
https://doi.org/10.1007/s00145-025-09563-4
J Cryptol (2026) 39:6

Research Article

Faster Homomorphic Operations and Beyond:
Expediting Homomorphic Computation via Boolean

Circuit Optimization
Mingfei Yu · Giovanni De Micheli

EPFL, Lausanne, Switzerland
mingfei.yu@epfl.ch

giovanni.demicheli@epfl.ch

Communicated by Gregor Leander and Svetla Nikova

Received 23 September 2024 / Revised 13 October 2025 / Accepted 22 October 2025

Abstract. Fully homomorphic encryption (FHE) enables secure data processing with-
out compromising data access. However, its computational cost and slower execution
compared to plaintext operations present significant challenges. The increasing inter-
est in FHE-based secure computation underscores the need to accelerate homomorphic
computations. Existing research predominantly focuses on reducing the multiplicative
depth (MD) of FHE circuits, as a lower MD enhances the execution efficiency of each
homomorphic operation. However, this often comes at the expense of increased multi-
plicative complexity (MC), leading to more homomorphic multiplications — a compu-
tationally intensive task. Currently, there is a lack of approaches that effectively balance
the trade-off between MD reduction and MC increase, potentially resulting in sub-
optimal outcomes. This paper addresses this critical gap with three main contributions:
(a) an exact synthesis paradigm for generating optimal FHE circuit implementations,
(b) a heuristic circuit optimization algorithm, named MC-aware MD minimization, that
leverages the exact synthesis paradigm to optimize FHE circuits efficiently, and (c) an
FHE circuit optimization flow that integrates MC-aware MD minimization with existing
MD reduction techniques. Experimental results demonstrate a 21.32% average reduc-
tion in homomorphic computation time and highlight significantly improved efficiency
in circuit optimization.

Keywords. Homomorphic Encryption, Boolean Circuits, Logic Synthesis, Multiplica-
tive Depth, Multiplicative Complexity.

1. Introduction

First recognized in 1978, the concept of fully homomorphic encryption (FHE) refers
to a revolutionary encryption paradigm that enables direct computation on ciphertexts
without the need for decryption [33]. The groundbreaking bootstrapping theorem by
Gentry marks the birth of the first HE scheme capable of supporting arbitrary computa-
© The Author(s) 2025

0123456789().: V,-vol

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-025-09563-4&domain=pdf

 6 Page 2 of 36 M. Yu, G. De Micheli

tions, known as leveled FHE [21]. Whereas continuous developments have significantly
improved the practicality of FHE, homomorphic computation is typically orders of mag-
nitude slower than its counterpart on plaintexts. Despite the computational challenges,
FHE offers the unique advantage of delegating data processing without compromising
data access. This characteristic positions FHE as a promising solution for securing com-
putations, with numerous potential applications in scenarios where privacy is paramount.
Examples include outsourcing medical data for diagnosis [14] and privacy-preserving
neural network inference [18]. The growing interest in FHE-based secure computa-
tion techniques underscores the need for continuous efforts to accelerate homomorphic
computations.

Modern FHE schemes broadly fall into two categories: leveled schemes, such as BGV
[4], BFV [20], and CKKS [12], and fast-bootstrapping schemes, exemplified by FHEW
[17] and TFHE [11]. Although a more detailed discussion is deferred to the following
section, we emphasize that these two families are based on fundamentally different
constructions and therefore present distinct considerations for performance optimization.
In this work, we constrain our discussion to leveled schemes, and specifically focus on the
logic-level optimization of Boolean circuits to accelerate their homomorphic evaluation
under schemes like BFV and BGV, which support exact computation over encrypted
bits.

Leveled schemes operate over large plaintext moduli and use techniques such as
modulus switching to manage noise growth. With a sufficient noise budget — i.e., a
sufficiently large ciphertext modulus composed of multiple prime factors — a circuit
can be evaluated homomorphically without requiring intermediate bootstrapping [31].
A homomorphic encryption scheme is considered functionally complete if it supports
both additions and multiplications. Homomorphic multiplication is significantly more
expensive than addition for two primary reasons: (a) it incurs substantially higher com-
putational complexity; and (b) each homomorphic multiplication results in quadratic
noise accumulation and consumes one level of the noise budget. Consequently, a circuit
with a longer chain of multiplications requires a larger noise budget (i.e., more levels)
to accommodate the accumulated noise. This implies that, in leveled FHE schemes, the
execution time of each homomorphic operation is closely related to the multiplicative
depth (MD) of the circuit implementing the target computation. The MD of a circuit
is defined as the maximum number of sequential homomorphic multiplications along
any path. Evaluating an FHE circuit with high MD either necessitates the use of very
large encryption parameters or incurs the overhead of expensive bootstrapping — both
of which significantly increase runtime. As a result, a central challenge in accelerating
homomorphic computation is to develop circuit implementations with minimal MD for
the given functionality.

Reducing the MD of Boolean circuits has attracted significant research attention
[1,8,9,28]. This interest is largely driven by the natural compatibility between the binary
plaintext space and high-level programming language instructions, which enables seam-
less compilation of conventional software programs into homomorphically encrypted
counterparts for secure execution [9]. In this context, the plaintext space is binary, and
addition and multiplication correspond to Boolean XOR and AND operations, respec-
tively. As a result, target computations can be modeled as Boolean functions, allowing
the application of logic synthesis techniques to restructure circuits for reduced MD.

Faster Homomorphic Operations and Beyond… Page 3 of 36 6

However, minimizing circuit MD commonly comes at the cost of increasing the total
number of multiplications, known as the circuit s multiplicative complexity (MC). This
is because optimization techniques that aggressively reduce MD may introduce many
parallel multiplications (e.g., trading two chained multiplications for several parallel
ones), thereby increasing the total count of homomorphic multiplications. The challenge
is that MD and MC jointly determine the overall homomorphic execution time. Existing
circuit optimization tools have largely treated the MD MC trade-off in an ad hoc way —
for example, by halting MD reduction passes once a certain MC threshold is exceeded —
rather than optimizing both criteria together. This gap motivates a more holistic approach
to FHE circuit optimization.

