FINITE-STATE MACHINE OPTIMIZATION

©Giovanni De Micheli

Stanford University
Outline

- Modeling synchronous circuits:
 - *State-based* models.
 - *Structural* models.

- State-based optimization methods:
 - State minimization.
 - State encoding.
Synchronous Logic Circuits

• Interconnection of:

 – Combinational logic gates.

 – Synchronous delay elements:

 * E-T or M-S registers.

• Assumptions:

 – No direct combinational feedback.

 – Single-phase clocking.
Modeling synchronous circuits

- **State-based model:**
 - Model circuits as *finite-state machines*.
 - Represent by *state tables/diagrams*.
 - Apply exact/heuristic algorithms for:
 * *State minimization*.
 * *State encoding*.

- **Structural models:**
 - Represent circuit by synchronous logic network.
 - Apply:
 * *Retiming*.
 * *Logic transformations*.
State-based optimization

FSM Specification

State Minimization

State Encoding

Combinational Optimization
A set of primary inputs patterns X.

A set of primary outputs patterns Y.

A set of states S.

A state transition function:

$\delta : X \times S \rightarrow S$.

An output function:

$\lambda : X \times S \rightarrow Y$ for Mealy models

$\lambda : S \rightarrow Y$ for Moore models.
State minimization

- Completely specified *finite-state machines*:
 - No *don't care* conditions.
 - Easy to solve.

- Incompletely specified *finite-state machines*:
 - Unspecified transitions and/or outputs.
 - Intractable problem.
State minimization
for completely specified FSMs

• Equivalent states:
 – Given any input sequence
 the corresponding output sequences match.

• Theorem:
 – Two states are equivalent iff:
 * they lead to identical outputs and
 their next-states are equivalent.

• Equivalence is transitive:
 – Partition states into equivalence classes.
 – Minimum finite-state machine is unique.
Example

<table>
<thead>
<tr>
<th>INPUT</th>
<th>STATE</th>
<th>N-STATE</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s_1</td>
<td>s_3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>s_1</td>
<td>s_5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>s_2</td>
<td>s_3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>s_2</td>
<td>s_5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>s_3</td>
<td>s_2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>s_3</td>
<td>s_1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>s_4</td>
<td>s_4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>s_4</td>
<td>s_5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>s_5</td>
<td>s_4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>s_5</td>
<td>s_1</td>
<td>0</td>
</tr>
</tbody>
</table>
Example
Algorithm

• Stepwise partition refinement.

• Initially:
 – All states in the same partition block.

• Then:
 – Refine partition blocks.

• At convergence:
 – Blocks identify equivalent states.
Algorithm

- \(\Pi_1 \): States belong to the same block when outputs are the same for any input.

- While further splitting is possible:
 - \(\Pi_{k+1} \): States belong to the same block if they were previously in the same block and their next-states are in the same block of \(\Pi_k \) for any input.
Example

- $\Pi_1 = \{\{s_1, s_2\}, \{s_3, s_4\}, \{s_5\}\}$.

- $\Pi_2 = \{\{s_1, s_2\}, \{s_3\}, \{s_4\}, \{s_5\}\}$.

- $\Pi_2 = \text{is a partition into equivalence classes:} $
 - States $\{s_1, s_2\}$ are equivalent.
Example

minimal finite-state machine

<table>
<thead>
<tr>
<th>INPUT</th>
<th>STATE</th>
<th>N-STATE</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s_{12}</td>
<td>s_3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>s_{12}</td>
<td>s_5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>s_3</td>
<td>s_{12}</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>s_3</td>
<td>s_{12}</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>s_4</td>
<td>s_4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>s_4</td>
<td>s_5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>s_5</td>
<td>s_4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>s_5</td>
<td>s_{12}</td>
<td>0</td>
</tr>
</tbody>
</table>
Example
Computational complexity

- Polynomially-bound algorithm.

- There can be at most $|S|$ partition refinements.

- Each refinement requires considering each state:

 - Complexity $O(|S|^2)$.

- Actual time may depend upon:

 - Data-structures.

 - Implementation details.
State minimization for incompletely specified FSMs

- **Applicable** input sequences:
 - All transitions are specified.

- **Compatible** states:
 - Given any applicable input sequence, the corresponding output sequences match.

