RETIMING

©Giovanni De Micheli

Stanford University
Outline

- Structural optimization methods.

- Retiming.
 - Modeling.
 - Retiming for minimum delay.
 - Retiming for minimum area.
Synchronous Logic Network

- Synchronous logic network:
 - Variables.
 - Boolean equations.
 - Synchronous delay annotation.

- Synchronous network graph:
 - Vertices ↔ equations ↔ I/O, gates.
 - Edges ↔ dependencies ↔ nets.
 - Weights ↔ synch. delays ↔ registers.
Synchronous Logic Network Example

(a)

(b)
Example

\[a(n) = i(n) \oplus i(n-1) \]
\[b(n) = i(n-1) \oplus i(n-2) \]
\[c(n) = a(n) b(n) \]
\[d(n) = c(n) + d'(n-1) \]
\[e(n) = d(n) e(n-1) + d'(n) b'(n) \]
\[v(n) = c(n) \]
\[s(n) = e(n-1) \]

\[a = i \oplus i \oplus 1 \]
\[b = i \oplus 1 \oplus i \oplus 2 \]
\[c = a \ b \]
\[d = c + d \oplus 1' \]
\[e = d \ e \oplus 1 + d' \ b' \]
\[v = c \]
\[s = e \oplus 1 \]
Synchronous Logic Circuit Modeling

- State-based model:
 - Transition diagrams or tables.
 - *Explicit* notion of *state*.
 - *Implicit* notion of *area* and *delay*.

- Structural model:
 - Synchronous logic network.
 - *Implicit* notion of *state*.
 - *Explicit* notion of *area* and *delay*.
Approaches to synchronous logic optimization

- Optimize combinational logic only.

- Optimize register position only:
 - *Retiming*.

- Optimize overall circuit:
 - *Peripheral retiming*.
 - *Synchronous transformations*:
 * Algebraic.
 * Boolean.
Separate registers from combinational logic

- Optimize combinational logic by transformations:
 - Modify equations.
 - Modify graph structure.

- Connect registers back into the network:
 - Good heuristic.
 - Limited by the partitioning strategy.
Retiming

- Move register position.

- Do not modify combinational logic.

- Preserve network structure:
 - Modify weights.
 - Do not modify graph structure.
Example
Retiming

- Global optimization technique [Leiserson].

- Changes register positions:
 - affects *area*:
 * changes register count.
 - affects *cycle-time*:
 * changes path delays between register pairs.

- Solvable in polynomial time.
Assumptions

- Vertex delay is constant:
 - No fanout delay dependency.

- Graph topology is invariant:
 - No logic transformations.

- Synchronous implementation:
 - Cycles have positive weights.
 - Edges have non-negative weights.

- Consider topological paths:
 - No false path analysis.
Retiming

- Retiming of a vertex:
 - Integer.
 - Registers moved from output to input.

- Retiming of a network:
 - Vector of vertex retiming.

- A family of equivalent networks are specified by:
 - The original network.
 - A retiming vector.
Example
Definitions and properties

- **Definitions:**

 - \(w(v_i, v_j) \) — weight of edge \((v_i, v_j)\).

 - \((v_i, \ldots, v_j)\) — path from \(v_i\) to \(v_j\).

 - \(d(v_i, \ldots, v_j)\) — path delay from \(v_i\) to \(v_j\).

- **Properties:**

 - Retiming of an edge \((v_i, v_j)\):

 * \(\tilde{w}_{ij} = w_{ij} + r_j - r_i \).

 - Retiming of a path \((v_i, \ldots, v_j)\):

 * \(\tilde{w}(v_i, \ldots, v_j) = w(v_i, \ldots, v_j) + r_j - r_i \).

 - Cycle weights are invariant.
Example

RETIMING of an EDGE

PATH

CYCLE

w(path) = 2

w(cycle) = 3
Legal retiming

- Clock period \(\phi \).

- Retiming vector such that:

 - No edge weight is negative:
 \[
 \tilde{w}_{ij} = w_{ij} + r_j - r_i \geq 0 \quad \forall i, j.
 \]

 - Each path \((v_i, \ldots, v_j)\) with \(d(v_i, \ldots, v_j) > \phi\) has at least one register:
 \[
 \tilde{w}(v_i, \ldots, v_j) = w(v_i, \ldots, v_j) + r_j - r_i \geq 1 \quad \forall i, j.
 \]

- Fact:

 - Original graph has no cycles with weight \(\leq 0 \)
 \Rightarrow new graph has no cycles with weight \(\leq 0 \).
Refined analysis

- Least register path:
 - \(W(v_i, v_j) = \min w(v_i, \ldots, v_j) \).
 - Over all paths between \(v_i \) and \(v_j \).

- Critical delay:
 - \(D(v_i, v_j) = \max d(v_i, \ldots, v_j) \)
 - Over all the paths from \(v_i \) to \(v_j \) with weight \(W(v_i, v_j) \).

- There exists a vertex pair \(v_i, v_j \) whose \(D(v_i, v_j) \) bounds the cycle-time.
Example

- Vertices: v_a, v_e.

- Paths: (v_a, v_b, v_c, v_e) and $(v_a, v_b, v_c, v_d, v_e)$.