In this paper, we present three key contributions to address this challenge. Terming the
cost function of an FHE circuit, which depends on both the MC and MD of the circuit,
as FHE cost, we propose: (a) an exact logic synthesis framework for finding FHE-cost-
optimal circuit realizations for small Boolean functions, exploring the optimal trade-offs
between MD and MC (Section 3); (b) a scalable MC-aware MDminimization algorithm
that uses the exact synthesis results as a subroutine to optimize larger circuits FHE
cost (Section 4); and (c) an integrated FHE circuit optimization flow that combines our
MC-aware optimization with state-of-the-art MD-only reduction techniques from the
literature (specifically, we incorporate the ESOP balancing method [26]). While the
optimal formulation of FHE cost remains an open question, we adopt the cost metric
MC × MD2, following empirical observations reported in prior work [15]. Using this
configuration, our experimental results demonstrate that the proposed approach achieves
substantial speedups in the homomorphic evaluation of Boolean functions compared to
prior MD-optimized circuits — yielding an average improvement of 21.32%, along with
a four-orders-of-magnitude reduction in circuit optimization time. These results mark a
meaningful step toward narrowing the performance gap between encrypted and plaintext
computations.

2. Background

This section provides preliminaries on mainstream FHE schemes (Section 2.1) and
Boolean circuit notations (Section 2.2), a summary of existing research on homomorphic
computation acceleration via FHE circuits operation (Section 2.3.1 to Section 2.3.3), and
the motivation of developing MC-aware MD minimization technique (Section 2.3.4).

2.1. FHE Schemes: Leveled vs. Fast Bootstrapping

FHE schemes can be broadly categorized by how they manage noise growth during
homomorphic multiplications. Leveled FHE schemes — including BGV [4], BFV [20],
and CKKS [12] — allow a ciphertext to undergo a predetermined number of multipli-
cations (the multiplicative depth (MD)) without the need to refresh the embedded noise
component. This is achieved by choosing sufficiently large encryption parameters, such
as the modulus size and polynomial degree, to provide an adequate noise budget for the
required MD. In practice, supporting a circuit of MD L requires L +1 modulus “layers”
in the ciphertext [31], as each homomorphic multiplication consumes one layer. Once

 6 Page 4 of 36 M. Yu, G. De Micheli

all layers are depleted, further multiplications are only possible via bootstrapping, which
is computationally expensive and therefore avoided whenever possible. The principal
advantage of leveled schemes is that, for computations within the MD budget, boot-
strapping can be entirely bypassed, leading to significantly reduced runtime compared
to schemes that rely on frequent bootstrapping. The drawback, however, is that increas-
ing the MD necessitates larger parameters — resulting in greater ciphertext and key
sizes, and more costly polynomial arithmetic for each operation. This inherent trade-off
underscores the importance of circuit optimization in leveled FHE: by reducing MD,
one can select smaller parameters and achieve faster homomorphic operations.

Fast bootstrapping schemes, such as FHEW [17] and TFHE [11], take a different
approach by employing frequent bootstrapping to manage noise growth. These schemes
typically operate on ciphertexts encrypting small integers or individual bits and refresh
ciphertexts continuously, so that noise remains controlled regardless of circuit MD. In
TFHE, for example, every nonlinear gate (such as AND) is computed via a bootstrapping
operation that both evaluates the gate and resets the noise, allowing its output to be
immediately reused in subsequent operations. This distinguishing feature of TFHE is
its programmable bootstrapping (PBS) [11], which enables each bootstrap to act as a
lookup-table evaluation — thus supporting the computation of arbitrary functions over
the encrypted input during refresh. This confers significant flexibility at the logic level,
as complex operations can be implemented as a single bootstrapping, provided they can
be represented as a truth table. The cost per bootstrapping in such schemes, compared to
leveled schemes, is relatively modest — on the order of 5 to 20 milliseconds for a single
gate — and remains essentially constant regardless of the circuit s MD [7]. Therefore,
unlike leveled schemes, fast-bootstrapping schemes do not require parameter selection
based on MD. Instead, the main performance bottleneck is the total number of gates
(i.e., PBS operations), not the MD itself.

This fundamental distinction leads to different circuit optimization strategies for the
two scheme families. Leveled FHE circuit optimization primarily aims to reduce MD
(sometimes at the cost of increased gate count), whereas fast bootstrapping schemes
focus on minimizing the total number of bootstrapping operations and leveraging larger,
functionally rich gates to amortize bootstrapping costs [7,23,41]. Crucially, optimiza-
tion techniques developed for fast-bootstrapping schemes are not directly applicable to
leveled schemes due to these essential differences. In summary, while fast-bootstrapping
FHE prioritizes minimizing the number of bootstraps, leveled FHE circuit optimization
centers on reducing MD — even if this results in a moderate increase in multiplicative
complexity (MC), as targeted in prior works [1,8,9,28]. This paper is devoted to the
latter paradigm, addressing the unique performance bottlenecks present in leveled FHE
schemes.

2.2. Boolean circuit

A Boolean circuit can be represented as a logic network structured as a directed acyclic
graph with a node set V and a directed edge set E . Set V comprises three distinct subsets:
a set I of primary inputs (PIs) lacking fan-in, a set O of primary outputs (POs) with
singular fan-in and lacking fanout, and a set G of logic gates chosen from a library.

Faster Homomorphic Operations and Beyond… Page 5 of 36 6

Fig. 1. An XAG implementation of function #7800. The multiplicative depth of each node is displayed in
blue, with a critical path highlighted in red.

In FHE schemes configured with a binary plaintext space, multiplications and addi-
tions correspond to Boolean AND and XOR operations, respectively. As a result, an
FHE circuit is represented by a logic network featuring a gate library of 2-input AND
and 2-input XOR gates, with optional input negation, commonly referred to as an XOR-
AND graph (XAG). Due to this correspondence, we use the terms network and circuit
interchangeably.

An XAG implementing a 4-variable function, whose truth table is #78001, is depicted
in Fig. 1, where ‘∧’ and ‘⊕’ denote AND gate and XOR gate, respectively.2 It consists
of PIs I = {x1, x2, x3, x4}, POs O = { f }, gates G = {x5, x6, x7}, and a set of directed
edges E connecting the nodes.
Cut is a concept commonly employed to identify a sub-network or circuit. A cut is

characterized by its root (a node) and leaves (a collection of nodes). A valid set of leaves
must satisfy two properties: (1) There is at least one leaf on any path from a PI to the
root; (2) All leaves are on at least one such path. A cut is deemed k-feasible if its number
of leaves does not exceed k, referred to as a k-cut. For example, in Fig. 1, there are two
3-cuts rooted at x7 with leaves {x3, x4, x5} and {x4, x6}, respectively. The process of
finding all k-cuts in the target network is known as cut enumeration [30].

