
Gradient Approximation of Approximate Multipliers for
High-Accuracy Deep Neural Network Retraining

Chang Meng1, Wayne Burleson2, Weikang Qian3,4, and Giovanni De Micheli1
1Integrated Systems Laboratory, EPFL, Lausanne, Switzerland, 2University of Massachusetts, Amherst, USA

3UM-SJTU Joint Institute and 4MoE Key Lab of AI, Shanghai Jiao Tong University, Shanghai, China
Emails: chang.meng@epfl.ch, burleson@umass.edu, qianwk@sjtu.edu.cn, giovanni.demicheli@epfl.ch

Abstract—Approximate multipliers (AppMults) are widely em-
ployed in deep neural network (DNN) accelerators to reduce the
area, delay, and power consumption. However, the inaccuracies
of AppMults degrade DNN accuracy, necessitating a retraining
process to recover accuracy. A critical step in retraining is
computing the gradient of the AppMult, i.e., the partial derivative
of the approximate product with respect to each input operand.
Conventional methods approximate this gradient using that of
the accurate multiplier (AccMult), often leading to suboptimal
retraining results, especially for AppMults with relatively large
errors. To address this issue, we propose a difference-based gradi-
ent approximation of AppMults to improve retraining accuracy.
Experimental results show that compared to the state-of-the-art
methods, our method improves the DNN accuracy after retraining
by 4.10% and 2.93% on average for the VGG and ResNet
models, respectively. Moreover, after retraining a ResNet18 model
using a 7-bit AppMult, the final DNN accuracy does not degrade
compared to the quantized model using the 7-bit AccMult, while
the power consumption is reduced by 51%.

Index Terms—Gradient, approximate multiplier, deep neural
network, retraining

I. INTRODUCTION

Modern artificial intelligence (AI) technologies excel in
a wide range of areas such as natural language processing
and computer vision, driving widespread adoption of deep
neural network (DNN) accelerators in edge devices, cloud
computing systems, etc. However, this rapid growth raises
serious concerns about power consumption [1].

To achieve energy-efficient DNN accelerators, researchers
have adopted an emerging design paradigm called approximate
computing, which reduces power consumption at the cost of
small errors [2], [3]. Approximate computing is particularly
suitable for DNN accelerators, since DNNs are inherently
resilient to errors and noise. By carefully introducing errors
into a DNN accelerator, the final output quality is almost
unaffected, while the area, delay, and power consumption of
the accelerator can be significantly reduced [4]. Generally
speaking, traditional DNN compression techniques with low-
precision data representations, such as int4 [5] and float8 [6],
can also be viewed as approximate computing techniques.

Among various approximation techniques for DNN accel-
erators, designs based on approximate multiplier (AppMult)

This work is supported by the Swiss National Science Foundation Grant
“Supercool: Design methods and tools for superconducting electronics” with
funding number 200021 1920981 and a grant from Synopsys Inc. Correspond-
ing author: Chang Meng.

Pre-trained
Float DNN

Quantized
DNN

Integer
Quantization

AppMult-
Based DNN

Apply
AppMults

AppMult-aware
retraining

Gradients of AppMults?

Recover
accuracy

𝑌𝑎𝑐𝑐=WX 𝑌𝑎𝑝𝑝=AM(W,X)

Replace

𝜕𝑌𝑎𝑝𝑝𝜕𝑊 =?
𝜕𝑌𝑎𝑝𝑝𝜕𝑋 =?

Fig. 1: Design flow of AppMult-based DNN accelerators.

are among the most popular [4], [7]. Fig. 1 shows a typical
design flow for AppMult-based DNN accelerators. It begins
with a pre-trained floating-point DNN model, followed by
quantization to convert the model into a version with integer
weights and activations. Since integer multipliers are the
most power-consuming components in a quantized DNN, they
are approximated to reduce power consumption. However,
the inaccuracies of AppMults degrade the DNN accelerator’s
accuracy, necessitating AppMult-aware retraining to recover
the accuracy [8]–[13].

A basic question in AppMult-aware retraining is how to
compute the gradient of an AppMult, i.e., the partial derivative
of the approximate product Yapp with respect to (w.r.t.) each
input operand, i.e., W or X . Previous works proposed a
straight through estimator (STE), which approximates the
gradient of an AppMult using that of an accurate multiplier
(AccMult) [8]–[13]. It is effective for small-error AppMults, as
their approximation errors are small, resulting in gradients that
closely match those of AccMults. However, in scenarios re-
quiring aggressive power reduction, AppMults with relatively
large errors are often preferred. For these AppMults, their
gradients can deviate significantly from those of AccMults.
In such cases, the STE fails to provide accurate gradients, and
retraining with STE-based gradients may lead to suboptimal
results. To address this issue, we propose a more precise gradi-
ent approximation of AppMults, aiming to improve retraining
accuracy, especially for AppMults with relatively large errors.
Our main contributions are as follows:
• We propose a difference-based gradient approximation for

AppMults to improve the retraining accuracy.
• We develop an AppMult-aware DNN retraining framework

that incorporates our proposed gradient approximation.
• Our method improves the retraining accuracy by 4.10% for

VGG models and 2.93% for ResNet models, alleviating ac-

curacy degradation from AppMults. For a ResNet18 model
with a 7-bit AppMult, it reduces multiplier power consump-
tion by 51% without accuracy loss, showing its effectiveness
for designing energy-efficient DNN accelerators.
Our AppMult-aware retraining framework is available at

https://github.com/changmg/AppMult-Aware-Retraining.
The remainder of the paper is organized as follows. Sec-

tion II introduces the preliminaries of AppMult-aware retrain-
ing. Sections III and IV present our gradient approximation of
AppMults for high-accuracy DNN retraining. Section V shows
the experimental results. Section VI concludes the paper.

