LOGIC SYNTHESIS AND
TWO-LEVEL LOGIC
OPTIMIZATION

©Giovanni De Micheli

Stanford University
Outline

- Overview of logic synthesis.
- Combinational-logic design:
 - Background.
 - Two-level forms.
- Exact minimization.
- Covering algorithms.
- Boolean relations.
Logic synthesis and optimization

- Determine microscopic structure of the circuit.

- Explore \((\text{area-delay})\) trade-off:
 - Combinational circuits:
 * I/O delay.
 - Sequential circuits:
 * cycle-time.

- Explore \((\text{power-delay})\) trade-off:

- Enhance circuit testability.
Circuit implementation issues

- Implementation styles:
 - Two-level (e.g. PLA macro cells).
 - Multi-level (e.g. cell-based, array-based).

- Operation:
 - Combinational.
 - Sequential:
 * Synchronous
 * Asynchronous.
Design flow in logic synthesis

- Circuit capture:
 - Tabular specifications of functions or finite-state machines (FSMs).
 - Schematic capture.
 - Hardware Description Languages (HDLs).

- Synthesis and optimization:
 - Map circuit representation to abstract model.
 - Transformations on abstract model.
 - Library binding.
Abstract models

- Models based on graphs.

- Useful for:
 - Machine-level processing.
 - Reasoning about properties.

- Derived from language models by compilation.
Structural views

- Netlists:
 - Modules, nets, incidence.
 - Ports.
 - Hierarchy.

- Incidence (sparse) matrix of a graph.
Example
Logic functions

- Black-box model of a combinational module.

- Defined on Boolean Algebra.

- Support variables correspond to module inputs.

- Logic functions may have multiple outputs and be *incompletely specified*.
Logic networks

- Mixed structural/behavioral views.

- Useful for multiple-level logic (combinational and sequential).

- Interconnection of modules:
 - Logic gates.
 - Logic functions.
Example

\[p = a \cdot b \]
\[q = p + c \]

\[p = a \cdot b \]
\[q = p + c \]

\[v_a \]
\[v_b \]
\[v_c \]
\[v_p \]
\[v_q \]
\[v_x \]
\[v_y \]
• Model behavior of sequential circuits.

• Graph:
 - Vertices = states.
 - Edges = transitions.
Major logic synthesis problems

- Optimization of logic function representation.
 - Minimization of two-level forms.
 - Optimization of Binary Decision Diagrams (BDDs).

- Synthesis of combinational multiple-level logic networks.
 - Optimization or area, delay, power, testability.

- Optimization of FSM models.
 - State minimization, encoding.

- Synthesis of sequential multiple-level logic networks.
 - Optimization or area, delay, power, testability.

- Library binding.
 - Optimal selection of library cells.
Combinational logic design background

• Boolean algebra:

 – Quintuple \((B, +, \cdot, 0, 1)\)

 – Binary Boolean algebra \(B = \{0, 1\}\)

• Boolean function:

 – Single output: \(f : B^n \rightarrow B\).

 – Multiple output: \(f : B^n \rightarrow B^m\).

 – Incompletely specified:

 * don’t care symbol *.

 \(* f : B^n \rightarrow \{0, 1,*\}^m.\)
The *don’t care* conditions

- We don’t care about the value of the function.

- Related to the environment:
 - Input patterns that never occur.
 - Input patterns such that some output is never observed.

- Very important for synthesis and optimization.
Definitions

- Scalar function:
 - ON – set: subset of the domain such that f is true.
 - OFF – set: subset of the domain such that f is false.
 - DC – set: subset of the domain such that f is a don’t care.

- Multiple-output function:
 - Defined for each component.
Cubical representation
Definitions

- Boolean variables.

- Boolean literal: variable and complement.

- Product or cube: product of literals.

- Implicant: product implying a value of a function (usually TRUE).
 - Hypercube in the Boolean space.

- Minterm: product of all input variables implying a value of a function (usually TRUE).
 - Vertex in the Boolean space.
Tabular representations

- **Truth table:**
 - List of all minterms of a function.

- **Implicant table or cover:**
 - List of implicants of a function sufficient to define function.