An XAG with |G| gates can be alternatively modeled as a sequence of |G| steps,
where each step can be represented as

xi = x j1 ◦i x j2 , where ◦i ∈ {∧,⊕},

for |I | < i ≤ |I | + |G| and 1 ≤ j1 < j2 < i . If an XAG has a single PO, i.e., |O| = 1,
the function is computed by the last step x|I |+|G|. If a node is a PI, its multiplicative
depth (MD) is defined to be 0; Otherwise, the MD of step xi , denoted as σi , is recursively
defined as

σi =
{

max{σ j1, σ j2} if ◦i = ⊕
max{σ j1, σ j2} + 1 if ◦i = ∧ (1)

A PO node’s MD matches that of its fan-in. The MD of an XAG, denoted as d, is defined
as the maximal MD of its steps (or gates) [8], i.e., d = max{σi | |I | < i ≤ |I | + |G|}.

2In this paper, truth tables are represented in hexadecimal as a bit-string, and the most significant bit is on
the left-hand side.

 6 Page 6 of 36 M. Yu, G. De Micheli

A path, from a PI to a PO, that determines the MD of an XAG is called the critical
path, such as the one marked in Fig. 1. The multiplicative complexity (MC) of an XAG,
denoted as c, is defined as the number of AND gates within it [6], i.e., c = |{i | ◦i =
∧, |I | < i ≤ |I | + |G|}|.

2.3. Circuit Optimization in Leveled FHE Schemes

To enable computation on encrypted data, the target function must first be represented
as a Boolean or arithmetic circuit compatible with the underlying FHE scheme. In this
subsection, we survey the range of research efforts aimed at improving the efficiency
of leveled FHE schemes through circuit optimization. We pay particular attention to
advances in Boolean circuit optimization, as this is the primary focus of the present
work, while also highlighting relevant developments in arithmetic circuit optimization.

2.3.1. MD Reduction

In the early stage of Boolean FHE circuit optimization, researchers leveraged circuit
depth optimization algorithms within the open-source hardware synthesis tool, ABC [5],
with the hope that reducing the depth would lead to a decrease in MD [9]. The movement
toward customizing optimization algorithms for MD reduction gained momentum with
Carpov et al.’s seminal work [8]. This work introduced algebraic rules for structurally
transforming circuits. For example, applying the associativity of the AND operation, (a∧
b)∧c = a∧ (b∧c), to gate a on a critical path could potentially reduce MD by one unit.
The state-of-the-art homomorphic circuit optimization tool, LOBSTER [28], employs
two key steps for MD reduction: (1) offline rule learning, where a set of MD reduction
rules is extracted from a training set of circuits, and (2) online term rewriting, where
the learned rules are maximally applied to the target circuit to minimize its MD. While
LOBSTER surpasses previous techniques as it inherently leverages Boolean properties
during the learning stage, it does have the drawback of requiring a prohibitively long
time for learning and inefficient pattern matching for maximally applying the learned
rules.

Although not widely recognized in the cryptographic literature, ESOP balancing [26]
stands out as the most performant MD reduction technique. It was initially proposed
for T-depth minimization, a key aspect of fault-tolerant quantum computing. Leveraging
exclusive sum-of-products (ESOPs)’ potential as a low-MD XAG, a circuit’s MD can be
reduced by balancing the AND trees within the ESOP representation of each sub-circuit
(i.e., each cut). Specifically, the algorithm translates each product term (called cube) of
the ESOP representation into a balanced tree of 2-input AND gates, with the outputs
of these AND-trees combined using 2-input XOR gates that do not contribute to the
overall MD of the resulting XAG. Note that ESOP balancing leverages Boolean-specific
properties and is therefore applicable only to Boolean circuits.

2.3.2. Arithmetic Circuit vs. Boolean Circuit

An orthogonal line of research in FHE circuit optimization focuses on higher-level,
datapath-oriented optimizations, rather than bit-level logic. Many FHE applications ex-
ploit the fact that most leveled schemes (such as BGV and BFV) support arithmetic over

Faster Homomorphic Operations and Beyond… Page 7 of 36 6

large plaintext moduli, or — when using CKKS — even approximate arithmetic over
real numbers. By leveraging this feature, it is possible to perform more computation per
homomorphic operation. For example, rather than implementing 32-bit integer addition
as 32 binary adders, one can instead perform a single ciphertext addition, provided the
plaintext modulus is sufficiently large to avoid overflow. Recent studies demonstrate
that significant speedups can be achieved by selecting suitable high-level algorithms or
employing arithmetic circuits that are more efficient in the homomorphic setting [22,39].

Importantly, these high-level approaches are not in conflict with Boolean (bit-level)
circuit optimizations, which are the focus of this work. On the contrary, they are com-
plementary. A typical workflow may first apply high-level optimizations, such as using
native integer operations, to reduce the complexity or depth of a computation. Subse-
quently, low-level Boolean circuit optimizations can be applied to those components
that must still be evaluated at the bit level.

This paper is primarily concerned with the latter: logic-level optimization of Boolean
circuits for leveled FHE. This focus is orthogonal to the algorithmic or word-level op-
timizations implemented in advanced FHE circuit synthesizers, commonly referred to
as FHE compilers. In principle, an FHE compiler could integrate our Boolean circuit
optimization techniques as a backend pass, following high-level transformations. By
addressing optimization at the gate level, our work enhances the final stage of FHE
program optimization and can be effectively combined with more abstract, upstream
optimizations.

In summary, accelerating homomorphic computation is a multifaceted challenge that
spans scheme selection, high-level algorithmic design, and low-level gate optimization.
The techniques presented in this paper represent an advance in the low-level (logic
synthesis) domain and are designed to dovetail with improvements in other layers of the
FHE toolchain. Furthermore, the discussion section will explore how our methodology
for Boolean FHE circuit synthesis could be adapted to yield improved arithmetic circuit
designs.

2.3.3. Automatic Bootstrapping Management

In certain application scenarios, such as private neural network inference, where the
MD of the corresponding FHE circuits tend to be large, applying the bootstrapping op-
eration to refresh the noise level of ciphertexts can lead to more efficient homomorphic
computation [13]. The challenge of determining the optimal moment to apply bootstrap-
ping is known as the automatic bootstrapping management problem. Although coupling
automatic bootstrapping management with circuit MD optimization could theoretically
yield better solutions, existing research has typically addressed automatic bootstrapping
under the assumption of a predefined MD upper bound, effectively decoupling the two
optimization problems due to their complexity [29,32]. Similarly, this work focuses ex-
clusively on enhancing FHE circuit design, with bootstrapping operations falling beyond
our scope.