II. PRELIMINARIES

A. Approximate Multipliers (AppMults)

This paper focuses on integer AppMults, which are com-
monly used in DNN accelerators [14]–[16]. In what follows,
we refer to them as AppMults for short. A general AppMult
with input operands W and X and output Y implements the
following function:

Y = AM(W,X) = WX + ϵ(W,X), (1)

where WX is the exact product, AM is the AppMult function,
and ϵ(W,X) is the approximation error. For example, Fig. 2
shows a 7-bit unsigned AppMult, which removes the right-
most 6 columns of partial products. Its approximation error
is ϵ(W,X) = −

∑5
i=0

∑5−i
j=0

(
2i+jppij

)
, where ppij is the

partial product of wi (i-th bit of W) and xj (j-th bit of X).

𝑤6 𝑤5 𝑤4 𝑤3 𝑤2 𝑤1 𝑤0× 𝑥6 𝑥5 𝑥4 𝑥3 𝑥2 𝑥1 𝑥0𝑝𝑝06 𝑝𝑝05 𝑝𝑝04 𝑝𝑝03 𝑝𝑝02 𝑝𝑝01 𝑝𝑝00𝑝𝑝16 𝑝𝑝15 𝑝𝑝14 𝑝𝑝13 𝑝𝑝12 𝑝𝑝11 𝑝𝑝10𝑝𝑝26 𝑝𝑝25 𝑝𝑝24 𝑝𝑝23 𝑝𝑝22 𝑝𝑝21 𝑝𝑝20𝑝𝑝36 𝑝𝑝35 𝑝𝑝34 𝑝𝑝33 𝑝𝑝32 𝑝𝑝31 𝑝𝑝30𝑝𝑝46 𝑝𝑝45 𝑝𝑝44 𝑝𝑝43 𝑝𝑝42 𝑝𝑝41 𝑝𝑝40𝑝𝑝56 𝑝𝑝55 𝑝𝑝54 𝑝𝑝53 𝑝𝑝52 𝑝𝑝51 𝑝𝑝50+ 𝑝𝑝66 𝑝𝑝65 𝑝𝑝64 𝑝𝑝63 𝑝𝑝62 𝑝𝑝61 𝑝𝑝60𝑌13 𝑌12 𝑌11 𝑌10 𝑌9 𝑌8 𝑌7 𝑌6 𝑌5 𝑌4 𝑌3 𝑌2 𝑌1 𝑌0

LEGEND𝑤𝑖: i-th bit of operand W𝑥𝑗: j-th bit of operand X𝑝𝑝𝑖𝑗: partial product of 𝑤𝑖&𝑥𝑗𝑌𝑘: k-th bit of the product

Remove &

set as 0

Fig. 2: A simple 7-bit unsigned AppMult, where the rightmost 6
columns of partial products are removed [17].

To evaluate the accuracy of a B-bit AppMult, common
error metrics include error rate (ER), normalized mean error
distance (NMED), and maximum error distance (MaxED) [7],
defined as follows:

ER =
∑

1≤i≤22B :Y (i) ̸=Y
(i)
acc

pi,

NMED =

22B∑
i=1

|Y (i) − Y
(i)
acc| · pi

22B − 1
,

MaxED = max
1≤i≤22B

|Y (i) − Y (i)
acc|,

(2)

where Y (i) and Y
(i)
acc are the outputs of the AppMult and the ac-

curate multiplier (AccMult), respectively, under the i-th input
combination, pi is the probability of the i-th input combination,
and 22B is the total number of input combinations.

B. AppMult-Aware DNN Retraining

As shown in Fig. 1, AppMult-aware DNN retraining is used
to recover DNN accuracy after applying AppMults. Main-
stream AppMult-aware retraining techniques rely on gradient
descent and consist of two key steps: forward propagation and
backward propagation.

During the forward propagation, the input data is processed
through the DNN to compute the output. In this step, AppMults
are simulated to perform approximate multiplications, typically
through lookup table (LUT)-based methods (e.g., [9]–[11]) or
behavioral-level simulations (e.g., [12]).

During the backward propagation, the gradients of the loss
function w.r.t. the DNN parameters are computed, and the pa-
rameters are updated by descending along the negative gradient
direction. This step involves computing the gradients of App-
Mults, and to the best of our knowledge, all existing AppMult-
aware DNN retraining frameworks utilize the straight-through
estimator (STE) to estimate the gradient of AppMults [8]–[13].
Specifically, these frameworks approximate the gradient of an
AppMult using that of an AccMult. For a general AppMult in
Eq. (1), the STE method estimates its gradient as follows:

∂AM
∂W

≈ X,
∂AM
∂X

≈ W. (3)

In other words, STE assumes that the gradients of the approx-
imation error, ∂ϵ

∂W and ∂ϵ
∂X , are 0. The approach is effective

when an AppMult has a small error (i.e., ϵ is close to 0).
However, when an AppMult exhibits a relatively large error,
its gradient can deviate significantly from that of the AccMult.
In this case, STE-based retraining may yield suboptimal results
due to inaccurate gradients. To address this, our work proposes
a more precise gradient approximation of AppMults to improve
retraining accuracy.

