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(57) ABSTRACT 

A method for transforming a tautology check of an original 
logic circuit into a contradiction check of the original logic 
circuit and vice versa comprises interpreting the original 
logic circuit in terms of AND, OR, MAJ, MIN, XOR, 
XNOR, INV original logic operators; transforming the origi 
nal circuit obtained from the interpreting, into a dual logic 
circuit enabled for a checking of contradiction in place of 
tautology and vice versa, by providing a set of Switching 
rules configured to Switch each respective one of the original 
logic operators INV. AND, OR, MAJ, XOR, XNOR, MIN 
into a respective switched logic operator INV. OR, AND, 
MAJ, XNOR, XOR, MIN; and complementing outputs of 
the original circuit by adding an INV at each output wire. 
The method further provides testing in parallel the satisfi 
ability of the original logic circuit, and the satisfiability of 
the dual logic circuit with inverted outputs. Responsive to 
one of the parallel tests finishing, the other parallel test is 
caused to also stop. 
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1. 

METHOD FOR SPEEDING UP BOOLEAN 
SATISFIABILITY 

This application claims the benefit of U.S. Provisional 
Application No. 62/049,435 filed Sep. 12, 2014, the entire 
content of which is hereby incorporated by reference. 

TECHNICAL FIELD 

The invention is in the field of logic circuits. 

BACKGROUND 

Inspecting the properties of logic circuits is pivotal to 
logic applications for computers and especially to Electronic 
Design Automation (EDA) 1. There exists a large variety 
of properties to be checked in logic circuits, e.g., unateness, 
linearity, symmetry, balancedness, monotonicity, threshold 
ness and many others 2. Basic characteristics are usually 
verified first to provide grounds for more involved tests. 
Tautology and contradiction are the most fundamental prop 
erties in logic circuits. A check for tautology determines if 
a logic circuit is true for all possible input patterns. Analo 
gously, a check for contradiction determines if a logic circuit 
is false for all possible input patterns. While investigating 
elementary properties, tautology and contradiction check are 
difficult problems, i.e., co-NP-complete and NP-complete, 
respectively 3. Indeed, both tautology and contradiction 
check are equivalent formulation of the Boolean SATisfi 
ability (SAT) problem 3. In this scenario, new efficient 
algorithms for tautology/contradiction check are key to push 
further the edge of computational limits, enabling larger 
logic circuits to be examined. 

Tautology and contradiction check are dual problems. 
One can interchangeably check for tautology in place of 
contradiction by inverting all outputs in a logic circuit. In 
this trivial approach, the two obtained problems are fully 
complementary and there is no explicit computational 
advantage in Solving one problem instead of the other. 

In the present description, we show that exact logic 
inversion is not necessary for transforming tautology into 
contradiction, and vice versa. We give a set of operator 
Switching rules that selectively exchange tautologies with 
contradictions. A logic circuit modified by our rules is 
inverted just if identically true or false for all input combi 
nations. In the other cases, it is not necessarily the comple 
ment of the original one. In a simple logic circuit made of 
AND, OR and INV logic operators, our switching rules swap 
AND/OR operator types. We give a set of rules for general 
logic circuits in the rest of this paper. Note that in this paper 
we mostly deal with single output circuits. For multi-output 
circuits, the same approach can be extended by ORing 
(contradiction) or ANDing (tautology) the outputs that need 
to be checked into a single one. 

Parallel checking techniques are known from prior art. 
For example, one can launch in parallel many randomized 
check runs on the same problem instance with the aim to hit 
the instance-intrinsic minimum runtime 4 

SUMMARY OF THE INVENTION 

The invention provides a method for transforming a 
tautology check of an original logic circuit into a contradic 
tion check of the original logic circuit and Vice versa. The 
method comprises interpreting the original logic circuit in 
terms of AND, OR, MAJ, MIN, XOR, XNOR, INV original 
logic operators; transforming the original circuit obtained 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
from the interpreting, into a dual logic circuit enabled for a 
checking of contradiction in place of tautology and vice 
versa, by providing a set of Switching rules configured to 
Switch each respective one of the original logic operators 
INV. AND, OR, MAJ, XOR, XNOR, MIN into a respective 
switched logic operator INV. OR, AND, MAJ, XNOR, 
XOR, MIN; and complementing outputs of the original 
circuit by adding an INV at each output wire. The method 
further provides testing in parallel the satisfiability of the 
original logic circuit, and the satisfiability of the dual logic 
circuit with inverted outputs. Responsive to one of the 
parallel tests finishing, the other parallel test is caused to also 
stop. 

