SYNCHRONOUS-LOGIC OPTIMIZATION

©Giovanni De Micheli

Stanford University
Outline

- Structural optimization methods:
 - Peripheral retiming
 - Synchronous-logic transformations.
 - Synchronous don’t cares.

- Relations between state-based models and structural models.
Peripheral retiming

- Alternate retiming and comb. synthesis.

- Move register position to periphery:
 - Maximize the scope of combinational logic.
 - Borrow and release synchronous delays.

- Optimize combinational logic.

- Return borrowed synchronous delays.
Example
Assumption for peripheral retiming

- The network graph is acyclic.

- There are no two paths from an input to an output vertex with different weights.

- There exists integer vectors
 \[a \in \mathbb{Z}^{|V^I|} \text{ and } b \in \mathbb{Z}^{|V^O|}, \text{ such that} \]
 \[w(v_i, \ldots, v_j) = a_i + b_j \text{ for all paths } (v_i, \ldots, v_j) \text{ with } v_i \in V^I, v_j \in V^O. \]

- Remarks:
 - Applicable to pipelined networks.
 - Extensible to circuits with feedback by using partitioning.
Logic transformations and peripheral retiming

- Apply combinational logic transformations.

- Requirement:
 - No negative weight on I/O paths to guarantee that circuit can be retimed again.

- Reject some transformations.
Example
Algebraic synchronous logic transformations

- Combine transformations with retiming.

- Transform combinational logic expressions:
 - *Within* register boundaries.
 - *Across* register boundaries.

- Extension of *algebraic* transformations.
Example of synchronous elimination

\[c = ab; \quad x = d + c \oplus 1 \]

\[x = d + a \oplus 1 b \oplus 1 \]
Example of synchronous substitution

\[x = a \oplus 1 + b; \quad y = a \oplus 2c + b \oplus 1c \]

\[x = a \oplus 1 + b; \quad y = x \oplus 1c \]
Boolean synchronous logic transformations

- Boolean function minimization:
 - Functions of delayed variables.
 - *Explicit* synchronous *don’t care* conditions.
 - Extension of combinational methods.

- Boolean relation minimization:
 - Problem generalization.
 - *Implicit* *don’t care* conditions.
Extension of classic *don't care* conditions to the synchronous domain

- **Controllability *don't care* sets:**

 - Conditions that cannot occur:
 * Due to *external* connections.
 * Due to *internal* connections.

- **Observability *don't care* sets:**

 - Conditions such that a variable is not observed at present or in the future.
 * At some *external* port.
 * At some *internal* gate.
Explicit *don’t care* representation

- **Synchronous literal**: literal with time label.

- **Synchronous product**: product of sync. literals.

- *Don’t care sets*:
 - Sums of synchronous products.
 - Time invariant component.
 - Time dependent component.
Example

- **Initialization:**

 \[(b^{(-4)}, b^{(-3)}, b^{(-2)}) = (1, 0, 1). \]

- **Transient *don’t care* condition:**

 \[v'(−3) + v'(−1). \]

- **Time-invariant *don’t care* condition:**

 \[u(n)v'(n+1). \]
Synchronous logic optimization using explicit don't care sets.

- Compute local don’t care sets:
 - Extensions of controllability, observability algorithms for combinational circuits.

- Optimize functions w.r. to local don’t care sets:
 - Rename time-labeled variables.
 - Use two-level minimizers.
Example

- Replace \(EXNOR \) gate by an \(AND \) gate.

 - Perturbation:
 \[
 \delta^{(n)} = (u^{(n)}v^{(n)} + u'^{(n)}v'^{(n)}) \oplus (u^{(n)}v^{(n)}) = u'^{(n)}v'^{(n)}
 \]

- Compute local \textit{don’t care} set:

 - \(\tilde{DC}_y \) contains \(u'^{(n-1)}u'(n) + u(n-1)v'(n) \).

- Perturbation is bounded by \textit{don’t care} set:

 - Replacement feasible!
Example

\[N_2 \]
Implicit *don’t care* conditions

- Explicit *don’t care* sets do not represent all degrees of freedom for optimization.

- There are some feasible simplifications that require a more complex model.
 - Synchronous Boolean relation models.
 - Implicit *don’t care* condition representations.

- Specialized algorithms.
Example
Path reconvergence with unequal delays

(a)

(b)

(c)
Example of implicit representation

- Equating terminal behavior:
 \[F = x'_n \oplus x'_{n-1} = y_n \oplus y_{n-1} \]
 \[(x'_n \oplus x'_{n-1}) \oplus (y_n \oplus y_{n-1}) = 1 \]

- Example of solutions:
 \[y_n = x_n \]
 \[y_n = x'_n \]
 \[y_n = x_n \oplus x_{n-1} \oplus y_{n-1} \]
Relating the structural to the state-based models.

- State encoding:
 - Maps the state-based representation into a structural one.

- State extraction:
 - Recovers the state information from a structural model.

- Remark:
 - A circuit with n register may have 2^n states.
 - Unreachable states.
State variables: p, q.

Initial state: $p = 0, \quad q = 0$.

Four possible states.
State Extraction

- Reachability analysis.
 - Given a state determine which states are reachable for some inputs.
 - Given a state subset determine the reachable state subset.
 - Start from initial state.
 - Stop when convergence is reached.

- Notation:
 - A state (or state subset) is an expression over the state variables.
Reachability analysis

- State transition function: \(f \)

- Initial state: \(r_0 \).

- States reachable from \(r_0 \):
 - Image of \(r_0 \) under \(f \).

- States reachable from set \(r_k \):
 - Image of \(r_k \) under \(f \).

- Iteration:
 - \(r_{k+1} = r_k \cup (\text{ image of } r_k \text{ under } f) \).

- Convergence:
 - \(r_{k+1} = r_k \) for some \(k \).
Example

- Initial state $r_0 = p'q'$.

- The state transition function $f = \begin{bmatrix} x'p'q' + pq \\ xp' + pq' \end{bmatrix}$.
Example

- Image of $p'q'$ under f:

 - When $(p = 0; q = 0)$, f reduces to $\begin{bmatrix} x' \\ x \end{bmatrix}$

 - Range is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

- States reachable from the reset state:

 - $(p = 1; q = 0)$ and $(p = 0; q = 1)$.

 - $r_1 = p'q' + pq' + p'q = p' + q'$.

- States reachable from r_1: $\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

- Convergence: $s_0 = p'q'$; $s_1 = pq'$; $s_2 = p'q$.

Completing the extraction

- Determine state set (vertex set).

- Determine transitions (edge set) and I/O labels.
 - Inverse image computation.
 - Look at conditions that lead you into a given state.
Example

- Transitions into $s_0 = p'q'$.
 - Patterns that make $f = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 - $(x'p'q' + pq)(xp' + pq)' = x'p'q$
 - Transition from state $s_2 = p'q$ under input x'.
Remarks

- Extraction is performed efficiently with BDDs.

- Model the transition relation \(\chi(i, x, y) \) with BDD.

 - Links possible triples of

 * (input, state, next-state).

- Image of \(r_k \) (where \(r_k \) depends on \(x \)).

 - \(S_{i,x}(\chi(i, x, y) \cdot r_k(x)) \).
Summary
Optimization of synchronous circuits

• State-based models:
 – Classic FSM optimization.

• Structural models:
 – Retiming.
 – Peripheral retiming.
 – Algebraic and Boolean transformations.

• Still area of active research.