LOGIC SYNTHESIS
OF
VLSI CIRCUITS

©Giovanni De Micheli

Stanford University
Microelectronics

- Enabling and strategic technology.

- Primary markets:
 - Information systems.
 - Telecommunications.
 - Consumer.

- Secondary markets:
 - Systems (e.g., transportation).
 - Manufacturing (e.g., robots).

- Application of VSLI circuit technology.
Computer-Aided Design

- Enabling design *methodology*.

- Makes electronic design possible:
 - Large scale design management.
 - Design optimization.
 - Reduced design time.

- Key strategic importance.
Electronic market

SYSTEMS

ELECTRONIC SUB-SYSTEMS

INTEGRATED CIRCUITS

EDA
Trends in microelectronics

• Improvements in device technology:
 – Smaller circuits.
 – Higher performance.
 – More devices on a chip.

• Higher degree of integration.
 – More complex systems.
 – Lower cost of computation.
 – Higher reliability.
Integration-scale limitations

- Intrinsic physical scaling limits.

- Capital investment for fabrication.
 - Use of appropriate design styles.

- Large-scale design management.
 - Use of CAD design tools.
Microelectronic design problems

- Use most recent technologies.
 - To be competitive in performance.

- Reduce design cost.
 - To be competitive in price.

- Speed-up design time.
 - Time-to-market is critical.
Microelectronic economics

- Design cost:
 - *Design time* and *fabrication* cost.
 - Large *capital investment*.
 - Near impossibility to *repair*.

- Recapture costs:
 - Large *volume* production is beneficial.
 - *Zero-defect* designs are essential.
 - Follow market *evolution*.
Microelectronic circuits

- General-purpose processors:
 - High-volume sales.
 - High performance.

- Application-Specific Integrated Circuits (ASICs):
 - Varying volumes and performances.

- Prototypes.

- Special applications (e.g. space).
Microelectronic design styles

- Adapt circuit design style to market requirements:
 - Parameters:
 - Cost.
 - Performance.
 - Volume.
 - Custom and semi-custom design.
Semicustom design

SEMI-CUSTOM

CELL-BASED
- STANDARD-CELLS
 - Hierarchical cells

- MACRO-CELLS
 - Memory generators
 - PLA generators
 - Sparse logic generators
 - Gate matrix generators

ARRAY-BASED
- PRE-DIFFUSED
 - Gate arrays
 - Sea of gates
 - Compacted arrays

- PRE WIRED
 - Anti-fuse based
 - Memory-based
Standard cells

- **Cell library:**
 - Cells are designed once.
 - Cells are highly optimized.

- **Layout style:**
 - Cells are placed in rows.
 - Channels are used for wiring.
 - Over the cell routing.

- Compatible with macro-cells (e.g. RAMs).
Macro-cells

● Module generators:
 – Synthesized layout.
 – Variable area and aspect-ratio.

● Examples:
 – RAMs, ROMs, PLAs, general logic blocks.

● Features:
 – Layout can be highly optimized.
 – Structured-custom design.
Array-based design

- *Pre-diffused* arrays:
 - Personalization by metalization/contacts.
 - Mask-Programmable Gate-Arrays.

- *Pre-wired* arrays:
 - Personalization on the field.
 - Field-Programmable Gate-Arrays.
MPGAs

• Array of sites:
 – Each site is a set of transistors.

• Batches of wafers can be pre-fabricated.

• Few masks to personalize chip.

• Lower cost than cell-based design.
FPGAs

- Array of cells:
 - Each cell performs a logic function.

- Personalization:
 - Soft: memory cell (e.g. Xilinx).
 - Hard: Anti-fuse (e.g. Actel).

- Immediate turn-around (for low volumes).

- Inferior performances and density.

- Good for prototyping.
Semi-custom style trade-off

<table>
<thead>
<tr>
<th></th>
<th>Custom</th>
<th>Cell-based</th>
<th>Pre-diff.</th>
<th>Pre-wired</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>Very High</td>
<td>High</td>
<td>High</td>
<td>Medium-Low</td>
</tr>
<tr>
<td>Performance</td>
<td>Very High</td>
<td>High</td>
<td>High</td>
<td>Medium-Low</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Very High</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Design time</td>
<td>Very Long</td>
<td>Short</td>
<td>Short</td>
<td>Very Short</td>
</tr>
<tr>
<td>Man. time</td>
<td>Medium</td>
<td>Medium</td>
<td>Short</td>
<td>Very Short</td>
</tr>
<tr>
<td>Cost - lv</td>
<td>Very High</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Cost - hv</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Medium-High</td>
</tr>
</tbody>
</table>
Microelectronic circuit design and production

DESIGN

idea

- MODELING
- SYNTHESIS & OPTIMIZATION
- VALIDATION

TESTING

- tester
 - 10000
 - 01001
 - 11100

FABRICATION

- MASK FABRICATION
- WAFER FABRICATION

PACKAGING

- SLICING
- PACKAGING
Microelectronic circuit design

- Conceptualization and modeling:
 - Hardware Description Languages (HDLs).

- Synthesis and optimization:
 - Model refinement.

- Validation:
 - Check for correctness.
Modeling abstractions

ARCHITECTURAL LEVEL

...
PC = PC + 1;
FETCH (PC);
DECODE (INST);
...

LOGIC LEVEL

GEOMETRICAL LEVEL
Modeling abstractions

• **Architectural level:**
 – Operations implemented by resources.

• **Logic level:**
 – Logic functions implemented by gates.

• **Geometrical level:**
 – Devices are geometrical objects.
Modeling views

behavioral view

structural view

physical view
Modeling views

- **Behavioral view:**
 - Abstract function.

- **Structural view:**
 - An interconnection of parts.

- **Physical view:**
 - Physical objects with size and positions.
Modeling views and abstractions
Circuit synthesis

- **Architectural-level synthesis:**
 - Determine the macroscopic structure:
 - * Interconnection of major building blocks.

- **Logic-level synthesis:**
 - Determine the microscopic structure:
 - * Interconnection of logic gates.

- **Geometrical-level synthesis:**
 (Physical design)
 - Determine positions and connections.
Modeling views

b-view

a-synthesis

a-level

l-synthesis

l-level

p-design

g-level

p-view

s-view
Microelectronic circuit optimization

- *Performance:*
 - Delay and cycle-time.
 - Latency.
 - Throughput (for pipeline applications).

- *Power consumption.*

- *Area* (yield and packaging cost).

- *Testability.*
Design space and evaluation space

- DESIGN SPACE
- EVALUATION FUNCTION
- Area
 - Cycle-time
 - Latency
Optimization trade-off in combinational circuits
Optimization trade-off in sequential circuits
Pareto points

- Multi-criteria optimization.

- Multiple objectives.

- Pareto point:
 - A point of the design space is a Pareto point if there is no other point with:
 * at least one inferior objectives.
 * all other objectives inferior or equal.
Example
design space

- Implement $f = p \ q \ r \ s$ with:
 - 2-input or 3-input AND gates.

- Area and delay proportional to number of inputs.
Example

design evaluation space
Summary

- Computer-aided design methodology:
 - Capture design by HDL models.
 - Synthesize more detailed abstractions.
 - Optimize circuit parameters.

- Logic synthesis and optimization:
 - Manipulate and optimize circuit models at the logic abstraction levels.