In a preferred embodiment the method further comprises 
responsive to testing that confirms the satisfiability of the 
original logic circuit and the satisfiability of the dual logic 
circuit with inverted outputs, configuring the transformed 
logic for use in a computer system. 
An approach taken with the present invention generates 

two different, but equi-solvable, instances of the same 
problem. In this scenario, solving both of them in parallel 
enables a positive computation speed-up. Indeed, the 
instance solved first stops the other reducing the runtime. 
This concept can be used on top of any other checking 
approach and does not impose much overhead, except 
having to run two solvers instead of one, which is typically 
not a problem because multi-cores are wide-spread and 
computing resources are inexpensive. 

In contrast to known parallel checking techniques, the 
methodology adopted through the invention creates a dif 
ferent but equi-checkable instance that has a potentially 
lower minimum runtime. As a case study, in the section 
describing preferred embodiments herein under, we inves 
tigate the impact of the inventive approach on SAT. There, 
by using non-trivial and trivial dualities in sequence, we 
create a dual SAT instance solvable in parallel with the 
original one. Experimental results show 25% speed-up of 
SAT, on average, in a concurrent execution scenario. Also, 
statistical experiments confirmed that the achieved runtime 
reduction is not of the random variation type. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The invention will be better understood in view of the 
description of preferred example embodiments and in ref 
erence to the drawings, wherein 

FIG. 1 represents a logic circuit example representing the 
function f=(ab)d+(ab)c+dc. The basis set is {AND, MAJ, 
INV. The gates symbolic representation is shown in the 
box; 

FIG. 2 represents an AND/OR configuration of a three 
input MAJ; 

FIGS. 3(a)-3(d) logic circuits examples—{AND, OR, 
INV logic circuit representing f-ab+ac+a(b+c)+a(a). 
{MAJ, INV logic circuit emulating the circuit in (a) using 
constants (b). {AND, OR, INV logic circuits derived from 
(a) by switching AND/OR operators (c). MAJ, INV logic 
circuit emulating the circuit in (a) using a fictitious input 
variabled (d); 

FIG. 4 is a graph of a comparison between real inverted 
and AND/OR switched logic circuits representing 4-variable 
Boolean functions. The on-set size ranges from 0 to 2'; 

FIG. 5 contains a speculative parallel regular/dual circuit 
SAT flow: 

FIG. 6 is graph showing 1000 randomized SAT runs for 
regular and dual circuit; 
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FIG. 7 (table I) contains switching rules for Tautology/ 
Contradiction Check; and 

FIG. 8 (table II) contains experimental results for regular 
vs. dual SAT solving. 

DESCRIPTION OF PREFERRED EXAMPLE 
EMBODIMENTS 

Notation on Logic Circuits 

This section first provides notation on logic circuits. Then, 
it gives a briefbackground on tautology checking from an 
EDA perspective. 
A. Notation 
A logic circuit is a Directed Acyclic Graph (DAG) rep 

resenting a Boolean function, with nodes corresponding to 
logic gates and directed edges corresponding to wires con 
necting the gates. The on-set of a logic circuit is the set of 
input patterns evaluating to true. Analogously, the off-set of 
a logic circuit is the set of input patterns evaluating to false. 
Each logic gate is associated with a primitive Boolean 
function taken from a predefined set of basis logic operators, 
e.g., AND, OR, XOR, XNOR, INV. MAJ, MIN etc. Logic 
operators such as MAJ and MIN represent self dual Boolean 
functions, i.e., functions whose output complementation is 
equivalent to inputs complementation. A set of basis logic 
operators is said to be universal if any Boolean function can 
be represented by a logic circuit equipped with those logic 
gates. For example, the basis set {OR, INV is universal 
while the basis set {AND, MAJ is not. FIG. 1 shows a logic 
circuit for the function 