III. DIFFERENCE-BASED GRADIENT APPROXIMATION OF
APPROXIMATE MULTIPLIERS

This section presents our proposed gradient approximation
of AppMults for high-accuracy DNN retraining. For a general
AppMult with a function AM(W,X), we propose to approxi-
mate its gradients ∂AM

∂W and ∂AM
∂X by the following two steps:

1) Smooth the AppMult function, detailed in Section III-A.
2) Compute the difference-based gradient, detailed in Sec-

tion III-B.
For clarity, we assume that the AppMult is unsigned in this

section, although our method can be easily extended to signed
AppMults. Additionally, we will only focus on approximating
∂AM
∂X in the following discussion, noting that the method for
∂AM
∂W is similar. To compute ∂AM

∂X , we analyze the function
AM(Wf , X), where Wf represents a fixed value of W .

A. Smoothing AppMult Function

Since the least significant part of AppMults is often ap-
proximated or even removed, AM(Wf , X) may exhibit a stair-
like behavior w.r.t. X (see the blue curve in Fig. 3(a)). This
makes ∂AM

∂X zero for most X and produces significant large
∂AM
∂X at the stair edges. This behavior is not ideal for gradient

https://github.com/changmg/AppMult-Aware-Retraining

0 20 40 60 80 100 120
X

0

200

400

600

800

1000

1200

Ou
tp
ut
 w
ith

 W
f=

10
 a
nd

 v
ar
yi
ng

 X

x=31

x=63

x=95

AppMult, AM(Wf,X)
Smoothed, S(Wf,X)
AccMult, WfX

(a) The AppMult function, the smoothed AppMult
function using a half window size of 4, and the
AccMult function when Wf = 10.

0 20 40 60 80 100 120
X

8

10

12

14

16

18

Gr
ad

ie
nt
 ∂A

M
/∂
X
wi
th
 W

f=
10

 a
nd

 v
ar
 i
ng

 X

x=31 x=63 x=95

STE gradient
proposed gradient

(b) The proposed difference-based gradient and the
STE-based gradient of the AppMult when Wf = 10.

Fig. 3: Smoothing of a 7-bit unsigned AppMult function AM(Wf = 10, X) and its gradient approximation. The AppMult corresponds to the
one in Fig. 2, which removes the 6 rightmost columns of partial products. The red arrows show three relatively large changes in the AppMult
function, corresponding to the large values in the difference-based gradient.

descent, as zero gradients for most X can prohibit the DNN
parameters from being updated, while the large gradients at
the stair edges can destabilize the gradient descent process.
As a result, directly using the real gradient of AM(Wf , X)
in retraining can lead to suboptimal results. To address this
issue, we propose to smooth AM(Wf , X) into a new value
S(Wf , X) using moving average as follows:

S(Wf , X) =
1

2HWS + 1

HWS∑
∆x=−HWS

AM(Wf , X +∆x),

for HWS ≤ X ≤ 2B − 1− HWS,

(4)

where B is the bitwidth and HWS is a positive integer called
half window size. For each input pair (Wf , X), Eq. (4) consid-
ers its neighbor points within a window of size (2HWS + 1),
and calculates the average of the AppMult outputs in this win-
dow to produce the smoothed output S(Wf , X). For example,
the orange curve in Fig. 3(a) shows the smoothed function
S(Wf = 10, X) for the AppMult function AM(Wf = 10, X)
(shown in blue) with HWS = 4. After smoothing, S(Wf =
10, X) has no zero gradients and no large gradients, making
it more suitable for gradient descent. Note that Eq. (4) is only
applied to HWS ≤ X ≤ 2B − 1− HWS. This is because only
S(Wf , X) for HWS ≤ X ≤ 2B − 1 − HWS is used in our
gradient approximation, which will be shown in Section III-B.

B. Difference-Based Gradient Computation

After smoothing the function AM(Wf , X) to S(Wf , X), we
propose to approximate the gradient of S(Wf , X) w.r.t. X
using the following difference-based method:

AM(Wf , X)

∂X
≈ S(Wf , X)

∂X
≈ S(Wf , X+1)− S(Wf , X−1)

2
,

for HWS < X < 2B − 1− HWS.
(5)

Eq. (5) considers the two neighboring points of (Wf , X), i.e.,
(Wf , X + 1) and (Wf , X − 1), and uses the slope between
them to approximate the gradient.

Note that Eq. (5) is only applied to HWS < X < 2B − 1−
HWS. For the other values of X , we estimate the gradient as:

AM(Wf , X)

∂X
≈ maxX AM(Wf , X)−minX AM(Wf , X)

2B
,

for 0 ≤ X ≤ HWS and 2B − 1− HWS ≤ X < 2B .
(6)

Eq. (6) computes the maximum and minimum values of
AM(Wf , X) for X ∈ [0, 2B−1], which is the total change of
AM(Wf , X) for all possible values of X under the fixed Wf .
This total change is then divided by 2B to obtain the average
change per unit X as the gradient approximation.