2.3.4. Significance of MC-Aware MD Miminization

Achieving a lower MD at the expense of increased MC leads to a greater number of homo-
morphic multiplications, thereby affecting the overall computation time. It is therefore

 6 Page 8 of 36 M. Yu, G. De Micheli

essential that MD reduction is performed with explicit consideration of MC to achieve
effective FHE circuit optimization. This necessity highlights two key challenges: (1) the
development of tailored circuit synthesis and optimization techniques capable of jointly
optimizing both metrics, and (2) the formulation of a plausible cost metric — referred
to as the FHE cost — that meaningfully captures the characteristics of the most efficient
circuit implementation and can guide the synthesis process. This work is primarily dedi-
cated to addressing the first challenge, namely, the design of an optimization framework
that simultaneously considers both MD and MC, rather than treating them independently
as in most existing algorithms.

The second challenge, the determination of the optimal form of the FHE cost metric,
remains an open problem in the literature. While it is clear that the cost should pri-
marily reflect the computational overhead of homomorphic multiplications, the precise
quantitative impact of MD on overall performance has yet to be conclusively estab-
lished. Empirical studies suggest that the best cost model may vary with the scheme,
parameter set, and implementation [15]. For example, in [15], a power-law regression
model was fitted to relate the multiplicative depth d of a circuit to the corresponding
ciphertext size l (in kilobytes) in the BFV scheme, yielding l = 1.2215 · d2.0179. The
asymptotic runtime complexity of homomorphic multiplication is also recognized as be-
ing comparable to that of arbitrary-precision integer multiplication, with bit complexity
O(n · log n · log log n) [1].

Given these observations and for the sake of practical evaluation, we adopt MC×MD2

as the working form of the FHE cost in this paper. It is important to note, however, that
our optimization framework is not tied to any fixed form of the FHE cost metric. Rather, it
is designed with a flexible interface that allows users to specify an arbitrary cost function
κ(MC(G), MD(G)) for a Boolean FHE circuit G (represented as an XOR-AND Graph
(XAG)). This flexibility enables practitioners to tailor the optimization process to their
preferred or empirically validated cost models, and supports future research aimed at
identifying the most effective FHE cost formulations for different schemes, parameter
regimes, or application contexts. Thus, our contribution provides not only an effective
optimization method for jointly reducing MC and MD, but also a platform for further
exploration of cost modeling in FHE circuit synthesis.

3. FHE-Cost-Optimum Synthesis for Boolean Functions

In this section, we focus on addressing the following problem: “Given a Boolean function
with a limited number of inputs and a specified FHE cost metric that depends on both MC
and MD, how can we exactly synthesize its FHE-cost-optimal circuit implementation?”
This requires an exact synthesis formulation that supports specifying the target MC and
MD of the XAG to be synthesized. Our approach leverages the concepts of the AND
fence and the abstract XAG.

3.1. Overview of the Methodology

When synthesizing XAGs, our formulation is built upon the concepts of the AND fence
and abstract XAG, associating each formulation with a specific use of AND gates in

Faster Homomorphic Operations and Beyond… Page 9 of 36 6

the target logic network. This subsection introduces how these concepts are adapted to
enable our FHE-cost-optimal exact synthesis formulation.

3.1.1. AND Fence

An XAG s AND fence refers to the extracted information describing the use of AND
gates in the logic network [42]. Based on our interest in the MC and MD of each XAG,
we define the AND fence, denoted as F , as a set representing the number of AND gates
at each level of MD, symbolically:

F = (c1, c2, · · · , cd),

where d is the MD of the XAG and each ci within F is an integer, denoting the number
of ANDs within the XAG whose MD is i . For example, the AND fence of the XAG in
Fig. 1 is (1, 1). Based on an XAG’s AND fence, its MC c can be calculated as:

c =
d∑

i=1

ci . (2)

For clarity, we attribute the MC and MD to an AND fence F , defining them as the MC
and MD of the XAG associated with F . In symbolic terms, this can be expressed as
MD(F)=d and MC(F)=c. As illustrated, the information provided by an XAG’s AND
fence is adequate for deducing both its MC and MD, and therefore, its FHE cost, without
requiring additional information, such as node connections.

3.1.2. Abstract XAG

Abstract XAG is a general representation of XAG, in the sense that it removes infor-
mation regarding the connections among XOR gates in an XAG. This is realized by
using XOR cloud, an XOR gate whose fan-in size is flexible, allowing for any non-zero
number of inputs [34], instead of being constrained to 2-input, as a network component.
An XOR gate with a single input functions as a buffer.

In the original definition, an abstract XAG features that:

(a) Each fan-in of an AND gate is an XOR cloud;
(b) Each fan-in of an XOR cloud is either a PI or an AND gate in a lower logic level;
(c) Each PO is an XOR cloud.

In an abstract XAG, each step consists of a 2-input AND gate and its two fan-in XOR
clouds. Thus, the number of steps in an abstract XAG numerically equals the number of
AND gates, which is the MC c of the network. Symbolically, in an abstract XAG that
implements an n-variable Boolean function f , each step xi can be represented as

xi = (
⊕

x j∈Li,1

x j) ∧ (
⊕

x j∈Li,2

x j), n < i ≤ n + c, 1 ≤ j < i, (3)

where lists Li,1 and Li,2 indicate respectively the inputs of the two fan-in XOR clouds
of the AND gate in the i-th step. The PO XOR cloud realizes the function f as a linear

 6 Page 10 of 36 M. Yu, G. De Micheli

Fig. 2. Deterministically deriving the abstract XAG counterpart for an XAG in two steps: (a) Reproduction
of Fig. 1; (b) First step: Determining the topology of the abstract XAG based on the XAG’s AND fence; (c)
Second step: Configuring the fan-ins of each XOR clouds within the abstract XAG according to the node
connection in the XAG.

function over a set of PIs and steps: denoting L as the inputs of the PO XOR cloud,

f =
⊕
xi∈L

xi , 1 ≤ i ≤ n + c. (4)

Building upon the original definition, which is inherently aware of the MC of the cir-
cuit, we enhance the awareness of MD in each step by introducing additional constraints
on the feasible fan-ins of each XOR cloud within a step xi . This is achieved through
overwriting the aforementioned feature (b) with the following two feature descriptions:

i Any fan-in of an XOR cloud is either a PI or a step at a level of MD lower than the
current step, i.e., ∀x j ∈ Li,1 ∪ Li,2 : σ j < σi ;

ii Among the fan-ins of the two XOR clouds in the current step, at least one should
be a step in the preceding level of MD, i.e., ∃x j ∈ Li,1 ∪ Li,2 : σ j = σi − 1.

Through the redefinition, a direct mapping is established between an AND fence F
and the topology of an abstract XAG, thereby extending the definition of AND fence
from XAGs to abstract XAGs. Given an XAG, whose AND fence is F , its functionally
equivalent abstract XAG, whose AND fence is also F , can be identified by configuring
the fan-ins of the XOR clouds within the topology, as illustrated in the following example.