over the universal basis set {AND, MAJ, INV. 
B. Tautology Checking 

Tautology checking, i.e., verifying whether a logic circuit 
is true in every possible interpretation, is an important task 
in computer science and at the core of EDA 5. 7. 
Traditionally, tautology checking Supports digital design 
verification through combinational equivalence checking 
7. Indeed, the equivalence between two logic circuits can 
be detected by XNOR-ing and checking for tautology. Logic 
synthesis also uses tautology checking to 

(i) highlight logic simplifications during optimization 5. 
6 and to 

(ii) identify matching during technology mapping 8. 
On a general basis, many EDA tasks requiring automated 

deduction are solved by tautology check routines. 
Unfortunately, solving a tautology check problem can be 

a difficult task. In its most general formulation, the tautology 
check problem is co-NP-complete. A straightforward 
method to detect a tautology is the exhaustive exploration of 
a function truth table. This naive approach can declare a 
tautology only in exponential runtime. More intelligent 
methods have been developed in the past. Techniques based 
on co-factoring trees and binary recursion have been pre 
sented in 9. Together with rules for pruning/simplifying the 
recursion step, these techniques reduced the checking run 
time on several benchmarks. Another method, originally 
targeting propositional formulas, is Stalmarck's method 10 
that rewrites a formula with a possibly smaller number of 
connectives. The derived equivalent formula is represented 
by triplets that are propagated to check for tautology. Unate 
recursive co-factoring trees and Stalmarck's method are as 
bad as any other tautology check method in the worst case 
but very efficient in real-life applications. With the rise of 
Binary Decision Diagrams (BDDs) 11, tautology check 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
algorithms found an efficient canonical data structure explic 
itly showing the logic feature under investigation 12. The 
BDD for a tautology is always a single node standing for the 
logic constant true. Hence, it is sufficient to build a BDD for 
a logic circuit and verify the resulting graph size (plus the 
output polarity) to solve a tautology check problem. Unfor 
tunately, BDDs can be exponential in size for some func 
tions (multipliers, hidden-weight bit, etc.). In the recent 
years, the advancements in SAT Solving tools 13, 14 
enabled more scalable approaches for tautology checking. 
Using the trivial duality between tautology and contradic 
tion, SAT solvers can be used to determine if an inverted 
logic circuit is unsatisfiable (contradiction) and conse 
quently if the original circuit is a tautology. Still, SAT 
Solving is an NP-complete problem so checking for tautol 
ogy with SAT is difficult in general. 
C. Motivation 

Tautology checking is a task Surfing the edge of today's 
computing capabilities. Due to its co-NP-completeness, tau 
tology checking aggressively consumes computational 
power when the size of the problem increases. To push 
further the boundary of examinable logic circuits, it is 
important to study new efficient checking methodologies. 
Indeed, even a narrow theoretical improvement can generate 
a speed-up equivalent to several years of technology evo 
lution. 

In the present description, we present a non-trivial duality 
between contradiction and tautology check problems that 
opens up new efficient solving opportunities. 
Properties of Logic Circuits 

In this section, we show properties of logic circuits with 
regard to their on-set/off-set balance and distribution. These 
theoretical results will serve as grounds for proving our main 
assertion in the next section. 
We initially focus on two universal basis sets: {AND, OR, 

INV} and MAJ, INV. We deal with richer basis sets later 
on. We first recall a known fact about majority operators. 

Property: 
A MAJ operator of n-variables, with n odd, can be 

configured as an n/2-variables AND operator by biasing 
n/2 inputs to logic false and can be configured as an 
n/2-variables OR operator by biasing n/2 inputs to logic 

true. 

