TIMING ISSUES IN
MULTI-LEVEL LOGIC
OPTIMIZATION

©Giovanni De Micheli

Stanford University
Outline

- Timing verification.
 - Delay modeling.
 - Critical paths.
 - The false path problem.

- Algorithms for timing optimization.
Timing verification and optimization

- Verification:
 - Check that a circuit runs at speed:
 * Satisfies I/O delay constraints.
 * Satisfies cycle-time constraints.

- Optimization:
 - Minimum area
 * subject to delay constraints.
 - Minimum delay
 * (subject to area constraints).
Delay modeling

- Gate delay modeling:
 - Straightforward for bound networks.
 - Approximations for unbound networks.

- Network delay modeling:
 - Compute signal propagation:
 * Topological methods.
 * Logic/topological methods.
Gate delay modeling
unbound networks

- Virtual gates:
 - Logic expressions.

- Stage delay model:
 - Unit delay per vertex.

- Refined models:
 - Depending on fanout.
Network delay modeling

• For each vertex v_i.

• Propagation delay d_i.

 – I/O propagation delays are usually zero.

• Data-ready time t_i.

 – Input data-ready times denote when inputs are available.

 – Computed elsewhere by forward traversal:

 $$t_i = d_i + \max_{j \mid (v_j, v_i) \in E} t_j$$
Example

- Propagation delays:
 - \(d_g = 3; d_h = 8; d_m = 1; d_k = 10; d_l = 3; \)
 - \(d_n = 5; d_p = 2; d_q = 2; d_x = 2; d_y = 3; \)
Network delay modeling

- For each vertex v_i.

- Required data-ready time \bar{t}_x.

 - Specified at the primary outputs.

 - Computed elsewhere by backward traversal:

 $$\bar{t}_i = \min_{j \mid (v_i, v_j) \in E} \bar{t}_j - d_j$$

- Slack s_i.

 - Difference between required and actual data-ready times $s_i = \bar{t}_i - t_i$.
Required data-ready times:

\[\bar{t}_x = 25 \text{ and } \bar{t}_y = 25. \]
Example

- \(s_x = 2; s_y = 0 \)
- \(\bar{t}_m = 25 - 2 = 23; s_m = 23 - 21 = 2; \)
- \(\bar{t}_q = 25 - 3 = 22; s_q = 22 - 22 = 0; \)
- \(\bar{t}_l = \min\{23 - 1; 22 - 2\} = 20; s_l = 20 - 20 = 0; \)
- \(\bar{t}_h = 23 - 1 = 22; s_h = 22 - 11 = 11; \)
- \(\bar{t}_k = 20 - 3 = 17; s_k = 17 - 13 = 4; \)
- \(\bar{t}_p = 20 - 3 = 17; s_p = 17 - 17 = 0; \)
- \(\bar{t}_n = 17 - 2 = 15; s_n = 15 - 15 = 0; \)
- \(\bar{t}_b = 15 - 5 = 10; s_b = 10 - 10 = 0; \)
- \(\bar{t}_g = \min\{22 - 11; 17 - 10; 17 - 2\} = 7; s_g = 7 - 3 = 4; \)
- \(\bar{t}_a = 7 - 3 = 4; s_b = 4 - 0 = 4. \)
Topological critical path

- Assume topologic computation of:
 - Data-ready by forward traversal.
 - Required data-ready by backward traversal.

- Topological critical path:
 - Input/output path with zero slacks.
 - Any increase in the vertex propagation delay affects the output data-ready time.

- A topological critical path may be false.
 - No event can propagate along that path.
Example

- All gates have unit delay.

- All inputs ready at time 0.

- Longest topological path: \((v_a, v_c, v_d, v_y, v_z)\).
 - Path delay: 4 units.

- Critical true path: \((v_a, v_c, v_d, v_y)\).
 - Path delay: 3 units.
Sensitizable paths

- A path in a logic network is *sensitizable* if an event can propagate from its tail to its head.

- A *critical path* is a sensitizable path of maximum weight.

- Only sensitizable paths should be considered.

- Non-sensitizable paths are *false* and can be discarded.
Sensitizable paths

• *Path*:
 – Ordered set of vertices.

• *Inputs* to a vertex:
 – Direct predecessors.

• *Side-inputs* of a vertex:
 – Inputs not on the path.
Dynamic sensitization condition

- Path: \(P = (v_{x_0}, v_{x_1}, \ldots, v_{x_m}) \).

- An event propagates along \(P \) if
 \[\frac{\partial f_{x_i}}{\partial x_{i-1}} = 1 \ \forall i = 1, 2, \ldots, m. \]

- Remark:
 - Boolean differences are function of the side-inputs and values on the side-inputs may change.

 - Boolean differences must be true at the time that the event propagates.
Example

Path: \((v_a, v_c, v_d, v_y, v_z)\)

- \(\partial f_y / \partial d = e = 1\) at time 2.

- \(\partial f_z / \partial y = e' = 1\) at time 3.

- Not dynamically sensitizable because \(e\) settles at time 1.
Static sensitization

• Simpler, weaker model.

• We neglect the requirement on *when* the Boolean differences must be true to propagate an event.

• There is an assignment of primary inputs c such that $\partial f_{x_i}(c)/\partial x_{i-1} = 1 \forall i = 1, 2, \ldots, m$.

• May lead to *underestimate* delays.
Example

- Not statically sensitizable.
Example

- All gates have unit propagation delay.
Example

- Topological critical paths:
 - \(\{(v_a, v_d, v_g, v_o); (v_b, v_d, v_g, v_o)\} \)
 - Path delay: 3.
 - Not statically sensitizable.