Example 1. Fig. 2 provides an example illustrating the process of deriving the abstract
XAG counterpart for an XAG, with the fan-ins of each XOR cloud explicitly specified
beneath it in blue. Given the AND fence of the XAG in Fig. 2a, denoted as F = (1, 1),
the MD of steps x5 and x6 are determined to be σ5 = 1 and σ6 = 2, respectively. This
indicates that the topology of the abstract XAG resembles the depiction in Fig. 2b. By
configuring the fan-ins of each XOR cloud correspondingly, an abstract XAG function-
ally equivalent to the XAG is derived in Fig. 2c.

Faster Homomorphic Operations and Beyond… Page 11 of 36 6

While the conversion of an XAG to an abstract XAG, as depicted in Fig. 2, is deter-
ministic, the reverse process is not. A straightforward approach to converting an abstract
XAG into an XAG involves decomposing XOR clouds into 2-input XOR gates, though
this may result in using more XOR gates than the minimum required in the resulting
XAG. However, since our FHE cost metric is determined by the MC and MD of an XAG
— both of which are preserved during decomposition — if an abstract XAG implemen-
tation is FHE-cost-optimum, the XAG obtained through XOR cloud decomposition will
also be FHE-cost-optimum. Therefore, the FHE-cost-optimum XAG implementation
of a Boolean function can be generated by first finding its FHE-cost-optimum abstract
XAG implementation, which can be efficiently solved by formulating it as a Boolean
satisfiability (SAT) problem.

It is important to note that, given an identical AND fence, the abstract XAG counterpart
of an XAG is not necessarily unique. In other words, for a given XAG, there may
exist multiple configurations of fan-ins within the XOR clouds in the same abstract
XAG topology that allow the resulting abstract XAG to implement the same Boolean
function as the XAG. These various abstract XAGs will have the same FHE cost, as they
share an identical AND fence. This observation highlights the equivalence between the
following two tasks: Given a Boolean function f and an AND fence F , (1) determining
whether there exists an XAG associated with F that implements f , and (2) ascertaining
whether there exists a configuration of fan-ins of the XOR clouds within an abstract
XAG topology adhering to F , such that the resulting abstract XAG implements f . A
detailed introduction to our SAT formulation for the latter task will be provided later.

3.1.3. Sketch of Methodology

Building upon our redefined concepts of AND fence and abstract XAG, we derive the
following insights:

(1) An XAG’s FHE cost can be derived from its AND fence.
(2) Leveraging SAT solving, we can efficiently determine whether there exists an

abstract XAG implementation for a target function while satisfying a specified
AND fence.

(3) An abstract XAG can always be converted into an XAG by decomposing XOR
clouds, and this process preserves FHE cost.

These observations collectively shape our methodology for synthesizing the FHE-
cost-optimum XAG implementation for Boolean functions. By enumerating AND fences
in an FHE-cost-ascending manner (leveraging (1)), with each enumeration treated as a
SAT problem (drawing on (2)), the FHE-cost-optimum abstract XAG implementation
can be identified, which, in turn, translates to the FHE-cost-optimum XAG implemen-
tation, indicated by (3).

3.2. SAT Encoding

We introduce the requisite variables and clauses, and subsequently encode the previously
posited decision problem into a SAT problem.

 6 Page 12 of 36 M. Yu, G. De Micheli

3.2.1. Variables

Our encoding is based on two types of binary variables: (1) selection variables, which
encode the fan-in configurations of XOR clouds within an abstract XAG, and (2) function
variables, which encode the function computed at each step.

Depending on whether an XOR cloud is a fan-in in a step or is the PO, selection
variables can be further classified, with each denoted as:

i) si jk , where n < i ≤ n + c, 1 ≤ j < i , and k ∈ {1, 2}, whose being true indicates
that “x j (a PI when j ≤ n, otherwise a step) connects to the k-th fan-in XOR cloud
within step xi ,” i.e., x j ∈ Li,k .

Ii) s j , for 1 ≤ j ≤ n+ c, whose being true signifies that “x j connects to the PO XOR
cloud,” i.e., x j ∈ L .

We denote each function variable as f jl , for 1 ≤ j ≤ n + c and 0 ≤ l ≤ 2n .
With (bn, · · · , b1)2 being the binary representation of l, variable f jl ’s evaluating to true
indicates that “PI x j is assigned to b j” for j ≤ n, or “step x j produces true given the PI
assignment: x1 = b1,· · · ,xn = bn” for j > n.

3.2.2. Clauses

Our encoding includes five types of clauses.
For each step xi , i.e., n < i ≤ n + c, Clause 1 ensures the correctness of the Boolean

operations involved in this step:

fil ↔
∧

k∈{1,2}

i−1⊕
j=1

(si jk ∧ f jl).

For each PI xi , where 1 ≤ i ≤ n, fil = bi , Clause 2 ascertains that the resulting
network implements the target function f :

f (b1, · · · , bn) =
n+c⊕
j=1

(s j ∧ f jl).

In Clause 2, the two sides are connected by ‘=’ instead of ‘↔’. This choice is deliberate,
as the left-hand side signifies the fixed output of function f under the input assignment:
x1 = b1,· · · ,xn = bn , which is a constant rather than a variable.
Clause 3 guarantees that the fan-in size of each XOR cloud, whether within a step or

serving as the PO, must be at least one:

∨
j

si jk, n < i ≤ n + c, 1 ≤ j < i, k ∈ {1, 2}

and ∨
j

s j , 1 ≤ j ≤ n + c.

Faster Homomorphic Operations and Beyond… Page 13 of 36 6

Clause 4 implements feature (b)-i, introduced in Section 3.1.2, as:

∧
j,k

si jk, n < i ≤ n + c, min{ j ′ | σ j ′ = σi } ≤ j < i, k ∈ {1, 2}.

Clause 5 incorporates feature (b)-ii as:

∨
j,k

si jk, n < i ≤ n + c, min{ j ′ | σ j ′ = (σi − 1)} ≤ j

≤ max{ j ′ | σ j ′ = (σi − 1)}, k ∈ {1, 2}.

Clauses 4 and 5 ensure the abstract XAG topology aligns with AND fence F .
The clauses, if not already in conjunctive normal form (CNF), undergo additional

conversion into CNF formulas using the Tseitin encoding [38] before being resorted to
SAT solving. Using a SAT solver, we can determine whether there exists an abstract
XAG with AND fence F that implements Boolean function f by solving the encoded
SAT instance.