For the sake of clarity, an example of a three-input MAJ 
configuration in AND/OR is depicted by FIG. 2. 

Extended at the circuit level, such property enables the 
emulation of any {AND, OR, INV logic circuit by a 
structurally identical MAJ, INV logic circuit. This result 
was previously shown in 15 where logic circuit over the 
basis set {AND, OR, INV are called AND/OR-INV graphs 
and logic circuits over the basis set {MAJ, INV are called 
MAJ-INV graphs. An example of two structurally, and 
functionally, identical logic circuits over the basis sets 
{AND, OR, INV) and MAJ, INV is depicted by FIG.3(a) 
and FIG. 3(b). 
The Boolean function represented in this example is 

fab+ac+a(b+c)+a. MAJ are configured to behave as AND/ 
OR by fixing one input to false(F)/true(T), respectively. In 
place of biasing one input of the MAJ with a logic constant, 
it is also possible to introduce a fictitious input variable 
connected in regular/inverted polarity to substitute true(T)/ 
false(F) constants, respectively. In this way, the function 
represented is changed but still including the original one 
when the fictitious input variable is assigned to true. FIG. 
3(d) shows a logic circuit with a fictitious input variabled 
replacing the logic constants in FIG. 3(b). The Boolean 
function represented there is h with property ha=true-f. 
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Up to this point, we have shown that {AND, OR, INV 
logic circuits can be emulated by MAJ, INV logic circuits 
configured either by 

(i) logic constants or by 
(ii) a fictitious input variable. 
In the latter case, MAJ, INV logic circuits have all 

inputs assignable. 
With no logic constants appearing and all operators being 

self-dual, this particular class of logic circuits have a per 
fectly balanced on-set/off-set size. The following theorem 
formalizes this property. 

Theorem 3.1: 
Logic circuits over the universal basis set {MAJ, INV, 

with all inputs assignable (no logic constants), have on 
set=2n-1 and off-set=2n-1, with n being the number of 
input variables. 

Proof: 
MAJ and INV logic operators, with no constants, repre 

sent self-dual Boolean functions. In 2, it is shown that 
self-dual Boolean functions have an on-set=|off-set=2", 
with n being the number of input variables. Also, it is shown 
in 2 that Boolean functions composed by self-dual Boolean 
functions are self-dual as well. This is indeed the case for 
{MAJ, INV logic circuits with no constants in input. As 
these circuits represent self-dual Boolean functions, we can 
assert lon-set=|off-set|=2''. Q.E.D. 

{MAJ, INV logic circuits with no constants have a 
perfectly balanced partition between on-set size and off-set 
size. This is the case for the example in FIG. 3(d). Eventu 
ally, we know that by assigning d to true in Such example 
circuit the on-set/off-set balance can be lost. Indeed, with 
d=true the MAJ, INV logic circuit then emulates the 
original {AND, OR, INV logic circuit in FIG. 3(a), that 
could have different on-set size and off-set size. Still, it is 
possible to reclaim the perfect on-set/off-set balance by 
superposing the cases d=true and d=false in the MAJ, INV 
logic circuit. While we know precisely what the MAJ, 
INV logic circuit does when d=true, the case d=false is not 
as evident. We can interpret the case d=false as an inversion 
in the MAJ configuration polarity. This means that where a 
MAJ is configured as an AND (OR) node in d=true, it is 
instead configured as an OR (AND) node in d=false. In other 
words, d=false in the MAJ, INV logic circuit of FIG.3(d) 
corresponds to switch AND/OR operator types in the origi 
nal {AND, OR, INV logic circuit of FIG. 3(a). The 
resulting AND/OR switched circuit is depicted by FIG.3(c). 

United by a common MAJ, INV} generalization, {AND, 
OR, INV logic circuits and their AND/OR switched ver 
sions share strong properties about on-set/off-set repartition. 
The following theorem states their relation. 

Theorem 3.2: 
Let Abe a logic circuit over the universal basis set {AND, 

OR, INV}. Let A' be a modified version of A, with AND/OR 
operators switched. The following identities hold on-set 
(A)|=off-set(A) and off-set(A)|=|on-set(A). 