- Theorem:
 - Two states are compatible iff:
 * they lead to identical outputs
 - (when both are specified)
 * and their next-states are compatible
 - (when both are specified).
State minimization
for incompletely specified FSMs

- Compatibility is not an \textit{equivalency} relation.

- \textit{Minimum finite-state machine} is not \textit{unique}.

- Implication relations make problem intractable.
Example

<table>
<thead>
<tr>
<th>INPUT</th>
<th>STATE</th>
<th>N-STATE</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s_1</td>
<td>s_3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>s_1</td>
<td>s_5</td>
<td>*</td>
</tr>
<tr>
<td>0</td>
<td>s_2</td>
<td>s_3</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>s_2</td>
<td>s_5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>s_3</td>
<td>s_2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>s_3</td>
<td>s_1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>s_4</td>
<td>s_4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>s_4</td>
<td>s_5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>s_5</td>
<td>s_4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>s_5</td>
<td>s_1</td>
<td>0</td>
</tr>
</tbody>
</table>
Trivial method for the sake of illustration

• Consider all the possible *don’t care* assignments

 \(- n \; *don’t \; care* \; imply

 \(* \; 2^n \; completely \; specified \; FSMs.\)

 \(* \; 2^n \; solutions.\)

• Example:

 \(- \; Replace \; * \; by \; 1.\)

 \(* \; \Pi = \{\{s_1, s_2\}, \{s_3\}, \{s_4\}, \{s_5\}\}.\)

 \(- \; Replace \; * \; by \; 0.\)

 \(* \; \Pi = \{\{s_1, s_5\}, \{s_2, s_3, s_4\}\}.\)
Compatibility and implications

Example

- Compatible states \(\{s_1, s_2\}\).

- If \(\{s_3, s_4\}\) are compatible:

 - then \(\{s_1, s_5\}\) are compatible.

- Incompatible states \(\{s_2, s_5\}\).
Compatibility and implications

- Compatible pairs:
 - \(\{s_1, s_2\} \)
 - \(\{s_1, s_5\} \iff \{s_3, s_4\} \)
 - \(\{s_2, s_4\} \iff \{s_3, s_4\} \)
 - \(\{s_2, s_3\} \iff \{s_1, s_5\} \)
 - \(\{s_3, s_4\} \iff \{s_2, s_4\} \cup \{s_1, s_5\} \)

- Incompatible pairs:
 - \(\{s_2, s_5\}, \quad \{s_3, s_5\} \)
 - \(\{s_1, s_4\}, \quad \{s_4, s_5\} \)
 - \(\{s_1, s_3\} \)
Compatibility and implications

- A class of compatible states is such that all state pairs are compatible.

- A class is maximal:
 - If not subset of another class.

- Closure property:
 - A set of classes such that all compatibility implications are satisfied.

- The set of maximal compatibility classes:
 - Has the closure property.
 - May not provide a minimum solution.
Maximal compatible classes

• \(\{s_1, s_2\} \)

• \(\{s_1, s_5\} \leftarrow \{s_3, s_4\} \)

• \(\{s_2, s_3, s_4\} \leftarrow \{s_1, s_5\} \)

• Cover with MCC has cardinality 3.
Formulation of the state minimization problem

- A class is prime, if not subset of another class implying the same set or a subset of classes.

- Compute the prime compatibility classes.

- Select a minimum number of PCC such that:
 - all states are covered.
 - all implications are satisfied.

- Binate covering problem.
Prime compatible classes

- $\{s_1, s_2\}$

- $\{s_1, s_5\} \leftarrow \{s_3, s_4\}$

- $\{s_2, s_3, s_4\} \leftarrow \{s_1, s_5\}$

- Minimum cover: $\{\{s_1, s_5\}, \{s_2, s_3, s_4\}\}$.

- Minimum cover has cardinality 2.
Heuristic algorithms

- Approximate the covering problem.
 - Preserve closure property.
 - Sacrifice minimality.

- Consider all maximal compatibility classes.
 - May not yield minimum.
State encoding

- Determine a binary encoding of the states:
 - that optimize machine implementation:
 * area.
 * cycle-time.