3.3. Identification of AND Fence Candidates

In this sub-section, we detail our strategy for identifying which AND fence candidates
shall be investigated when synthesizing the FHE-cost-optimum circuit implementation
for a given Boolean function. This pursuit aligns with our goal sketched in Section 3.1.3:
To ensure the optimality of the synthesized circuit, all potentially viable AND fences
must be considered as candidates. We ensure that all such AND fence candidates are
included by determining the ranges within which the MC and MD of the FHE-cost-
optimum circuit may fall.

The goal of this section is to synthesize the optimum circuits for all up to n-variable
Boolean functions. However, the number of functions grows double-exponentially as the
number of variables increases. For instance, with n = 5, there are 232 distinct functions,
making it impractical to target each one individually. To overcome this challenge To ad-
dress this, we apply affine function classification [19], aBoolean classification technique,
to effectively reduce the problem s complexity. A detailed introduction to affine function
classification is given in Appendix A.2. Given the invariance of affine-equivalent opera-
tions concerning MC, the MC-minimum XAG implementation of a Boolean function f
can be derived from the MC-minimum XAG that represents its affine equivalence class
[37]. All 5-variable Boolean functions can be categorized into 48 affine equivalence
classes [36], with the MC-minimum XAG implementation for each representative func-
tion already identified in prior research [34]. We further note that the MD of an XAG
obtained in this way also remains consistent with its representative XAG, formalized as

Theorem 1. Affine-equivalent operations are MD-preserving if the input variables
share an identical MD.

Proof. The proof of this theorem is provided in Appendix A.3. �

 6 Page 14 of 36 M. Yu, G. De Micheli

Algorithm 1: Synthesizing the FHE-cost-optimum XAG implementations for
Boolean functions
Input: Boolean function f ; MC cr and MD dr of the MC-minimum XAG for f .
Output: FHE-cost-minimum XAG implementation for f , N .

1 d ← dr
2 known-minimum FHE cost κ ← cr · d2

r
3 while d > 1 do
4 d ← d − 1

5 cmax ←
⌊

κ

d2

⌋
6 keep_searching ← f alse
7 for c ← cr to cmax do
8 foreach F ∈ F(c, d) do
9 SAT instance ζ ← SAT_encoding(f,F)

10 abstract XAG N ′ ← SAT_solving(ζ)
11 if N ′
= NULL then
12 κ ← c · d2

13 keep_searching ← true
14 break
15 if keep_searching then break
16 if not keep_searching then
17 XAG N ← decompose_XOR_clouds(N ′)
18 return N

Therefore, for any 5-variable Boolean function f , there always exists an MC-minimum
implementation, the MC and MD of which is known, denoted as cr and dr . Thus, the
FHE-cost-optimum implementation of f — unless identical to the MC-minimum one
— has MC and MD values c and d that satisfy the conditions

c ≥ cr , d < dr , and c · d2 < cr · d2
r .

Given target MC c and MD d, we denote the complete set of AND fence candidates
that satisfy Eq. 2 asF(c, d). Finding all AND fencesF ∈ F(c, d) is essentially a positive
integer partition problem, a well-studied topic in number theory and combinatorics with
detailed solutions in the literature [27]. By considering all AND fences meeting the
specified conditions in the synthesis procedure, we ensure the minimum FHE costs in
the synthesized implementations.

3.4. Exact Synthesis Paradigm for Boolean Functions

Alg. 1 details our paradigm for synthesizing the FHE-cost-optimum XAG implemen-
tations for Boolean functions. Commencing with the known MC-minimum implemen-
tation of the target Boolean function, we systematically investigate the existence of an
abstract XAG whose MD d is slightly smaller than the known solution, i.e., d = dr − 1.
AND fence candidates with the same MD d are ordered in an MC-ascending manner, so
that lower-FHE-cost candidates are considered first. If an abstract XAG is successfully
synthesized using an AND fence with the currently targeted MD, the exploration extends
to AND fences with a rather smaller MD. Termination of the exploration occurs if none

Faster Homomorphic Operations and Beyond… Page 15 of 36 6

of the AND fence candidates with the MD of d leads to a valid implementation. In such
cases, it indicates either (a) If d < dr − 1, the previously synthesized abstract XAG,
with an MD of d + 1, is deemed FHE-cost-optimum; or (b) The known MC-minimum
implementation stands as FHE-cost-optimum.

Intuitively, the FHE cost should be the determinant guiding the investigation of AND
fences, rather than MD, to prioritize the exploration of lower-FHE-cost candidates, as
sketched in Section 3.1.3. However, Algo. 1 is structured to conduct the exploration based
on MD. This strategy is devised based on the observation that aggressively initiating the
exploration from the FHE-cost-minimum AND fence candidate tends to introduce a
considerable number of unsatisfiable SAT instances into the paradigm, leading to an
inefficient synthesis procedure.

The following observation provides evidence that the strategy does not compromise
the optimality of the synthesized XAG.

Theorem 2. If no abstract XAG exists for a Boolean function f with any fence F1 of
MD d, then no abstract XAG exists for f with any fence F2 of MD d − 1.

Proof. The proof of this theorem is provided in Appendix B. �

4. Exact Synthesis for Sub-circuits

While the exact synthesis approach proposed in Section 3 ensures the optimality of
the circuits synthesized for Boolean functions, scalability concerns limit its application
to small-scale functions with a restricted number of variables. To deliver high-quality
solutions for practical functions, we shift our focus from finding the optimum circuit
for a function to determining the optimum implementation for a cut, i.e., sub-circuit.
Leveraging exact synthesis to replace each sub-circuit within a baseline circuit with its
optimum implementation, the quality of the entire circuit is improved ultimately.

4.1. Impacts of Non-zero Input MD

To ultimately minimize the FHE cost of the entire circuit, our strategy is to optimize
the implementation of each cut rooted on the critical path. Specifically, for each such
cut, we regard the circuit that can maximally minimize the MD of its root node as the
optimal implementation for this cut. This is because, with a local view, it is difficult to
estimate the contribution of a cut’s MC to the entire circuit’s MC, because of potential
logic sharing. However, this is not against our proposal that FHE circuit optimization
shall be MC-aware. To that end, implementations that require a significantly increased
MC are excluded from our exploration by considering only the AND fence candidates
collected in Section 3.3.

However, when considering the local function of a cut — defined as the Boolean func-
tion realized by the root node with respect to the leaf nodes — using the exact synthesis
paradigm proposed in Section 3.4 to generate the circuit that optimally implements this
local function does not guarantee a locally optimal implementation for the cut, in terms
of minimizing the MD of the root node. This is because the leaves of the cut likely have

 6 Page 16 of 36 M. Yu, G. De Micheli

Fig. 3. Two XAG implementations for function #7800, under input MD L = (1, 0, 0, 0), with each node’s
MD remarked in blue: (a) XAG N1; (b) XAG N2.

non-zero MD. When synthesizing the optimal implementation for a cut, the leaves of
the cut are likely logic gates (i.e., internal nodes) of a logic network that implements the
entire computation, rather than PIs. Therefore, the problem addressed in this section,
“How to synthesize the optimal3implementation for a cut,” is a generalization of the
problem tackled in Section 3, “How to exactly synthesize the optimum implementation
for a Boolean function.” The problem in Section 3 can be regarded as a special case of
the current one, with the constraint that the MD of the leaves is always zero.