Proof: 
Say Ma MAJ, INV logic circuit emulating A using an 

extra fictitious input variable, say d. Md=1 is structurally 
and functionally equivalent to A, while Md=0 is structurally 
and functionally equivalent to A'. From Theorem 3.1 we 
know that 

where m is the number of input variables in A and n the 
number of input variables in M, with n-m+1 to take into 
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6 
account the extra fictitious input variable in M. We know by 
construction that 

Again by construction we know that Md=1 and Md=0 can 
be substituted by A and A', respectively, in all equations. 
Owing to the basic definition of A and A' we have that 

Expressing on-set(A) as 2"-lon-set(A) from the first 
set of equations and Substituting this term in on-set(A) + 
off-set(A)|=2m we get 2"-lon-set(A)|+|off-set(A)|=2" that 
can be simplified as off-set(A)|=lon-set(A). This proves 
the first identity of the Theorem. The second identity can be 
proved analogously. 

Informally, the previous theorem says that by Switching 
AND/OR operators in an {AND, OR, INV logic circuit we 
Swap the on-set and off-set sizes. From a statistical perspec 
tive, this is equivalent to invert Pr(A=true) with Pr(A=false), 
under uniformly random input string of bits. While this also 
happens with exact logic inversion, here the actual distri 
bution of the on-set/off-set elements is not necessarily 
complementary. In the next section, we show the implica 
tions of the theoretical results seen so far in tautology and 
contradiction check problems. 
From Tautology to Contradiction and Back 

Verifying whether a logic circuit is a tautology, a contra 
diction or a contingency is an important task in logic 
applications for computers. In this section, we show that 
tautology and contradiction check in logic circuits are dual 
and interchangeable problems that do not require exact logic 
inversion per se. We start by considering logic circuit over 
the universal basis set {AND, OR, INV and we consider 
richer basis sets later on. The following theorem describes 
the non-trivial duality between tautology and contradiction 
in {AND, OR, INV logic circuits. 
Theorem 4.1: 
let Abe a logic circuit over the universal basis set {AND, 

OR, INV representing a tautology (contradiction). The 
logic circuit A', obtained by switching AND/OR operations 
in A, represents a contradiction (tautology). 

Proof: 
if A represents a tautology then 

lon-set(A)|=0 

with m being the number of inputs. Owing to Theorem 3.2 

It follows that A' is a contradiction. Analogous reasoning 
holds for contradiction to tautology transformation. Q.E.D. 

Switching AND/ORs in an {AND, OR, INV logic circuit 
is strictly equivalent to logic inversion only for tautology 
and contradiction. In the other cases, A and A' are not 
necessarily complementary. We give empirical evidences 
about this fact hereafter. FIG. 4 depicts the obtained results 
in a graph chart. We examined 17 random Boolean functions 
of four input variables, with on-set size ranging from 0 
(contradiction) to 16 (tautology). We first compared the 
on-set size of the real inverted logic circuits with the on-set 
size of the AND/OR switched circuits. As expected. Theo 
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rem 3.2 holds and switching AND/OR operators results in 
exchanging the on-set and off-set sizes. This also happens 
with the real inverted circuits, but in that case also the actual 
on-set/off-set elements distribution is complementary. To 
verify what is the on-set/off-set elements distribution in 
general, we define a distance metric between the real 
inverted and AND/OR switched circuits. The distance met 
ric is computed in two steps. First, the truth tables of the 
circuits are unrolled, using the same input order, and rep 
resented as binary strings. Second, the distance metric is 
measured as the Hamming distance 3 between those binary 
strings. For tautology and contradiction extremes the dis 
tance metric between AND/OR switched circuits and real 
inverted circuits is 0, as obvious consequence of Theorem 
4.1. For other circuits, real inverted and AND/OR switched 
circuits are different, with distance metric ranging between 
2 and 10. 
As a practical interpretation of the matter discussed so far, 