- Modeling:
 - Two-level circuits.
 - Multiple-level circuits.
Two-level circuit models

- Sum of product representation.
 - PLA implementation.

- Area:
 - # of products × # I/Os.

- Delay:
 - Twice # of products plus # I/Os.

- Note:
 - # products of a minimum implementation.
 - # I/Os depends on encoding length.
State encoding for two-level models

- Symbolic minimization of state table.

- Constrained encoding problems.
 - Exact and heuristic methods.

- Applicable to large finite-state machines.
Symbolic minimization

- Extension of two-level logic optimization.
- Reduce the number of rows of a table, that can have symbolic fields.
- Reduction exploits:
 - Combination of input symbols in the same field.
 - Covering of output symbols.
State encoding of *finite-state machines*

- Given a (minimum) state table of a *finite-state machine*:
 - find a consistent encoding of the states
 - that preserves the cover minimality
 - with minimum number of bits.
Example

<table>
<thead>
<tr>
<th>INPUT</th>
<th>P-STATE</th>
<th>N-STATE</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s_1</td>
<td>s_3</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>s_1</td>
<td>s_3</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>s_2</td>
<td>s_3</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>s_2</td>
<td>s_1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>s_3</td>
<td>s_5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>s_3</td>
<td>s_4</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>s_4</td>
<td>s_2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>s_4</td>
<td>s_3</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>s_5</td>
<td>s_2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>s_5</td>
<td>s_5</td>
<td>0</td>
</tr>
</tbody>
</table>
Example

• Minimum symbolic cover:

\[
\begin{array}{cccc}
* & s_1 s_2 s_4 & s_3 & 0 \\
1 & s_2 & s_1 & 1 \\
0 & s_4 s_5 & s_2 & 1 \\
1 & s_3 & s_4 & 1 \\
\end{array}
\]

• Covering constraints:

– \(s_1 \) and \(s_2 \) cover \(s_3 \)

– \(s_5 \) is covered by all other states.

• Encoding constraint matrices:

\[
A = \begin{bmatrix}
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
\end{bmatrix} \quad B = \begin{bmatrix}
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
Example

- Encoding matrix (one row per state):

$$E = \begin{bmatrix}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}$$

- Encoded cover of combinational component:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>1**</td>
<td>001</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>101</td>
<td>111</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>*00</td>
<td>101</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>100</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiple-level circuit models

- *Logic network* representation.
 - Logic gate interconnection.

- Area:
 - # of literals.

- Delay:
 - Critical path length.

- Note
 - # literals and CP in a *minimum* network.
State encoding
for multiple-level models

- Cube-extraction heuristics [Mustang-Devadas].

- Rationale:
 - When two (or more) states have a transition to the same next-state:
 - Keep the distance of their encoding short.
 - Extract a large common cube.

- Exploit first stage of logic.

- Works fine because most FSM logic is shallow.
Example

- 5-state FSM (3-bits).

 - $s_1 \rightarrow s_3$ with input i.

 - $s_2 \rightarrow s_3$ with input i'.

- Encoding:

 - $s_1 \rightarrow 000 = a'b'c'$.

 - $s_2 \rightarrow 001 = a'b'c$.

- Transition:

 - $ia'b'c' + i'a'b'c = a'b'(ic + i'c')$

 - 6 literals instead of 8.
Algorithm

- Examine all state pairs:
 - Complete graph with $|V| = |S|$.

- Add weight on edges:
 - Model desired code proximity.

- Embed graph in the Boolean space.
Difficulties

- The number of occurrences of common factors depends on the next-state encoding.

- The extraction of common cubes interact with each other.
Algorithm implementation

- Fanout-oriented algorithm:
 - Consider present states and outputs.
 - Maximize the size of the most frequent common cubes.

- Fanin-oriented algorithm:
 - Consider next states and inputs.
 - Maximize the frequency of the largest common cubes.
Finite-state machine decomposition

- Classic problem.
 - Based on partition theory.
 - Recently done at symbolic level.

- Different topologies:
 - Cascade, parallel, general.

- Recent heuristic algorithms:
 - Factorization [Devadas].
Example
Summary

- *Finite-state machine* optimization is commonly used.
 - Large body of research.

- State reduction/encoding correlates well to area minimization.

- Performance-oriented methods are still being researched.