Regarding an n-cut-highlighted sub-circuit, we refer to the MD of the leaves as the
inputMD of the sub-circuit, denoted as an n-element setL, whose i-th element represents
the MD of the i-th leaf of the cut.L is defined as balanced if all its elements are identical;
Otherwise, it is imbalanced.

The optimal implementation of a cut depends on its input MD. Even when targeting
the same local function, the optimal circuit implementation of a cut varies based on the
input MD. We illustrate this observation in the following example.

Example 2. The two XAGs depicted in Fig. 3, denoted as N1 and N2, both realize
a 4-cut C, characterized by the local function f represented in truth table #7800. The
AND fences associated with N1 and N2 are designated as F1 = (1, 1) and F2 = (2, 1),
respectively. Notably, it is established that N1 exhibits an MC of 2 and an MD of 2,
whereas N2 is characterized by an MC of 3 and an MD of 2. N1 stands as the more FHE-
cost-efficient implementation of Boolean function f , given its lower MC, therefore,
lower FHE cost. However, a nuanced consideration arises when examining the input
MD of this cut, denoted as L = (1, 0, 0, 0). From Fig. 3, it is evident that the MD of the
roots (x7 in Fig. 3a and x8 in Fig. 3b) are 3 and 2, respectively. This observation points
out that, in the context of synthesizing sub-circuits, N2 has the potential to serve as a
better implementation than N1 for cut C.

3We refer to the implementation synthesized for each cut as optimal rather than optimum because our
approach excludes choices that could reduce the MD of the root node by allowing a significant local increase
in MC. However, these excluded choices might occasionally result in lower-FHE-cost circuit designs, as a
locally increased MC does not necessarily correspond to a globally increased MC due to potential logic sharing
among different cuts.

Faster Homomorphic Operations and Beyond… Page 17 of 36 6

This observation necessitates incorporating the input MD of cuts into the SAT en-
coding to achieve the optimal implementation of each cut. Our investigation begins by
establishing a symbolic analysis to examine the impact of a cut’s input MD on the diver-
gence between “the optimum implementation of a Boolean function f ” and “an optimal
implementation of a cut C, whose local function is f .”

To provide a local perspective, we define the local MD of a node within an XAG that
implements cut C as the XAG’s MD d minus the maximum number of AND nodes on
any path from this node to the root node, denoted as δ. The local MD of the root node of
cut C, denoted as δroot, numerically equals d, the MD of the XAG. To further enhance
the intuitiveness of our analysis, we leverage abstract XAG as the logic representation.
Since the conversion from an XAG N to its abstract counterpart N ′ is deterministic, as
depicted in Fig. 2, generality is ensured in our analysis.

Let cut C has n leaves, x1 to xn , and an input MD of L = (σ1, · · · , σn). An c-step
abstract XAG, whose topology is characterized by an AND fence F = (c1, · · · , cd),
implements cut C. The relationship between F and c adheres to Eq. 2.

Denoting the difference between the i-th leaf node xi ’s local MD δi and the root node’s
local MD δroot as �i , we have:

σroot = max{σi + �i | 1 ≤ i ≤ n}. (5)

According to our definition of local MD, �i represents the maximum number of AND
nodes on any path from leaf node xi to the root node, which corresponds to the maximum
number of steps on any path from leaf node xi to the root node when considering the
abstract XAG as the network representation. The value of �i must satisfy 0 ≤ �i ≤ d.
The lower bound is reached when a leaf xi exclusively serves as a fan-in of the PO
XOR cloud, not contributing to any other XOR clouds within the abstract XAG N ′;
The upper bound is achieved if a leaf xi contributes to a step whose local MD is one.
While the definition of abstract XAGs guarantees the upper bound, the lower bound is
not always achievable. Consider Eq. 5, when the input MD L is balanced, i.e., when
σ1 = · · · = σn = a, there is a strong correlation between σroot and δroot, which can be
symbolically summarized as below:

σroot = a + d = a + δroot

= a + MD(N ′) = a + MD(F).
(6)

Examining Eq.6 reveals that when L is balanced, σroot is collectively influenced by L
and the AND fence F , obviating the need to identify the critical path.

Conversely, in cases of imbalanced input MD, a meticulous examination of each path
becomes essential to identify the critical path determining σroot, according to Eq. 5. This
necessitates a detailed SAT encoding, extending to the one proposed in Section 3.2.

4.2. Integrating Scheduling into SAT Encoding

To address the challenges posed by imbalanced input MD and ensure the synthesis of
optimal implementations under these intricacies, we introduce an extended SAT encod-
ing. In this extended encoding, each SAT instance corresponds not only to a specific

 6 Page 18 of 36 M. Yu, G. De Micheli

AND fence but also to a particular value assignment for �i for 1 ≤ i ≤ n, for the target
n-cut. Following this setup, every SAT instance is linked to a distinct σroot, allowing us
to leverage the core concept of Algo. 1 — The iterative solution of a set of SAT instances
ensures that the first satisfiable instance corresponds to the optimal implementation of
the target cut.

Based on the definition of local MD, for a leaf xi , the value assignment “�i = a,
where 0 ≤ a ≤ d, ” is equivalent to constraining that “the lowest level of local MD at
which xi contributes to, is d−a,” where d is the MD of the target AND fence. In simpler
terms, determining the value of �i essentially involves scheduling when leaf xi becomes
available to serve as a fan-in for a step at that particular level of local MD. Therefore, a
specific value assignment to �i for 1 ≤ i ≤ n can be viewed as a scheduling, denoted
as

S = (�1,�2, · · · ,�n).

A scheduling solution can be incorporated into the SAT encoding as an additional
clause type concerning the selection variables. By definition, a leaf x j cannot serve as a
fan-in for any step with a local MD lower than d−� j . Therefore, let xi ′ represent the last
step with a local MD lower than d − �i , i.e., δi ′ = (d − �i − 1) and δi ′+1 = (d − �i).
Then, the scheduling on leaf x j is ensured by the following constraint:

∧
i,k

si jk, 1 ≤ i ≤ i ′, k ∈ {1, 2}.