For instance, using Eqs. (5) and (6) with Wf = 10 and
HWS = 4, for the AppMult function AM(Wf = 10, X) (blue
curve in Fig. 3(a)), its difference-based gradient is shown in
Fig. 3(b) in orange. For comparison, the STE-based gradient
is plotted in green in Fig. 3(b), showing a constant value of
10 for all values of X , as Wf = 10. The magnitude of the
difference-based gradient reflects the rate of change of the
AppMult function AM(Wf , X) w.r.t. X , where larger gradient
values indicate greater changes of AM(Wf , X) per unit X .
For example, AM(Wf = 10, X) has three relatively large
changes at X = 31, 63, and 95, indicated by the red arrows
in Fig. 3(a). Correspondingly, the difference-based gradient
in Fig. 3(b) exhibits large values around these points. In
contrast, the STE-based gradient is always 10 for all values
of X , failing to capture the variations in the changing rate of
AM(Wf , X). Therefore, the difference-based gradient offers
better guidance for the gradient descent process, potentially
improving retraining accuracy.

IV. APPMULT-AWARE RETRAINING FRAMEWORK USING
THE PROPOSED GRADIENT APPROXIMATION

𝑥(fp)𝑤(fp)

𝑄(𝑥)
Y(int)𝑄(𝑤) AM(W,X)

X(int)

W(int)

𝐷𝑄(𝑌) 𝑦(fp) 𝐿loss

Forward propagation

Backward propagation

𝜕𝐿𝜕𝑤 = 𝜕𝑊𝜕𝑤 × 𝜕𝑌𝜕𝑊 × 𝜕𝑦𝜕𝑌 × 𝜕𝐿𝜕𝑦
Δ𝑤=

-𝜂 𝜕𝐿𝜕𝑤

Fig. 4: Forward and backward propagation in the AppMult-aware
DNN retraining framework. The term “fp” denotes “floating point”.
The functions Q and DQ are the quantization and dequantization
functions, defined in Eqs. (7) and (8), respectively. The red part
indicates where the proposed gradient approximation is applied. The
computation of ∂L

∂x
follows a similar approach to that of ∂L

∂w
.

We develop an AppMult-aware DNN retraining framework
to incorporate the proposed difference-based gradient approx-
imation for AppMults. As shown in Fig. 4, the framework
involves a forward propagation and a backward propagation.

During the forward propagation, since the DNN operates
with integer AppMults, we simulate both quantization and
AppMult behaviors using the method in [18]. For quantiza-
tion simulation, we apply the traditional fake quantization
technique [19]. As shown in the top of Fig. 4, the floating-
point weight w and activation x are quantized into integers
W and X using a quantization function Q. For example, a
simple uniform quantization is applied in our framework (other
quantization methods can also be used), which is defined as:

W =Q(w)= round(
w

sw
+Zw), X=Q(x)= round(

x

sx
+Zx),

(7)
where sw and sx are the floating-point quantization scales
for the weights and activations, and Zw and Zx are their
respective integer zero points. Once the AppMult function
Y = AM(W,X) is computed, the dequantization function DQ
converts the integer Y back into floating-point value y, defined
as follows:

y = DQ(Y) = swsx(Y − ZxW − ZwX + ZwZx). (8)

To simulate the behavior of AppMults, i.e., the function
AM(W,X) as shown in the top middle of Fig. 4, we utilize
a LUT-based method similar to those used in other frame-
works [9]–[11], [18]. Specifically, we precompute AM(W,X)
for all possible input combinations of W and X , and store
the results in LUTs. Then, we implement CUDA [20] kernels
that compute the AppMults by referencing the precomputed
LUTs. In modern DNN accelerators, state-of-the-art solutions
utilize a bit-width no more than 8 [21], ensuring LUT sizes
remain manageable and can be stored in the GPU memory. For
example, a 7-bit AppMult LUT has 214 entries, and storing
these using 16-bit integers requires 32MB memory, which can
be put in the fast shared memory in modern GPUs.

During the backward propagation, the gradients of the loss
function L w.r.t. the weight w and activation x are computed.

The bottom part of Fig. 4 illustrates the computation of ∂L
∂w

using the following formula:

∂L

∂w
=

∂W

∂w

∂Y

∂W

∂y

∂Y

∂L

∂y
= Q′(w)

∂AM

∂W
DQ′(Y)

∂L

∂y
. (9)

The computations of Q′(w), DQ′(Y), and ∂L
∂y follow the

same approach in [9]–[11]. However, the computation of
∂AM
∂W is different, as it utilizes our proposed difference-based

gradient approximation. To compute ∂AM
∂W , we propose a LUT-

based method. Specifically, we precompute the difference-
based gradients of AppMults using Eqs. (5) and (6) for all
possible combinations of W and X , and store them in LUTs.
Then, we implement CUDA kernels that compute the gradients
by looking up these LUTs. Note that our framework can
also accommodate other user-defined gradients of AppMults,
enabling the exploration of the effects of various gradient
approximations on the retraining process.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We implemented our AppMult-aware DNN retraining
framework in PyTorch 2.4 [22] and CUDA 12.4. The frame-
work supports arbitrary user-defined gradients for AppMults,
and in our experiments, we compared two methods: 1) the
proposed difference-based gradient approximation and 2) the
baseline STE method in previous works [8]–[13], which ap-
proximates the gradient of the AppMult using that of the
AccMult. For a fair comparison, we did not use the previous
AppMult-aware retraining frameworks in [8]–[13]. Instead,
both methods were implemented in our retraining framework.
The experiments were conducted using 4 NVIDIA GeForce
RTX 3090 GPUs, with each experiment running on a single
GPU.