we can get an answer for a tautology (contradiction) check 
problem by working on a functionally different and non 
complementary structure than the original one under test. 
We explain hereafter why this fact is interesting. Suppose 
that the logic circuit we want to check is a contingency but 
algorithms for tautology (contradiction) are not efficient on 
it. If we just invert the outputs of this logic circuit and we 
run algorithms for contradiction (tautology) then we would 
likely face the same difficulty. However, if we switch 
AND/ORs in the logic circuit we get a functionally different 
and non-complementary structure. In this case, algorithms 
for contradiction (tautology) do not face by construction the 
same complexity. Exploiting this property, it is possible to 
speed-up a traditional tautology (contradiction) check prob 
lem. Still, Theorem 4.1 guarantees that if the original circuit 
is a tautology (contradiction) then the AND/OR switched 
version is a contradiction (tautology) preserving the check 
ing correctness. 

Recalling the example in FIG. 3(a), the original logic 
cir-cuit represents a tautology. Consequently, the logic cir 
cuit in FIG. 3(c) represents a contradiction. These properties 
are verifiable by hand as the circuits considered are small. 
For an example which is a contingency, consider the {AND, 
OR, INV circuit realization for fab'+c' (contingency). By 
switching AND/ORs, we get g (a+b') c' which is different 
from both for f, as predicted. 
We now consider logic circuits with richer basis set 

functions than just {AND, OR, INV. Our enlarged basis set 
includes {AND, OR, INV. MAJ, XOR, XNOR logic opera 
tors. Other operators can always be decomposed into this 
universal basis set, or new Switching rules can be derived. In 
the following, we extend the applicability of Theorem 4.1. 

Theorem 4.2: 
let Abe a logic circuit over the universal basis set {AND, 

OR, INV. MAJ, XOR, XNOR} representing a tautology 
(contradiction). The logic circuit A', obtained by Switching 
logic operators in A as per FIG. 7/Table I, represents a 
contradiction (tautology). 

Proof: 
in order to prove the theorem, we need to show the 

switching rules just for XOR, XNOR and MAJ operators. 
AND/OR switching is already proved by Theorem 4.1. 
Consider the XOR operator decomposed in terms of {AND, 
OR, INV}: 

f=a€Db=ab'+a 'b. 

Applying the duality in Theorem 4.1 we get 
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8 
that is indeed equivalent to a XNOR operator. This proves 
the XOR to XNOR switching and vice versa. Analogously, 
consider the MAJ operator decomposed in terms of {AND, 
OR, INV}: 

Applying the duality in Theorem 4.1 we get 
g=(a+b)(a+c)(b+c) 

that is still equivalent to a MAJ operator. Hence, MAJ 
operators do not need to be modified. Q.E.D. 

Note that in a data structure for a computer program, the 
operator Switching task does not require actual pre-process 
ing of the logic circuit. Indeed, each time that a node in the 
DAG is evaluated an external flag word determines if the 
regular or switched operator type has to be retrieved from 
memory. 

In the current section, have we shown a non-trivial duality 
between contradiction and tautology check. In the next 
section, we study its application on Boolean satisfiability. 

EXPERIMENTAL RESULTS 

In this section, we exercise our non-trivial duality in 
Boolean SATisfiability (SAT) problems. First, we describe 
how to use the tautology/contradiction duality to generate a 
second (dual) equi-satisfiable SAT instance. Second, we 
demonstrate that the dual instance can be solved faster than 
the regular one and the corresponding runtime reduction is 
not of the random variation type. Third, and last, we show 
experimental results for a concurrent regular/dual SAT 
execution scenario. 
A. Boolean SAT and Tautology/Contradiction Duality 
The Boolean SAT problem consists of determining 

whether there exists or not an interpretation evaluating to 
true a Boolean formula or circuit. The Boolean SAT problem 
is reciprocal to a check for contradiction. When contradic 
tion check fails then Boolean SAT succeeds while when 
contradiction check succeeds then Boolean SAT fails. 
Instead of checking for Boolean SAT or for contradiction, 
one can use a dual transformation in the circuit and check for 
tautology. Such transformation can be either 