- Remark:
 - Implicant tables are smaller in size.
Example of truth table

\[x = ab + a'c; \quad y = ab + bc + ac \]

<table>
<thead>
<tr>
<th>abc</th>
<th>xy</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>00</td>
</tr>
<tr>
<td>001</td>
<td>10</td>
</tr>
<tr>
<td>010</td>
<td>00</td>
</tr>
<tr>
<td>011</td>
<td>11</td>
</tr>
<tr>
<td>100</td>
<td>00</td>
</tr>
<tr>
<td>101</td>
<td>01</td>
</tr>
<tr>
<td>110</td>
<td>11</td>
</tr>
<tr>
<td>111</td>
<td>11</td>
</tr>
</tbody>
</table>
Example of implicant table
\[x = ab + a'c; \quad y = ab + bc + ac \]

<table>
<thead>
<tr>
<th>abc</th>
<th>xy</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>10</td>
</tr>
<tr>
<td>*11</td>
<td>11</td>
</tr>
<tr>
<td>101</td>
<td>01</td>
</tr>
<tr>
<td>11*</td>
<td>11</td>
</tr>
</tbody>
</table>
Cubical representation of minterms and implicants

- \(f_1 = a'b'c' + a'b'c + ab'c + abc + abc' \)

- \(f_2 = a'b'c + ab'c \)
Two-level logic optimization

motivation

• Reduce size of the representation.

• Direct implementation:
 – PLAs – reduce size and delay.

• Other implementation styles (e.g. multi-level):
 – Reduce amount of information.
 – Simplify local functions and connections.
Programmable logic arrays

- Macro-cells with rectangular structure.
- Implement any multi-output function.
- Layout easily generated by module generators.
- Fairly popular in the seventies/eighties (NMOS).
- Still used for control-unit implementation.
Programmable logic array

- \(f_1 = a'b' + b'c + ab \)
- \(f_2 = b'c \)
Two-level optimization

• Assumptions:

 – Primary goal is to reduce the number of implicants.

 – All implicants have the same cost.

 – Secondary goal is to reduce the number of literals.

• Rationale:

 – Implicants correspond to PLA rows.

 – Literals correspond to transistors.
Definitions

- **Minimum cover:**
 - Cover of the function with minimum number of implicants.
 - Global optimum.

- **Minimal cover or irredundant cover:**
 - Cover of the function that is not a proper superset of another cover.
 - No implicant can be dropped.
 - Local optimum.

- **Minimal cover w.r.t. 1-implicant containment.**
 - No implicant is contained by another one.
 - Weak local optimum.
Example

\[f_1 = a'b'c' + a'b'c + ab'c + abc + abc' \]

\[f_2 = a'b'c + ab'c \]
Definitions

- **Prime implicant:**
 - Implicant not contained by any other implicant.

- **Prime cover:**
 - Cover of prime implicants.

- **Essential** prime implicant:
 - There exist some minterm covered only by that prime implicant.
Logic minimization

- *Exact* methods:
 - Compute minimum cover.
 - Often impossible for large functions.
 - Based on *Quine McCluskey* method.

- *Heuristic* methods:
 - Compute minimal covers (possibly minimum).
 - Large variety of methods and programs:
 - MINI, PRESTO, ESPRESSO.
Exact logic minimization

- **Quine’s theorem:**
 - There is a minimum cover that is prime.

- Consequence:
 - Search for minimum cover can be restricted to prime implicants.

- Quine McCluskey method:
 - Compute prime implicants.
 - Determine minimum cover.
Prime implicant table

- **Rows:** minterms.

- **Columns:** prime implicants.

- **Exponential size:**
 - 2^n minterms.
 - Up to $3^n/n$ prime implicants.

- **Remark:**
 - Some functions have much fewer primes.
 - Minterms can be grouped together.
Example

- Function: \(f = a'b'c' + a'b'c + ab'c + abc + abc' \)

- Primes:

\[
\begin{array}{c|ccc}
\alpha & 00^* & 1 \\
\beta & *01 & 1 \\
\gamma & 1*1 & 1 \\
\delta & 11^* & 1 \\
\end{array}
\]

- Implicant table:

<table>
<thead>
<tr>
<th></th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\gamma)</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Example
Minimum cover
early methods

- Reduce table:
 - Iteratively identify essentials, save them in the cover, remove covered minterms.

- Petrick’s method.
 - Write covering clauses in pos form.
 - Multiply out pos form into sop form.
 - Select cube of minimum size.
 - Remark:
 * Multiplying out clauses is exponential.
Example
Petrick’s method

• pos clauses:

\[- (\alpha)(\alpha + \beta)(\beta + \gamma)(\gamma + \delta)(\delta) = 1\]

• sop form:

\[- \alpha\beta\delta + \alpha\gamma\delta = 1\]

• Solutions:

\[- \{\alpha, \beta, \delta\}\]

\[- \{\alpha, \gamma, \delta\}\]
Matrix representation

- View table as Boolean matrix: \(\mathbf{A} \).

- Selection Boolean vector for primes: \(\mathbf{x} \).

- Determine \(\mathbf{x} \) such that:
 - \(\mathbf{A} \mathbf{x} \geq \mathbf{1} \).
 - Select enough columns to cover all rows.