We utilized Synopsys Design Compiler [23] to measure
the area, delay, and power of the AppMults using the ASAP
7nm standard cell library [24] and measured the power using
a 1GHz clock under a uniform input distribution. The ER,
NMED, MaxED error metrics of AppMults were measured by
enumerating all possible input combinations under a uniform
distribution, according to Eq. (2). To retrain the AppMult-
based DNN models, a default setting based on the other
AppMult-aware DNN retraining works [8]–[13] was applied
unless otherwise specified: batch size 64, number of epochs
30, Adam optimizer, and learning rate 0.001 in epochs 1–10,
0.0005 in epochs 11–20, and 0.00025 in epochs 21–30.

We tested our framework on the CIFAR-10 and CIFAR-
100 [25] datasets using the VGG19 [26] and ResNet [27]
DNN models. As the most computation-intensive parts of these
DNNs are the convolutional layers, we replaced all accurate
multipliers in these layers with the same type of AppMults
to reduce the hardware cost, following the approach used in
previous works [13], [16].

The tested multipliers and their errors (see Eq. (2)), areas,
delays, and powers are listed in Table I. These unsigned
multipliers have bit widths of 8, 7, and 6, belonging to

TABLE I: Characteristics of tested unsigned multipliers, including
area, delay, power, and error metrics. HWS refers to the selected half
window size for the difference-based gradient approximation based on
experiments. The term “ rmk” indicates the removal of the rightmost
k columns of partial products. The term “ syn” means the AppMult is
generated by the approximate logic synthesis tool [28]. “N/A” stands
for not applicable.

Multiplier
Area
/µm2

Delay
/ps

Power
/µW

ER
/%

NMED
/% MaxED HWS

mul8u acc 25.6 730.1 22.93 0.0 0.0 0 N/A
mul8u syn1 13.0 582.2 9.68 99.1 0.28 1937 16
mul8u syn2 12.3 577.7 9.29 99.5 0.30 2057 16
mul8u 2NDH 10.0 512.6 6.48 98.7 0.44 2709 32
mul8u 17C8 7.7 624.4 5.01 99.0 0.56 1577 16
mul8u 1DMU 15.6 837.6 11.09 66.0 0.65 4084 32
mul8u 17R6 6.9 743.3 4.60 99.0 0.67 1925 32
mul8u rm8 11.6 655.0 9.19 98.0 0.68 1793 16

mul7u acc 19.0 695.0 15.72 0.0 0.00 0 N/A
mul7u 06Q 10.6 861.9 7.90 95.4 0.24 162 4
mul7u 073 11.0 889.8 8.61 95.2 0.27 154 2
mul7u rm6 11.4 599.0 9.00 96.1 0.28 273 2
mul7u syn1 11.5 561.3 9.06 97.6 0.28 457 8
mul7u syn2 10.9 532.4 7.98 98.8 0.39 713 8
mul7u 081 10.7 673.6 7.67 97.3 0.45 314 16
mul7u 08E 8.9 612.5 6.15 97.5 0.46 317 4

mul6u acc 14.1 680.1 10.47 0.0 0.00 0 N/A
mul6u rm4 10.3 563.9 7.06 81.3 0.3 49 2

three categories: 1) Simple AppMults by removing the partial
products in the least significant parts like the one in Fig. 2
(marked with “ rmk”, donoting the removal of the rightmost
k columns of partial products); 2) AppMults from the ap-
proximate arithmetic library EvoApproxLib [29]; 3) AppMults
generated by the approximate logic synthesis tool [28] (marked
with “ syn”). Table I also reports the accurate multiplier
information for reference (marked with “ acc”).

Since different AppMult functions have different degrees of
smoothness, we selected different half window sizes (HWS, see
Section III-A) for each of them. Specifically, we tried different
HWS = 1, 2, 4, 8, 16, 32, and 64 for each AppMult, and
for each HWS, we trained a small LeNet [30] model on the
CIFAR-10 dataset for 5 epochs. Then, we chose the best HWS
that achieves the smallest training loss. The selected HWS is
listed in the last column of Table I.

B. Experiments on the CIFAR-10 Dataset

1) Comparison Using the VGG19 Model: This experiment
compares our gradient approximation method with the STE
method on the CIFAR-10 dataset using the VGG19 model. The
top part of Table II presents the accuracy after retraining with
various 7-bit and 8-bit AppMults, comparing the STE-based
gradient with our difference-based gradient approximation.
The accuracies of the quantized DNNs using the AccMults
after quantization-aware training [19], the initial accuracies
using AppMults before AppMult-aware retraining, and the
power consumption, delay, and NMED of the multipliers are
also reported. Note that the power consumption and delay are
normalized to those of the 8-bit AccMult (mul8u acc).

From the top part of Table II, we can see that our
method consistently outperforms STE for all tested 8-bit

TABLE II: Retraining results with the STE-based gradient and our
difference-based gradient on the CIFAR-10 dataset. Power con-
sumption and delay are normalized to those of the 8-bit AccMult
(mul8u acc). Bold entries denote that our method outperforms the
STE-based method.