(i) non-trivial, i.e., Switching logic operators in the circuit 
as per FIG. 7/Table I; or 

(ii) trivial, i.e., output complementation. 
If we use twice any dual transformation, we go back to the 

original problem domain (contradiction, SAT). Note that if 
we use twice the same dual transformation (trivial-trivial or 
non-trivial-non-trivial) we obtain back exactly the original 
circuit. Instead, if we apply two different dual transforma 
tions in sequence (trivial-non-trivial or non-trivial-trivial) 
we obtain an equi-satisfiable but not necessarily equivalent 
circuit. 
We use the latter approach to generate from the regular a 

second equi-satisfiable circuit, which we call the dual cir 
cuit. This is illustrated in FIG. 5 wherein an arrow points 
away to a switching rules table in which rules from FIG. 
7/Table 1 are applied to the regular (logic) circuit and the 
dual (logic) circuit obtained as a result. 
The dual circuit SAT see the two tooth wheels entitled 

“Solver and “SAT next to the Dual circuit is solved in 
parallel with the regular circuit—see the two tooth wheels 
entitled “Solver” and “SAT next to the arrow arriving from 
the Regular circuit in a first finishing wins speculative 
Strategy. 

FIG. 5 depicts the corresponding flow as a whole. 
We generate the dual circuit by first applying our non 

trivial duality (switching rules in FIG.7/Table I) and finally 
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complementing the outputs (trivial duality). Note that these 
operations ideally require no (or very little) computational 
overhead, as explained previously. 
B. Verification of SAT Solving Advantage on the Dual 
Circuit 

In our first set of experiments we focused on verifying 
whether the dual circuit can be easier to satisfy than the 
regular circuit. For this purpose, we modified MiniSat-C 
v1.14.1 16 to read circuits in AIGER format 18 and to 
encode them in CNF internally via Tseitin transformation. 
The dual circuit is generated online during reading if a 
switch “-p” is given. We considered a large circuit (0.7 M 
nodes) over 1000 randomized (pseudo-random numbergen 
erator seed) runs. FIG. 6 shows the runtime distributions for 
dual and regular SAT. 
The dual runtime distribution is clearly left-shifted (but 

partially overlapping) with respect to the regular runtime 
distribution. This confirms that (i) the dual circuit can be 
solved faster than the regular one and (ii) the runtime 
reduction is not of the random variation type. 
C. Results for Concurrent Regular/Dual SAT Execution 

In our second set of experiments (downloadable at 19) 
we used ABC tool 17 to test our dual approach together 
with advanced techniques to speed-up SAT. Our custom set 
of benchmarks is derived by (i) unfolding SAT sequential 
problems (ii) encoding combinational equivalence check 
problems. All benchmarks are initially described in Verilog 
as a netlist of logic gates over the basis {AND, OR, INV. 
XOR, XNOR, MAJ). The dual circuits are obtained by 
applying switching rules in FIG. 7/Table I and inverting the 
output. The ABC script to read and run SAT on these 
benchmarks is: 
read library.genlib; 
r -m input.V. st; 
write out.aig, 
&r out.aig: 
&ps; 
&write cnf-K 4 out.cnf: 
dsat -p out.cnf. 

Apart from Standard I/O commands, note that 
&write cnf-K 4 out.cnf 

generates a CNF using a technology mapping procedure and 
dsat -p 

calls MiniSat with variable polarity alignment. 
FIG. 8/Table II shows results for regular vs. dual SAT 

solving with our setup. For about half of the benchmarks 
(713) the dual instance concluded first while for the remain 
ing ones (%3) the regular instance was faster. The total 
regular runtime is quite close to the total dual runtime (just 
6% of deviation). However, considering here the speculative 
parallel SAT flow in FIG. 5, we can ideally reduce the total 
runtime by about 25%. Note that this is an ideal projection 
into a parallel execution environment, with no overhead. We 
experimentally verified that the average overhead can be 
Small (few percentage points) thanks to the intrinsic inde 
pendence of the two tasks. 