- $W(v_a, v_e) = 2$ and $D(v_a, v_e) = 16$.
Minimum cycle-time retiming problem

- Find minimum value of the clock period ϕ such that there exist a retiming vector where:

 $r_i - r_j \leq w_{ij} \quad \forall (v_i, v_j) \in E$

 $r_i - r_j \leq W(v_i, v_j) - 1 \quad \forall v_i, v_j | D(v_i, v_j) > \phi.$

- Solution:

 - Given a value of ϕ:
 * solve linear constraints.
 * methods:
 * Bellman-Ford or derivate.
 * MILP.
 * Relaxation.
Minimum cycle-time retiming algorithm

- Compute all-pair $W(v_i, v_j)$ and $D(v_i, v_j)$.
 - Warshall-Floyd algorithm ($O(V^3)$).

- Sort the elements of D in decreasing order.

- Binary search for a ϕ in $D(v_i, v_j)$ such that:
 - There exist a legal retiming.
 - Bellman-Ford algorithm ($O(V^3)$).

- Remarks:
 - Result is a global optimum.
 - Overall complexity is $O(V^3 \log V)$.
• Constraints (first type):

- $r_a - r_b \leq 1$ or equivalently $r_b \geq r_a - 1$
- $r_c - r_b \leq 1$ or equivalently $r_c \geq r_b - 1$
- ...
Example

- Sort elements of D:

 - $(33, 30, 27, 26, 24, 23, 21, 20, 19, 17, 16, 14, 13, 12, 10, 9, 7, 6, 3)$.

- Select: $\phi = 19$:

 - PASS.

- Select: $\phi = 13$:

 - PASS.

- Select: $\phi < 13$:

 - FAIL.
Example

\[\phi = 13 \]

- Constraints (second type):
 - \(r_a - r_e \leq 2 - 1 \) or equivalently \(r_e \geq r_a - 1 \)
 - \(r_e - r_f \leq 0 - 1 \) or equivalently \(r_f \geq r_e + 1 \)
 - \(r_f - r_g \leq 0 - 1 \) or equivalently \(r_g \geq r_f + 1 \)
 - \(r_g - r_f \leq 2 - 1 \) or equivalently \(r_f \geq r_g - 1 \)
 - \(r_g - r_c \leq 3 - 1 \) or equivalently \(r_c \geq r_g - 2 \)
Example
\(\phi = 13 \)

- Solutions:
 - \([-12232100]^T\) (LP from \(v_h\)).
 - \([-11222100]^T\) (Equivalent solution).
Relaxation-based algorithm
Rationale

• Look for paths with excessive delay.

• Make them shorter by pulling closer the terminal register.

 — Some other paths may become too long.

 — Those paths whose tail has been moved.

• Use an iterative approach.
Relaxation-based algorithm

- Define vertex \emph{data ready} time:
 - Total delay from register boundary.

- Iterative approach:
 - Find vertices with \emph{data ready} time \(\geq \phi \).
 - Retime these vertices by 1.

- Properties:
 - Finds legal retiming in at most \(|V| \) iterations, if one exists.
Example

\[\phi = 13 \]
Example

- Data-ready times:
 \[t_a = 3; t_b = 3; t_c = 3; t_d = 3; t_e = 10; \]
 \[t_f = 17; t_g = 24; t_h = 24. \]

- Retime: \(\{t_f, t_g, t_h\} \) by 1.

- Data-ready times:
 \[t_a = 17; t_b = 3; t_c = 3; t_d = 3; t_e = 10; \]
 \[t_f = 7; t_g = 14; t_h = 14. \]

- Retime:
 \[\{t_a, t_g, t_h\} \) by 1.

- Data-ready times:
 \[t_a = 10; t_b = 13; t_c = 3; t_d = 3; t_e = 10; \]
 \[t_f = 7; t_g = 7; t_h = 7, \]
 - TIMING FEASIBLE NETWORK!
Minimum area retiming problem

• Find a retiming vector that minimizes the number of registers.

• Simple area modeling:
 – Every pos.-weighted edge \rightarrow register.
 – Total register area cost equals total of weights.

• Register sharing model:
 – Every set of positively-weighted edges with common tail \rightarrow shift-register.
 – Register area cost equals maximum of weights on outgoing edges.
Example
Minimum area retiming
simple model

- Register variation at vertex v:
 $$- r_v \cdot (\text{indegree}(v) - \text{outdegree}(v)).$$

- Total area variation:
 $$- \sum r_v \cdot (\text{indegree}(v) - \text{outdegree}(v)).$$

- Area minimization problem:
 $$- \min \sum_{v \in V} r_v \cdot (\text{indegree}(v) - \text{outdegree}(v)).$$
 $$- \text{s.t.}$$
 $$\star r_i - r_j \leq w(v_i, v_j) \text{ for every } (v_i, v_j).$$
Minimum area retiming
under cycle time constraint ϕ

- \min

 $- \sum_{v \in V} r_v \cdot (\text{indegree}(v) - \text{outdegree}(v))$

- $s.t.$

 $- r_i - r_j \leq w(v_i, v_j)$ for every (v_i, v_j).

 $- r_i - r_j \leq W(v_i, v_j) - 1 \quad \forall v_i, v_j | D(v_i, v_j) > \phi$.
Minimum area retiming algorithm

- Linear program.

- Transform into matching problem:
 - Edmonds-Karp algorithm.
 - Polynomial time.

- Remark:
 - Register sharing model can be transformed into the simple model.
 - Same solution algorithms.
Summary of retiming

- Sequential optimization technique for:
 - Cycle time or register area.

- Applicable to:
 - Synchronous logic models.
 - Architectural data-path models:
 * Resources with delays.

- Exact algorithm in polynomial time.

- Problems:
 - Delay modeling.
 - Network granularity.