- Minimize cardinality of \(\mathbf{x} \):
 - Example: \(\mathbf{x} = [1101]^T \)
Example

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
1 \\
1 \\
0 \\
1 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\
2 \\
1 \\
1 \\
1 \\
\end{bmatrix}
\]
Covering problem

- Set covering problem:
 - A set S. (Minterm set).
 - A collection C of subsets. (Implicant set).
 - Select fewest elements of C to cover S.

- Intractable.

- Exact method:
 - Branch and bound algorithm.

- Heuristic methods.
Example
edge-cover of a hypergraph
Branch and bound algorithm

- Tree search of the solution space:
 - Potentially exponential search.

- Use bounding function:
 - If the lower bound on the solution cost that can be derived from a set of future choices exceeds the cost of the best solution seen so far:
 - Kill the search.

- Good pruning may reduce run-time.
Branch and bound algorithm

\[\text{BRANCH_AND_BOUND} \{ \]
\[\text{Current_best} = \text{anything}; \]
\[\text{Current_cost} = \infty; \]
\[S = s_0; \]
\[\text{while } (S \neq \emptyset) \text{ do } \{ \]
\[\text{Select an element in } s \in S; \]
\[\text{Remove } s \text{ from } S; \]
\[\text{Make a branching decision based on } s \]
\[\text{yielding sequences } \{s_i, i = 1, 2, \ldots, m\}; \]
\[\text{for } (i = 1 \text{ to } m) \{ \]
\[\text{Compute the lower bound } b_i \text{ of } s_i; \]
\[\text{if } (b_i \geq \text{Current_cost}) \]
\[\text{Kill } s_i; \]
\[\text{else } \{ \]
\[\text{if } (s_i \text{ is a complete solution}) \{ \]
\[\text{Current_best} = s_i; \]
\[\text{Current_cost} = \text{cost of } s_i; \]
\[\} \]
\[\text{else } \]
\[\text{Add } s_i \text{ to set } S; \]
\[\} \]
\[\} \]
\[\} \]
Example

(a)

(b) Bound = 6

Killed subtree
Branch and bound algorithm for covering
Reduction strategies

- Partitioning:
 - If A is block diagonal:
 * Solve covering problem for corresponding blocks.

- Essentials (EPI):
 - Column incident to one (or more) row with single 1:
 * Select column.
 * Remove covered row(s) from table.
Branch and bound algorithm for covering
Reduction strategies

- Column (implicant) dominance:
 - If $a_{ki} \geq a_{kj} \ \forall k$:
 * remove column j.

- Row (minterm) dominance:
 - If $a_{ik} \geq a_{jk} \ \forall k$:
 * Remove row i.
Example

\[
A = \begin{bmatrix}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
\end{bmatrix}
\]
Example reduction

- Fourth column is essential.

- Fifth column is dominated.

- Fifth row is dominant.

\[A = \begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
\end{bmatrix} \]
Branch and bound covering algorithm

\[EXACT_COVER(A, x, b) \{ \]
Reduce matrix \(A \) and update corresponding \(x \);
\[\text{if} \ (Current_estimate \geq |b|) \ \text{return}(b); \]
\[\text{if} \ (A \text{ has no rows}) \ \text{return} \ (x); \]
Select a branching column \(c \);
\[x_c = 1 ; \]
\(\tilde{A} = A \) after deleting \(c \) and rows incident to it;
\(\tilde{x} = EXACT_COVER(\tilde{A}, x, b); \)
\[\text{if} \ (|\tilde{x}| < |b|) \]
\[b = \tilde{x} ; \]
\[x_c = 0 ; \]
\(\tilde{A} = A \) after deleting \(c \);
\(\tilde{x} = EXACT_COVER(\tilde{A}, x, b); \)
\[\text{if} \ (|\tilde{x}| < |b|) \]
\[b = \tilde{x} ; \]
\text{return} \ (b); \]
\}
Bounding function

- Estimate lower bound on the covers derived from the current x.

- The sum of the ones in x, plus bound on cover for local A:
 - Independent set of rows:
 * No 1 in same column.
 - Build graph denoting pairwise independence.
 - Find clique number.
 - Approximation (lower) is acceptable.
Example

\[A = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix} \]

- Row 4 independent from 1, 2, 3.
- Clique number is 2.
- Bound is 2.
Example

\[A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \]

• There are no independent rows.

• Clique number is 1 (one vertex).

• Bound is 1 + 1 (already selected essential).
Example

\[A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \]

• Choose first column:
 - Recur with \(\tilde{A} = [11] \).
 * Delete one dominated column.
 * Take other column (essential).
 - New cost is 3.

• Exclude first column:
 - Find another solution with cost 3 (discarded).
ESPRESSO-EXACT

- Exact minimizer [Rudell].

- Exact branch and bound covering.

- Compact implicant table:
 - Group together minterms covered by the same implicants.