CONCLUSION 

In this description, we have shown a non-trivial duality 
between tautology and contradiction check to speed up 
circuit SAT. On the one hand, tautology check determines if 
a logic circuit is true for all input combinations. On the other 
hand, contradiction check determines if a logic circuit is 
false for all input combinations. A trivial transformation of 
a (tautology, contradiction) check problem into a (contra 
diction, tautology) check problem is the inversion of all the 
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10 
outputs in a logic circuit. In this work, we proved that exact 
logic inversion is not necessary. By Switching logic operator 
types in a logic circuit, following the rules presented in this 
paper, we can selectively exchange tautologies with contra 
dictions. Our approach is equivalent to logic inversion just 
for tautology and contradiction extreme points. It generates 
non-complementary logic circuits in the other cases. Such 
property enables computing benefits when an alternative but 
equi-Solvable instance is easier to solve than the original 
one. As a case study, we studied the impact on SAT. There, 
our methodology generated a dual SAT instance Solvable in 
parallel with the original one. This concept can be used on 
top of any other SAT approach and does not impose much 
overhead, except having to run two solvers instead of one, 
which is typically not a problem because multi-cores are 
widespread and computing resources are inexpensive. 
Experimental results shown 25% speed-up of SAT in a 
concurrent execution scenario. 
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The invention claimed is: 
1. A method for transforming a tautology check of an 

original logic circuit into a contradiction check of the 
original logic circuit and vice versa, the method comprising: 

interpreting the original logic circuit in terms of AND, 
OR, MAJORITY, MINORITY, XOR, XNOR, INV 
original logic operators; 

transforming the original circuit obtained from the inter 
preting, into a dual logic circuit enabled for a checking 
of contradiction in place of tautology and vice versa, by 
providing a set of Switching rules configured to Switch 

each respective one of the original logic operators 
INV, AND, OR, MAJORITY, XOR, XNOR, 
MINORITY into a respective switched logic opera 
tor INV, OR, AND, MAJORITY, XNOR, XOR, 
MINORITY; and 

complementing outputs of the original circuit by add 
ing an INV at each output wire; 

testing in parallel 
the satisfiability of the original logic circuit, and 
the satisfiability of the dual logic circuit with inverted 

outputs; 
and 

responsive to one of the parallel tests finishing, causing 
the other parallel test to also stop; and 

generating a circuit corresponding to the testing. 
2. The method of claim 1, further comprising responsive 

to testing that confirms the satisfiability of the original logic 
circuit and the satisfiability of the dual logic circuit with 
inverted outputs, configuring the transformed logic for use 
in a computer system. 
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3. A method of making a new circuit including transform 

ing a tautology check of an original logic circuit into a 
contradiction check of the original logic circuit and vice 
versa, the method comprising: 

interpreting the original logic circuit in terms of AND, 
OR, MAJORITY, MINORITY, XOR, XNOR, INV 
original logic operators; 

transforming the original circuit obtained from the inter 
preting, into a dual logic circuit enabled for a checking 
of contradiction in place of tautology and vice versa, by 
providing a set of Switching rules configured to Switch 

each respective one of the original logic operators 
INV, AND, OR, MAJORITY, XOR, XNOR, 
MINORITY into a respective switched logic opera 
tor INV, OR, AND, MAJORITY, XNOR, XOR, 
MINORITY; and 

complementing outputs of the original circuit by add 
ing an INV at each output wire; 

testing in parallel a first test and a second test 
the first test testing the satisfiability of the original logic 

circuit, and 
the second test testing the satisfiability of the dual logic 

circuit with inverted outputs; 
and 

responsive to either one of the first test and second test 
finishing, causing the other test to also stop; and 

generating the new circuit corresponding to the testing. 
4. The method of claim 3, further comprising responsive 

to testing that confirms the satisfiability of the original logic 
circuit and the satisfiability of the dual logic circuit with 
inverted outputs, configuring the transformed logic for use 
in a computer system. 
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