D
N
N

Multiplier
Inital
acc.
/%

Acc./% after retrain Multiplier information

STE Ours Imp-
rove

Norm.
power

Norm.
delay

NMED
/%

V
G
G
1
9

mul8u acc Reference accuracy: 92.48% 1.00 1.00 0.00
mul8u syn1 7.39 80.05 85.65 5.60 0.42 0.80 0.28
mul8u syn2 8.19 86.21 89.85 3.64 0.41 0.79 0.30
mul8u 2NDH 9.36 91.07 91.21 0.14 0.28 0.70 0.44
mul8u 17C8 9.21 86.96 88.35 1.39 0.22 0.86 0.56
mul8u 1DMU 8.84 69.13 79.41 10.28 0.48 1.15 0.65
mul8u 17R6 9.75 84.23 86.19 1.96 0.20 1.02 0.67
mul8u rm8 10.37 57.72 73.03 15.31 0.40 0.90 0.68
mul7u acc Reference accuracy: 92.10% 0.69 0.95 0.00
mul7u 06Q 67.07 91.79 91.95 0.16 0.34 1.18 0.24
mul7u 073 83.59 91.50 91.89 0.39 0.38 1.22 0.27
mul7u rm6 8.17 76.85 82.79 5.94 0.39 0.82 0.28
mul7u syn1 8.24 83.19 90.11 6.92 0.40 0.77 0.28
mul7u syn2 10.98 73.42 76.90 3.48 0.35 0.73 0.39
mul7u 081 9.84 86.63 88.56 1.93 0.33 0.92 0.45
mul7u 08E 71.86 90.00 90.28 0.28 0.27 0.84 0.46
VGG19 mean
over 7&8-bit

AppMults
23.06 82.05 86.16 4.10

R
e
s
N
e
t
1
8

mul8u acc Reference accuracy: 93.73% 1.00 1.00 0.00
mul8u syn1 9.99 87.44 91.64 4.20 0.42 0.80 0.28
mul8u syn2 10.19 91.58 92.07 0.49 0.41 0.79 0.30
mul8u 2NDH 27.47 93.37 93.43 0.06 0.28 0.70 0.44
mul8u 17C8 12.48 91.80 92.29 0.49 0.22 0.86 0.56
mul8u 1DMU 9.94 82.07 92.10 10.03 0.48 1.15 0.65
mul8u 17R6 12.24 90.95 92.07 1.12 0.20 1.02 0.67
mul8u rm8 9.92 81.16 90.96 9.80 0.40 0.90 0.68
mul7u acc Reference accuracy: 93.61% 0.69 0.95 0.00
mul7u 06Q 91.30 93.39 93.66 0.27 0.34 1.18 0.24
mul7u 073 90.77 93.42 93.50 0.08 0.38 1.22 0.27
mul7u rm6 9.54 89.79 93.27 3.48 0.39 0.82 0.28
mul7u syn1 10.15 92.71 93.00 0.29 0.40 0.77 0.28
mul7u syn2 10.00 80.17 90.15 9.98 0.35 0.73 0.39
mul7u 081 12.62 92.60 92.80 0.20 0.33 0.92 0.45
mul7u 08E 86.81 92.14 92.62 0.48 0.27 0.84 0.46
ResNet mean
over 7&8-bit

AppMults
28.82 89.47 92.40 2.93

and 7-bit AppMults, improving the accuracy after retraining
by an average of 4.10%. Compared to the initial accuracy
before AppMult-aware retraining, our method recovers the
accuracy from 23.06% to 86.16% on average. Notably, for
mul8u 1DMU and mul8u rm8, our method improves the
accuracy by 10.28% and 15.31%, respectively, compared to
STE. Moreover, for mul7u 073, our method recovers the
accuracy from 83.59% to 91.89%, and the final accuracy is
very close to the reference accuracy of 92.10% with 7-
bit AccMult. Meanwhile, mul7u 073 (normalized power=0.38)
reduces power consumption by 45% compared to the 7-
bit AccMult (normalized power=0.69), offering an attractive
trade-off between power consumption and accuracy.

As for runtime, for example, our method takes about 1.4
hours to retrain the VGG19 model with a 7-bit AppMult using
a single NVIDIA RTX 3090 GPU, which is about 1.4 times of
the STE-based method. The runtime overhead is primarily due
to the additional computation of the difference-based gradient

during the backward propagation. However, it is acceptable
given the significant accuracy improvement.

2) Comparison With the ResNet18 Model: This experiment
compares our gradient approximation method with the STE
method on the CIFAR-10 dataset using the ResNet18 model.
The bottom part of Table II presents the accuracy after
retraining using various 7-bit and 8-bit AppMults, comparing
the STE method with ours.

From the bottom part of Table II, we observe that our
method consistently outperforms STE for all tested AppMults,
with an average accuracy improvement of 2.93%. Compared
to the accuracy before AppMult-aware retraining, our method
recovers the accuracy from 28.82% to 92.40% on average.
Notably, for mul8u 1DMU and mul7u syn2, our method
improves the accuracies by 10.03% and 9.98%, respectively,
compared to STE, and the final accuracies after retraining
are 92.10% and 90.15%, respectively. Although these final
accuracies are slightly lower than the reference accuracies,
there is a significant hardware cost reduction. Compared to
the 8-bit AccMult, mul8u 1DMU saves 52% power. Com-
pared to the 7-bit AccMult, mul7u syn2 reduces power by
49% and delay by 23%. This demonstrates a promising
trade-off between accuracy and hardware cost. Moreover, for
mul7u 06Q, our method achieves an accuracy of 93.66%,
which is even higher than the reference accuracy of 93.61% for
7-bit AccMult, while reducing the power by 51%. This shows
that in some cases, AppMults can achieve both hardware cost
reduction and accuracy improvement.

