depth Map Example

- Lateral resolution:
 - 64x64 pixels
- Depth resolution:
 - 1.3mm (wc)
- Range:
 - 3.75m

Example: face recognition © A3vision

[Niclass and Charbon, ISSCC 2005]

High Speed

<u>Features</u>

- No measurable thermal noise (Poisson noise dominates)
- No measurable cross-talk, blooming, smearing

[Niclass, Rochas, Besse, Popovic, and Charbon, Transducers 2005]

Chemiluminescence Reactor

[Gersbach, Maruyama, Sawada, Charbon, µTAS'06]

Calcium Signaling / Patch Clamp

- Monitor ion channels in sensory cortex
- Stimulation via patch clamp

[Nagasawa et al., Transducers 2005]

Confocal FLIM Optical Setup

Integrated Two-Photon FLIM

New Results

- Thanks to an IRF FWHM of 79ps, we observed a triple-exponential fit for OGB-1 as predicted by Wilms
- Increased dynamic range of Ca²⁺ Signaling

New Results (Cont.)

Next Generation Systems

EPFL Single Photon Sensor Family

EPFL Imaging Roadmap

Deep Submicron Detectors

[Niclass, Gersbach, Henderson, Grant, and Charbon, JSTQE'07]

Conclusions

- Picosecond time resolution (1~100ps)
- High number of pixels (64x64 ~ 1Mpixels)
- High frame rates (1Mfps in continuous mode)
- High intensity saturation levels (10x improvement)
- High sensitivity (single photon)
- Low power

The AQUA Group

The <u>AQUA Group</u> was started in June 2003. It is funded by the Swiss National Science Foundation, the European Commission, and the European Space Agency.

http://aqua.epfl.ch/