HEURISTIC TWO-LEVEL LOGIC OPTIMIZATION

©Giovanni De Micheli

Stanford University
Outline

- Heuristic logic minimization.
- Principles.
- Operators on logic covers.
- Espresso.
Heuristic minimization

- Provide irredudant covers with ’reasonably small’ cardinality.
- Fast and applicable to many functions.
- Avoid bottlenecks of exact minimization:
 - Prime generation and storage.
 - Covering.
Heuristic minimization
Principles

• Local minimum cover:
 – Given initial cover.
 – Make it prime.
 – Make it irredundant.

• Iterative improvement:
 – Improve on cardinality by ’modifying’ the implicants.
Heuristic minimization
Operators

- **Expand:**
 - Make implicants prime.
 - Remove covered implicants.

- **Reduce:**
 - Reduce size of each implicant while preserving cover.

- **Reshape:**
 - Modify implicant pairs: enlarge one and reduce the other.

- **Irredundant:**
 - Make cover irredundant.
Example

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0110</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

α	$0**0$	1
β	$*0*0$	1
γ	$01**$	1
δ	$10**$	1
ϵ	$1*01$	1
ζ	$*101$	1
Example Expansion

- Expand 0000 to $\alpha = 0**0$.
 - Drop 0100, 0010, 0110 from the cover.

- Expand 1000 to $\beta = *0*0$.
 - Drop 1010 from the cover.

- Expand 0101 to $\gamma = 01**$.
 - Drop 0111 from the cover.

- Expand 1001 to $\delta = 10**$.
 - Drop 1011 from the cover.

- Expand 1101 to $\epsilon = 1*01$.

- Cover is: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.
Example
Example Reduction

- Reduce $0**0$ to nothing.

- Reduce $\beta = *0*0$ to $\tilde{\beta} = 00*0$

- Reduce $\epsilon = 1*01$ to $\tilde{\epsilon} = 1101$

- Cover is: $\{\tilde{\beta}, \gamma, \delta, \tilde{\epsilon}\}$.
Example
Example
Reshape

• Reshape \{\tilde{\beta},\delta\} to: \{\beta,\tilde{\delta}\}

 — where \tilde{\delta} = 10 \times 1 .

• Cover is: \{\beta,\gamma,\tilde{\delta},\tilde{\epsilon}\}.
Example
Example
Second expansion

- Expand $\tilde{\delta} = 10\ast1$ to $\delta = 10\ast\ast$.

- Expand $\tilde{\epsilon} = 1101$ to $\epsilon = 1\ast01$.
Example
Example
(MINI summary)

• Expansion:
 – Cover: \(\{\alpha, \beta, \gamma, \delta, \epsilon\} \).
 – Prime, redundant, minimal w.r. to scc.

• Reduction:
 – \(\alpha \) eliminated.
 – \(\beta = \ast 0 \ast 0 \) reduced to \(\tilde{\beta} = 00 \ast 0 \).
 – \(\epsilon = 1 \ast 01 \) reduced to: \(\tilde{\epsilon} = 1101 \).
 – Cover: \(\{\tilde{\beta}, \gamma, \delta, \tilde{\epsilon}\} \).

• Reshape:
 – \(\{\tilde{\beta}, \delta\} \) reshaped to: \(\{\beta, \tilde{\delta}\} \) where \(\tilde{\delta} = 10 \ast 1 \).

• Second expansion:
 – Cover: \(\{\beta, \gamma, \delta, \epsilon\} \).
 – Prime, irredundant.
Alternative example (ESPRESSO)

- Expansion:
 - Cover: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.
 - Prime, redundant, minimal w.r. to scc.

- Irredundant:
 - Cover: $\{\beta, \gamma, \delta, \epsilon\}$.
 - Prime, irredundant.
Example
Expand
naive implementation

• For each implicant
 • For each care literal
 * Raise it to don’t care if possible.
 • Remove all covered implicants.

• Problems:
 • Validity check.
 • Order of expansions.
Validity check

• Espresso, MINI:
 – Check *intersection* of expanded implicant with OFF-set.
 – Requires complementation.

• Presto:
 – Check *inclusion* of expanded implicant in the union of the ON-set and DC-set.
 – Can be reduced to recursive tautology check.
Heuristics

• Expand first cubes that are unlikely to be covered by other cubes.

• Selection:
 – Compute vector of column sums.
 – Weight: inner product of cube and vector.
 – Sort implicants in ascending order of weight.

• Rationale:
 – Low weight correlates to having few 1s in densely populated columns.
Example

\[f = a'b'c' + ab'c' + a'bc' + a'b'c \]

DC-set = \(abc' \)

\[
\begin{array}{ccc}
10 & 10 & 10 \\
01 & 10 & 10 \\
10 & 01 & 10 \\
10 & 10 & 01 \\
\end{array}
\]

• Ordering:

 – Vector: \([313131]^T\)

 – Weights: \((9, 7, 7, 7)\).

• Select second implicant.
Example (2)
Example (3)

- **OFF-set:**

 \[
 \begin{array}{ccc}
 01 & 11 & 01 \\
 11 & 01 & 01 \\
 \end{array}
 \]

- **Expand 01 10 10:**

 - 11 10 10 valid.