Using the data from Table II, we plot the ResNet18 accuracy
after retraining versus power consumption for 7-bit and 8-
bit AppMults in Fig. 5(a) and Fig. 5(b), respectively. In both
figures, at the same normalized power level, our method con-
sistently outperforms the STE method in accuracy. Reference
accuracies for the 7-bit and 8-bit AccMults are indicated by
the red horizontal lines. Our method achieves better accuracy-
power trade-offs, with acceptable drops in accuracy compared
to the reference accuracies, whereas the STE method exhibits
significant fluctuations, sometimes reducing the accuracy by
over 10% compared to the reference accuracies.

As for runtime, for example, our method takes about 2.4
hours to retrain the ResNet18 model with a 7-bit AppMult
using a single NVIDIA RTX 3090 GPU, which is about 2.6
times the runtime of the STE method. However, we believe
that it is acceptable given the large accuracy improvement.

C. Experiments on the CIFAR-100 Dataset

This experiment compares our gradient approximation
method with the STE method on the CIFAR-100 dataset
using the ResNet34 and ResNet50 models. To show the wide
applicability of our framework, instead of using 8-bit and 7-
bit AppMults, we test the 6-bit unsigned AppMult in Table I
(mult6u rm4), which removes the rightmost 4 columns of
partial products. Compared to the 6-bit AccMult, mul6u rm4
saves 27% area, 17% delay, and 33% power consumption.

Fig. 6 illustrates the Top-5 testing accuracy curves for
two models, ResNet34 and ResNet50, trained on the CIFAR-

0.28 0.30 0.32 0.34 0.36 0.38 0.40
Normalized Power

80

82

84

86

88

90

92

94

Ac
cu
ra
cy
 a
fte

r r
et
ra
in
in
g/
%

Ref. acc.: 93.61%

Ours
STE
mul7u_acc
Ref. acc.

(a) 7-bit AppMults. The normalized
power of mul7u acc is 0.69.

0.20 0.25 0.30 0.35 0.40 0.45
Normalized Power

80

82

84

86

88

90

92

94

Ac
cu
ra
cy
 a
fte

r r
et
ra
in
in
g/
%

Ref. acc.: 93.73%

Ours
STE
mul8u_acc
Ref. acc.

(b) 8-bit AppMults. The normalized
power of mul8u acc is 1.00.

Fig. 5: Trade-off between ResNet18 accuracy and power consumption
using 7-bit and 8-bit AppMults on the CIFAR-10 dataset. Power is
normalized to that of the 8-bit AccMult (mul8u acc).

0 5 10 15 20 25 30
Epoch

50

60

70

80

90

To
p-
5
Ac

cu
ra
cy
 (%

)

Acc.: 89.53%
Acc.: 87.90%

Ours
STE

(a) ResNet34.

0 5 10 15 20 25 30
Epoch

55
60
65
70
75
80
85
90

To
p-
5
Ac

cu
ra
cy
 (%

)

Acc.: 91.47%
Acc.: 89.06%

Ours
STE

(b) ResNet50.

Fig. 6: Top-5 testing accuracies of ResNet34 and ResNet50 models
versus epochs, using the 6-bit AppMult mul6u rm4 on the CIFAR-
100 dataset.

100 dataset over 30 epochs. Fig. 6(a) shows the accuracy
comparison for ResNet34, while Fig. 6(b) presents the results
for ResNet50. For ResNet34, our method achieves a higher
final accuracy of 89.53% compared to STE’s 87.90%. For
ResNet50, our method also outperforms STE, achieving a
final accuacy of 91.47% compared to STE’s 89.06%. Notably,
for ResNet34, our method shows better performance after 4
epochs, while for ResNet50, our method consistently outper-
forms STE for all epochs. Therefore, our method demonstrates
a faster convergence rate than STE.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a difference-based gradient approxi-
mation technique for AppMults to enhance the accuracy of
AppMult-aware retraining. Our method improves the retraining
accuracy by an average of 4.10% for the VGG model and
2.93% for the ResNet18 model, compared to the STE method.
When retraining a ResNet18 model with the 7-bit AppMult
mul7u 06Q using our method, the final DNN accuracy does
not degrade compared to the quantized model using the 7-bit
AccMult, while the power consumption is reduced by 51%.
In the future, we will extend our method to other AI models,
including large language models.

REFERENCES

[1] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green
AI. Communications of the ACM, 63(12):54–63, 2020.

[2] Jie Han and Michael Orshansky. Approximate computing: An emerging
paradigm for energy-efficient design. In European Test Symposium
(ETS), pages 1–6, 2013.

[3] Sparsh Mittal. A survey of techniques for approximate computing. ACM
Computing Surveys (CSUR), 48(4):1–33, 2016.

[4] Giorgos Armeniakos, Georgios Zervakis, Dimitrios Soudris, and Jörg
Henkel. Hardware approximate techniques for deep neural network
accelerators: A survey. ACM Computing Surveys (CSUR), 55(4):1–36,
2022.

[5] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit
quantization of neural networks for efficient inference. In International
Conference on Computer Vision Workshop (ICCVW), pages 3009–3018,
2019.