- Other path:
 - \((v_a, v_e, v_o) \)
 - Path delay: 2.

- Assume:
 - \(c = 0 \) and \(a, b \) dropping from 1 to 0.
 - Event propagates to output !!!
Modes for delay computation

- **Transition mode:**
 - Variables assumed to hold previous values.
 * Model circuit node capacitances.
 - Need two input vectors to test.

- **Floating mode:**
 - Circuit is assumed to be memoryless.
 - Need only one test vector.
 - Variables have unknown value until set by input test vector.
Modes for delay computation

- *Floating mode* delay computation is simpler than *transition mode* computation.

- *Floating mode* is a pessimistic approach.

- *Floating mode* is more robust:
 - *Transition mode* may not have the *monotone speed-up* property.
Monotone speed-up property

- Propagation delays are upper bounds.
 - What happens if gates are faster than expected?

- We must insure that speeding-up a gate does not slow-down the circuit.
 - Topological critical paths are robust.
 - What about dynamically sensitizable paths in transition mode?
Example

- Propagation delays: 2 units.
- Shaded gate: 3 units and 1 unit.
Static co-sensitization

- Assumption:
 - Circuit modeled by AND, OR, INV gates.
 - INV are irrelevant to the analysis.
 - Floating mode.

- Controlling values:
 - 0 for AND gate.
 - 1 for OR gate.

- Gate has controlled value.
Static co-sensitization

- Path: $P = (v_{x_0}, v_{x_1}, \ldots, v_{x_m})$.

- A vector statically co-sensitizes a path to 1 (or to 0) if
 - $x_m = 1$ or (0) and
 - $v_{x_{i-1}}$ has a controlling value whenever v_{x_i} has a controlled value.

- Necessary condition for a path to be true.
False path detection test

- For all input vectors, one of the following is true:

 - (1) A gate is controlled and

 * the path provides a non-controlling value

 * a side-input provides a controlling value.

 - (2) A gate is controlled and

 * the path and a side-input have controlling values

 * the side-input presents the controlling value first.

 - (3) A gate is not controlled and

 * a side-input presents the non-controlling value last.
Example

- Path: \((v_a, v_c, v_d, v_y, v_z)\).
- For \(a = 0, b = 0\)
 - condition (1) occurs at the OR gate.
- For \(a = 0, b = 1\)
 - condition (2) occurs at the AND gate.
- For \(a = 1, b = 0\)
 - condition (2) occurs at the OR gate.
- For \(a = 1, b = 1\)
 - condition (1) occurs at the AND gate.
Important problems

- Check if circuit works at speed \bar{t}.
 - Verify that all true paths are faster than \bar{t}.
 - Show that all paths slower than \bar{t} are false.

- Compute groups of false paths.

- Compute critical true path:
 - Binary search for values of \bar{t}.
 - Show that all paths slower than \bar{t} are false.
Algorithms for delay minimization

- Alternate:
 - Critical path computation.
 - Logic transformation on critical vertices.

- Consider quasi critical paths:
 - Paths with near-critical delay.
 - Small slacks.
REduce Delay ($G_n(V, E), \epsilon$){
 repeat {
 Compute critical paths and critical delay τ;
 Set output required data-ready times to τ;
 Compute slacks;
 $U =$ vertex subset with slack lower than ϵ;
 $W =$ select vertices in U;
 Apply transformations to vertices W;
 } until (no transformation can reduce τ);
}
Transformations for delay reduction

- Reduce propagation delay.

- Reduce dependencies from critical inputs.

- Favorable transformation:
 - Reduces local data-ready time.
 - Any data-ready time increase at other vertices is bounded by the local slack.
Example

- Unit gate delay.

- Transformation:
 - Elimination.

- Always favorable.

- Obtain several area/delay trade-off points.
Example

- Iteration 1: eliminate v_p, v_q. (No literal increase.)
- Iteration 2: eliminate v_u. (No literal increase.)
- Iteration 3: eliminate v_r, v_s, v_t. (Literals increase.)
More refined delay models

- Elimination:
 - Reduces one stage.
 - Yields more complex and slower gates.
 - May slow other paths.

- Substitution:
 - Adds one dependency.
 - Loads and slows a gate.
 - May slow other paths.
Example

- NAND delay = 2. INVERTER delay = 1.

- All input data-ready are 0, except $t_d = 3$.
Speed-up algorithm

- Determine a subnetwork W of depth d.

- Collapse subnetwork by elimination.

- Duplicate vertices with successors outside W:
 - Record area penalty.

- Resynthesize W by timing-driven decomposition.

- Heuristics:
 - Choice of W.
 - Monitor area penalty and potential speed-up.
Algorithms for minimal-area synthesis under delay constraints

- Make network *timing feasible*.
 - May not be possible.

- *Minimize area* while preserving timing feasibility.
 - Use area optimization algorithms.
 - Monitor delays and slacks.
 - Reject transformations yielding negative slacks.
Making a network timing feasible.

- Naive approach:
 - Mark vertices with negative slacks.
 - Apply transformations to marked vertices.

- Refined approach.
 - Transform multiple I/O delay constraints into single constraint by delay padding.
 - Apply algorithms for CP minimization.
 - Stop when constraints are satisfied.
Example
\[\bar{t} = [2332]^T \]
Summary

- Timing optimization is crucial for achieving competitive logic design.

- Timing optimization problems are hard:
 - Detection of critical paths.
 * Elimination of false paths.
 - Network transformations.