- Very efficient. Solves most problems.
Example

\[
\begin{align*}
\alpha & | 0**0 & 1 \\
\beta & | *0*0 & 1 \\
\gamma & | 01** & 1 \\
\delta & | 10** & 1 \\
\epsilon & | 1*01 & 1 \\
\zeta & | *101 & 1
\end{align*}
\]
Example
Prime implicant table
(after removing essentials)

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
<th>ε</th>
<th>ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000,0010</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1101</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Recent developments

- Many minimization problems can be solved exactly today.

- Usually bottleneck is table size.

- Implicit representation of prime implicants:
 - Methods based on BDDs [COUDERT]:
 * To represent sets.
 * To do dominance simplification.
 - Methods based on signature cubes [MCGEER]:
 * Represent set of primes.
Summary

Exact two-level minimization of logic functions

© GDM

- Based on derivatives of Quine-McCluskey method.

- Many minimization problems can be now solved exactly.

- Usual problems are memory size and time.
Boolean relations

- Generalization of Boolean functions.

- More than one output pattern may correspond to an input pattern.

- Some degrees of freedom in finding an implementation:
 - More general than don’t care conditions.

- Problem:
 - Given a Boolean relation, find minimum cover of a compatible function.
Example

- Compare:
 - $a + b > 4$?
 - $a + b < 3$?
Example

<table>
<thead>
<tr>
<th>a_1</th>
<th>a_0</th>
<th>b_1</th>
<th>b_0</th>
<th>\mathbf{x}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>{000, 001, 010}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>{000, 001, 010}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>{000, 001, 010}</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>{000, 001, 010}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>{000, 001, 010}</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>{000, 001, 010}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>{011, 100}</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>{011, 100}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>{011, 100}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>{011, 100}</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>{011, 100}</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>{011, 100}</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>{011, 100}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>{101, 110, 111}</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>{101, 110, 111}</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>{101, 110, 111}</td>
</tr>
</tbody>
</table>
Example (2)

Minimum implementation

\[
\begin{array}{cccc|c}
 a_1 & a_0 & b_1 & b_0 & x \\
 0 & * & 1 & * & 010 \\
 1 & * & 0 & * & 010 \\
 1 & * & 1 & * & 100 \\
 * & * & * & 1 & 001 \\
 * & 1 & * & * & 001 \\
\end{array}
\]

- Remark:
 - Circuit is no longer an adder.
Minimization of Boolean relations

- Since there are many possible output values there are many logic functions implementing the relation.

 - Compatible functions.

- Find a function with minimum cardinality.

- Do not enumerate all possible functions:

 - May be too many.

- Represent the primes of all possible functions:

 - Compatible primes \((c - \text{primes})\).
Minimization of Boolean relation

• Exact:
 – Find a set of compatible primes.
 – Solve a *binate* covering problem.
 * Consistency relations.

• Heuristic:
 – Iterative improvement [GYOCRO].
Example

- Boolean relation:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>{ 00 }</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>{ 00 }</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>{ 00 }</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>{ 10 }</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>{ 00 }</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>{ 01 }</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>{ 00,11 }</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>{ 00,11 }</td>
</tr>
</tbody>
</table>

- Compatible primes:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>β</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>01</td>
</tr>
<tr>
<td>γ</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>δ</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>ϵ</td>
<td>*</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>ζ</td>
<td>1</td>
<td>*</td>
<td>1</td>
<td>01</td>
</tr>
<tr>
<td>η</td>
<td>1</td>
<td>1</td>
<td>*</td>
<td>11</td>
</tr>
</tbody>
</table>
Example

• Input 011 – output 10.
 – Covering clause \((\alpha + \epsilon)\).

• Input 111 – output 00 or 11.
 – No implicant – 00 – correct.
 – Either \(\eta\) or \(\epsilon \cup \zeta\) – output 11 – correct.
 – Only \(\epsilon\) or \(\zeta\) is selected – output 10 or 01 – WRONG.
 – Covering clause \(\eta + \epsilon \zeta + \epsilon' \zeta'\) – binate.

• Overall covering clause:
 \[(\alpha + \epsilon) \cdot (\beta + \zeta) \cdot (\epsilon + \zeta' + \eta) \cdot (\epsilon' + \zeta + \eta)\]
Binate covering

- Covering problem with *binate clause*.

- Implications:
 - The selection of a prime may exclude other primes.

- No guarantee of finding a feasible solution:
 - Inconsistent clauses.

 - Much harder to solve than unate cover.
 - Branch and bound algorithm.
 - BDD-based methods.
Summary
Boolean relations

- Generalization of Boolean functions.
 - Many possible output patterns.

- Useful for modeling:
 - Cascaded blocks.
 - Portions of multiple-level networks.

- More degree of freedom in implementation.

- Harder problem to solve.