MULTIPLE-LEVEL LOGIC OPTIMIZATION

©Giovanni De Micheli

Stanford University
Outline

- Representations.

- Taxonomy of optimization methods:
 - Goals: area/delay.
 - Algorithms: algebraic/Boolean.
 - Rule-based methods.

- Examples of transformations.

- Boolean and algebraic models.
Motivation

- Multiple-level networks:
 - Semi-custom libraries.
 - Gates versus macros (PLAs):
 * More flexibility.
 * Better performance.

- Applicable to a variety of designs.
Circuit modeling

- Logic network:
 - Interconnection of logic functions.
 - Hybrid structural/behavioral model.

- Bound (mapped) networks:
 - Interconnection of logic gates.
 - Structural model.
Example of bound network
Example of network

\[\begin{align*}
p & = ce + de \\
q & = a + b \\
r & = p + a' \\
s & = r + b' \\
t & = ac + ad + bc + bd + e \\
u & = q'c + qc' + qc \\
v & = a'd + bd + c'd + ae' \\
w & = v \\
x & = s \\
y & = t \\
z & = u
\end{align*}\]
Example of network

\[v = a'd + bd + c'd + ae' \]

\[p = ce + de \]

\[r = p + a' \]

\[s = r + b' \]

\[t = ac + ad + bc + bd + e \]

\[q = a + b \]

\[u = q'c + qc' + qc \]

\[p = ce + de \]

\[r = p + a' \]

\[s = r + b' \]

\[t = ac + ad + bc + bd + e \]

\[q = a + b \]

\[u = q'c + qc' + qc \]
Example
circuit terminal behavior

\[f = \begin{bmatrix} a'd + bd + c'd + ae' \\ a' + b' + c + d \\ ac + ad + bc + bd + e \\ a + b + c \end{bmatrix} \]
Network optimization

- Minimize area (power) estimate:
 - subject to delay constraints.

- Minimize maximum delay:
 - subject to area (power) constraints.

- Minimize power consumption.
 - subject to delay constraints.

- Maximize testability.
Estimation

- Area:
 - Number of literals.
 - Number of functions/gates.

- Delay:
 - Number of stages.
 - Refined gate delay models.
 - Sensitizable paths.
Problem analysis

- Multiple-level optimization is hard.

- Exact methods:
 - Exponential complexity.
 - Impractical.

- Approximate methods:
 - Heuristic algorithms.
 - Rule-based methods.
Strategies for optimization

- Improve circuit step by step.
 - Circuit *transformations*.

- Preserve network behavior.

- Methods differ in:
 - *Types* of transformations.
 - *Selection* and *order* of transformations.
Example elimination

- Eliminate one function from the network.

- Perform variable substitution.

- Example:

 \[- s = r + b' ; \ r = p + a' \]

 \[- \Rightarrow s = p + a' + b'. \]
Example
elimination

\[v = a'd + bd + c'd + ae' \]
\[p = ce + de \]
\[r = p + a' \]
\[s = r + b' \]
\[t = ac + ad + bc + bd + e \]
\[q = a + b \]
\[u = q'c + qc' + qc \]

\[w \]
\[x \]
\[y \]
\[z \]
Example decomposition

- Break one function into smaller ones.

- Introduce new vertices in the network.

- Example:

 \[v = a'd + bd + c'd + ae'. \]

 \[\Rightarrow j = a' + b + c'; v = jd + ae' \]
Example decomposition

\[v = a'd + bd + c'd + ae' \]

\[p = ce + de \]

\[r = p + a' \]

\[s = r + b' \]

\[t = ac + ad + bc + bd + e \]

\[q = a + b \]

\[u = q'c + qc' + qc \]

\[j = a' + b + c' \]

\[v = j d + ae' \]

\[w \]

\[x \]

\[y \]

\[z \]
Example
extraction

- Find a common sub-expression of two (or more) expressions.
- Extract sub-expression as new function.
- Introduce new vertex in the network.
- Example:

\[-p = ce + de; \quad t = ac + ad + bc + bd + e;\]

\[-p = (c + d)e; \quad t = (c + d)(a + b) + e;\]

\[-\Rightarrow k = c + d; \quad p = ke; \quad t = ka + kb + e;\]
Example simplification

- Simplify a local function.

- Example:

 \[- u = q'c + qc' + qc;\]

 \[\Rightarrow u = q + c;\]
Example simplification
Example
substitution

• Simplify a local function
 by using an additional input
 that was not previously in its support set.

• Example:

 \[- t = ka + kb + e.\]

 \[- \Rightarrow t = kq + e\]

 – Because \(q = a + b \).
Example substitution
Example
sequence of transformations

\[
\begin{align*}
 j &= a' + b + c' \\
 k &= c + d \\
 q &= a + b \\
 s &= ke + a' + b' \\
 t &= kq + e \\
 u &= q + c \\
 v &= jd + ae'
\end{align*}
\]
Optimization approaches

- **Algorithmic** approach:
 - Define an algorithm for each transformation type.
 - Algorithm is an *operator* on the network.

- **Rule-based** approach:
 - Rule-data base:
 * Set of pattern pairs.
 - Pattern replacement driven by rules.
Algorithmic approach

- Each operator has well-defined properties:
 - Heuristic methods still used.
 - Weak optimality properties.

- Sequence of operators:
 - Defined by *scripts*.
 - Based on experience.
Example elimination algorithm

- Set a threshold k (usually 0).

- Examine all expressions.

- Eliminate expressions if the increase in literals does not exceed the threshold.
Example elimination algorithm

\[ELIMINATE(G_n(V, E) , k) \{
 \text{repeat } \{ \\
 v_x = \text{selected vertex with value} < k; \\
 \text{if } (v_x = \emptyset) \text{ return}; \\
 \text{replace } x \text{ by } f_x \text{ in the network}; \\
 \}
\} \]
Example
MIS/SIS rugged script

- sweep; eliminate -1
- simplify -m nocomp
- eliminate -1
- sweep; eliminate 5
- simplify -m nocomp
- resub -a
- fx
- resub -a; sweep
- eliminate -1; sweep
- full-simplify -m nocomp
Boolean and algebraic methods

- Boolean methods:
 - Exploit properties of logic functions.
 - Use *don’t care* conditions.
 - Complex at times.

- Algebraic methods:
 - View functions as *polynomials*.
 - Exploit properties of polynomial algebra.
 - Simpler, faster but weaker.
Example

• Boolean substitution:

 - $h = a + bcd + e; \; q = a + cd$

 - $\Rightarrow h = a + bq + e$

 - Because $a + bq + e = a + b(a + cd) + e = a + bcd + e$.

• Algebraic substitution:

 - $t = ka + kb + e$.

 - $\Rightarrow t = kq + e$

 - Because $q = a + b$.
Summary

- Multilevel logic synthesis is performed by step-wise transformations.

- Algorithms are based on both the Boolean and the algebraic models.

- Rule-based systems.