 - 11 11 10 valid.

 - 11 11 11 invalid.

- **Update cover to:**

 \[
 \begin{array}{ccc}
 11 & 11 & 10 \\
 10 & 10 & 01 \\
 \end{array}
 \]
Example (4)

11 11 10
10 10 01

- Expand 10 10 01:
 - 11 10 01 invalid.
 - 10 11 01 invalid.
 - 10 10 11 valid.

- Expanded cover:

 11 11 10
 10 10 11
Expand

• Smarter heuristics for choosing literals to be expanded.

• Four step procedure in Espresso.

• Rationale:

 – Raise literals so that expanded implicant:

 * Covers a maximal set of cubes.

 * Making it as large as possible.
Definitions

- *free*:
 - Set of entries that can be raised to 1.

- *Overexpanded cube*
 - Cube whose entries in *free* are raised.

- *Feasible cover*
 - Expand a cube to cover another one while keeping it as an implicant of the function.
Expand in ESPRESSO

- **Determine the essential parts.**
 - Determine which entries can never be raised, and remove them from \(free \).
 - Determine which parts can always be raised, raise them, and remove them from \(free \).

- **Detection of feasibly covered cubes.**
 - If there is an implicant \(\beta \) whose supercube with \(\alpha \) is feasible, repeat the following steps.
 * Raise the appropriate entry of \(\alpha \) and remove it from \(free \).
 * Remove from \(free \) entries that can never be raised or that can always be raised and update \(\alpha \).

- **Expansion guided by the overexpanded cube.**
 - While the overexpanded cube of \(\alpha \) covers some other cubes of \(F \), repeat the following steps.
 * Raise a single entry of \(\alpha \) as to overlap a maximum number of those cubes.
 * Remove from \(free \) entries that can never be raised or that can always be raised and update \(\alpha \).

- **Find the largest prime implicant.**
 - Formulate a covering problem and solve it by a heuristic method.
Reduce

- Sort implicants:
 - Heuristic: sort by descending weight.

- For each implicant:

- Lower as many * as possible to 1 or 0.

- **Theorem:**
 - Let $\alpha \in F$ and $Q = F \cup D - \{\alpha\}$.
 - Then, the maximally reduced cube is:
 $\tilde{\alpha} = \alpha \cap \text{supercube}(Q'_\alpha)$.
Example

• Expanded cover:

 11 11 10
 10 10 11

• Select first implicant:
 – cannot be reduced.

• Select second implicant:
 – Reduced to 10 10 01

• Reduced cover:

 11 11 10
 10 10 01
Irredundant cover
Irredundant cover

- Relatively essential set E^r
 - Implicants covering some minterms of the function not covered by other implicants.

- Totally redundant set R^t
 - Implicants covered by the relatively essentials.

- Partially redundant set R^p
 - Remaining implicants.
Irredundant cover

- Find a subset of R^p that, together with E^r, covers the function.

- Modification of the tautology algorithm:
 - Each cube in R^p is covered by other cubes.
 - Find mutual covering relations.

- Reduces to a covering problem:
 - Heuristic algorithm.
Example

\[
\begin{array}{c|ccc}
\alpha & 10 & 10 & 11 \\
\beta & 11 & 10 & 01 \\
\gamma & 01 & 11 & 01 \\
\delta & 01 & 01 & 11 \\
\epsilon & 11 & 01 & 10 \\
\end{array}
\]

- \(E^r = \{\alpha, \epsilon\}\)
- \(R^t = \emptyset\)
- \(R^p = \{\beta, \gamma, \delta\}\).
Example (2)

- Covering relations:

 - β is covered by $\{\alpha, \gamma\}$.

 - γ is covered by $\{\beta, \delta\}$.

 - δ is covered by $\{\gamma, \epsilon\}$.

- Minimum cover: $\gamma \cup E^r$
Espresso algorithm

- Compute the complement.

- Extract essentials.

- Iterate:
 - Expand, irredundant, reduce.

- Cost functions:
 - Cover cardinality ϕ_1.
 - Weighed sum of cube and literal count ϕ_2.
Espresso algorithm

\[
\text{espresso}(F, D) \{
 R = \text{complement}(F \cup D); \\
 F = \text{expand}(F, R); \\
 F = \text{irredundant}(F, D); \\
 E = \text{essentials}(F, D); \\
 F = F \setminus E; \\
 D = D \cup E; \\
 \text{repeat} \{ \\
 \phi_2 = \text{cost}(F); \\
 \text{repeat} \{ \\
 \phi_1 = |F|; \\
 F = \text{reduce}(F, D); \\
 F = \text{expand}(F, R); \\
 F = \text{irredundant}(F, D); \\
 \} \text{ until } (|F| \geq \phi_1); \\
 F = \text{last_gasp}(F, D, R); \\
 \} \text{ until } (\text{cost}(F) \geq \phi_2); \\
 F = F \cup E; \\
 D = D \setminus E; \\
 F = \text{make_sparse}(F, D, R); \\
\}
\]
Summary
heuristic minimization

- Heuristic minimization is iterative.

- Few operators applied to covers.

- Underlying mechanism:
 - Cube operation.
 - Unate recursive paradigm.

- Efficient algorithms.