[6] Jeongwoo Park, Sunwoo Lee, and Dongsuk Jeon. A neural network
training processor with 8-bit shared exponent bias floating point and
multiple-way fused multiply-add trees. IEEE Journal of Solid-State
Circuits (JSSC), 57(3):965–977, 2021.

[7] Honglan Jiang, Francisco Javier Hernandez Santiago, Hai Mo, Leibo Liu,
and Jie Han. Approximate arithmetic circuits: A survey, characterization,
and recent applications. Proceedings of the IEEE, 108(12):2108–2135,
2020.

[8] Xin He, Liu Ke, Wenyan Lu, Guihai Yan, and Xuan Zhang. AxTrain:
Hardware-oriented neural network training for approximate inference.
In International Symposium on Low Power Electronics and Design
(ISLPED), pages 1–6, 2018.

[9] Cecilia De la Parra, Andre Guntoro, and Akash Kumar. ProxSim:
GPU-based simulation framework for cross-layer approximate DNN
optimization. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1193–1198, 2020.

[10] Dimitrios Danopoulos, Georgios Zervakis, Kostas Siozios, Dimitrios
Soudris, and Jörg Henkel. AdaPT: Fast emulation of approximate DNN
accelerators in PyTorch. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 42(6):2074–2078, 2022.

[11] Jing Gong, Hassaan Saadat, Hasindu Gamaarachchi, Haris Javaid, Xi-
aobo Sharon Hu, and Sri Parameswaran. ApproxTrain: Fast simulation
of approximate multipliers for DNN training and inference. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 42(11):3505–3518, 2023.

[12] Rodion Novkin, Florian Klemme, and Hussam Amrouch.
Approximation-and quantization-aware training for graph neural
networks. IEEE Transactions on Computers (TC), 2023.

[13] Tianyang Yu, Bi Wu, Ke Chen, Chenggang Yan, and Weiqiang Liu.
Toward efficient retraining: A large-scale approximate neural network
framework with cross-layer optimization. IEEE Transactions on Very
Large Scale Integration Systems (TVLSI), 2024.

[14] William Andrew Simon, Valérian Ray, Alexandre Levisse, Giovanni
Ansaloni, Marina Zapater, and David Atienza. Exact neural networks
from inexact multipliers via Fibonacci weight encoding. In Design
Automation Conference (DAC), pages 805–810, 2021.

[15] Paras Jain, Safeen Huda, Martin Maas, Joseph E Gonzalez, Ion Stoical,
and Azalia Mirhoseini. Learning to design accurate deep learning
accelerators with inaccurate multipliers. In Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 184–189, 2022.

[16] Xiaolu Hu, Ao Liu, Xinkuang Geng, Zizhong Wei, Kai Jiang, and
Honglan Jiang. A configurable approximate multiplier for CNNs using
partial product speculation. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1–6, 2024.

[17] Muhammad Abdullah Hanif, Faiq Khalid, and Muhammad Shafique.
CANN: Curable approximations for high-performance deep neural net-
work accelerators. In Design Automation Conference (DAC), pages 1–6,
2019.

[18] Filip Vaverka, Vojtech Mrazek, Zdenek Vasicek, and Lukas Sekanina.
TFApprox: Towards a fast emulation of DNN approximate hardware ac-
celerators on GPU. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 294–297, 2020.

[19] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.
Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2704–2713, 2018.

[20] NVIDIA Corporation. CUDA toolkit. https://developer.nvidia.com/cuda-
toolkit, 2024.

[21] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang.
Pruning and quantization for deep neural network acceleration: A survey.
Neurocomputing, 461:370–403, 2021.

[22] Adam Paszke, Sam Gross, et al. PyTorch: An imperative style, high-
performance deep learning library. In International Conference on
Neural Information Processing Systems (NeurIPS), pages 8026–8037,
2019.

[23] Synopsys, Inc. Synopsys softwares. http://www.synopsys.com, 2024.
[24] Lawrence T Clark, Vinay Vashishtha, Lucian Shifren, Aditya Gujja,

Saurabh Sinha, Brian Cline, Chandarasekaran Ramamurthy, and Greg
Yeric. ASAP7: A 7-nm FinFET predictive process design kit. Micro-
electronics Journal, 53:105–115, 2016.

[25] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images. Technical Report, University of Toronto, 2009.

[26] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778, 2016.

[28] Chang Meng, Weikang Qian, and Alan Mishchenko. ALSRAC: Ap-
proximate logic synthesis by resubstitution with approximate care set.
In Design Automation Conference (DAC), pages 1–6, 2020.

[29] Vojtech Mrazek, Radek Hrbacek, Zdenek Vasicek, and Lukas Sekanina.
EvoApprox8b: Library of approximate adders and multipliers for cir-
cuit design and benchmarking of approximation methods. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages
258–261, 2017.

[30] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

	Introduction
	Preliminaries
	Approximate Multipliers (AppMults)
	AppMult-Aware DNN Retraining

	Difference-Based Gradient Approximation of Approximate Multipliers
	Smoothing AppMult Function
	Difference-Based Gradient Computation

	AppMult-Aware Retraining Framework Using the Proposed Gradient Approximation
	Experimental Results
	Experimental Setup
	Experiments on the CIFAR-10 Dataset
	Comparison Using the VGG19 Model
	Comparison With the ResNet18 Model

	Experiments on the CIFAR-100 Dataset

	Conclusion and Future Work
	References