4.3. Strategic Selection of Scheduling Solutions

With the proposed encoding accommodating a scheduling solution atop a given AND
fence, the question arises: “Which scheduling solutions warrant investigation?”

The naïve approach to finding the σroot-minimal implementation for an n-cut C under
a given AND fence F involves enumerating all (d + 1)n scheduling solutions. How-
ever, this exhaustive exploration is inefficient. To address the inefficiency, we propose a
strategic selection of promising scheduling solutions, consisting of two key components:
(1) Identifying the initial scheduling solution that represents the theoretical minimum
σroot under the AND fence F . (2) Identifying the subsequent scheduling solution for
exploration, when no feasible implementation exists under the currently investigated
scheduling solution.

Without loss of generality, throughout this section, we assume the input MD L of cut
C satisfies σ1 ≤ · · · ≤ σn for clarity.

4.3.1. Identification of the Initial Scheduling Solution

Intuitively, the initial scheduling solution instructs each leaf node to contribute to a step
as late as possible, to minimize the MD of the root node. However, we observe that this
decision-making process must consider the following rule: for each level of local MD,
there should be a sufficient number of fan-in candidates — either leaves or steps from
lower levels of local MD — for the steps at the current level to select from.

Faster Homomorphic Operations and Beyond… Page 19 of 36 6

Fig. 4. A visualization of the SAT instance corresponding to the synthesis problem described in Example 3.

Example 3. Consider a scenario where we explore the optimal implementation of a
4-cut C, with local function f and input level L = (0, 0, 0, 1), using an AND fence
F1 = (2). The topology described by F1 outlines the abstract XAG to be synthesized,
featuring two steps, x5 and x6, both with local MD σ5 = σ6 = 1. Assume the initial
scheduling solution is set as S1 = (1, 1, 0, 0) — meaning steps x5 and x6 are restricted
to selecting fan-ins only from leaves x1 and x2. A visualization of the corresponding
SAT instance is given in Fig. 4. This leads to two possible consequences: (1) Both
steps x5 and x6 implement the same function x1 ∧ x2. (2) One of the two steps trivially
implements a linear function over {x1, x2}. In other words, the satisfiability of the current
SAT instance is equivalent to one with the same setup but with an AND fence F2 = {1}.
Since F2 exhibits a lower MC compared to F1, the exploration of which must has
already been addressed. Hence, the current SAT instance is determined to be unsatisfiable
without the need for SAT solving. Judiciously selecting the initial scheduling solution
as S2 = (1, 1, 1, 0) can bypass this trivial case.

We identify a reasonable initial scheduling solution by addressing the following ques-
tion: “Given a certain number of fan-in candidates to select from, how many non-linear
functions can a step within an abstract XAG implement?” Recall the general representa-
tion of the function implemented by an arbitrary step xi given by Eq. 3. Our calculation
is based on considering all potential configurations of Li,1 and Li,2. Among them, cases
where Li,1 = Li,2 are first excluded, as they lead to linear functions, whose realization
does not require any AND nodes. We then exclude two cases that result in repetitive
functions: (1) Due to the commutativity of the AND operation, functions realized by
exchanging Li,1 and Li,2 are identical; (2) For any function realized with Li,1 and Li,2,
where either Li,1 ⊆ Li,2 or Li,2 ⊆ Li,1, there always exists an implementation where
Li,1
⊆ Li,2 or Li,2
⊆ Li,1 [16]. Applying the rules outlined above, we calculate the
number of non-linear Boolean functions a step can realize. While only cases with up to
5 fan-in candidates are summarized in Table 1, the proposed calculations are applicable
beyond this limit.

After scheduling the availability of several leaf nodes to ensure that each step has
sufficient fan-in candidates, the remaining unscheduled leaf nodes are then scheduled to
be available at the lowest possible level of local MD, following the so-called as soon as
possible (ASAP) scheduling, provided they do not form a unique critical path. Assuming
leaves x1 to x j ′ are already scheduled, the scheduling for an unscheduled leaf xi , where

 6 Page 20 of 36 M. Yu, G. De Micheli

Table 1. Number of non-linear functions a step within an Abstract XAG can implement.

#fan-in candidates 2 3 4 5

#non-linear functions 1 9 55 285

Algorithm 2: Selecting the initial scheduling solution for an AND fence
Input: AND fence F = (c1, · · · , cd); Input MD L = (σ1, · · · , σn).
Output: Scheduling solution S = (�1, · · · ,�n); MD of the root node σroot.

1 set of indices of unscheduled leaf nodes s ← {1, · · · , n}
2 number of available fan-in candidates #cand ← 0
3 for i ← 1 to d do
4 number of leaf nodes to schedule #leaves ←look_up(

∑i
i ′=1 ci ′)−#cand

5 if #leaves > 0 then
6 set of indices of leaf nodes to schedule s′ ←the first #leaves elements in s
7 foreach j ∈ s′ do
8 � j ← i
9 #cand ← #cand + 1

10 #cand ← #cand + ci
11 j ′ ← n − |s|
12 σroot ← max{σ j + � j | 1 ≤ j ≤ j ′}
13 foreach i ∈ s do
14 �i ← σroot − σi
15 return {S, σroot}

j ′ < i ≤ n, should adhere to the following inequality:

σi + �i ≤ max{σ j + � j | 1 ≤ j ≤ j ′}.

Determining �i in this manner is preferable because the resulting SAT instance covers
the scenarios where a leaf node xi is scheduled to higher levels of local MD, thereby
avoiding repetitive SAT solving.

The two steps for our initial scheduling solution selection are outlined in Algo. 2.
The function look_up in line 4 determines, based on the number of steps, the required
number of fan-in candidates obtained from Table 1. These candidates include both leaves
scheduled to be available at the current level of local MD (line 8) and steps belonging
to lower levels of local MD (line 10).

4.3.2. Identification of the Subsequent Scheduling Solution

When a SAT instance turns out to be unsatisfiable, it implies there does not exist an
abstract XAG, whose topology adheres to the currently investigated AND fence F , that
implements the target cut C, under the current scheduling solution S1. Therefore, to find
such a F-based implementation, if it does exist, we have to relax the expectation on the
resulting MD of the root of C, by adjusting S1 to make the leaves accessible in earlier
levels of local MD.

Faster Homomorphic Operations and Beyond… Page 21 of 36 6

Algorithm 3: Synthesizing FHE-cost-optimal XAG implementations for cuts
Input: Cut C; Current XAG implementation of cut C, Nold;

Library of AND fence candidates lib.
Output: Optimal XAG implementation for C, N .

1 N ←exact_synthsis_for_function(C. f)
2 If is_balanced(C.L) then return N
3 σroot ← calculate_root_MD(N ,C.L)
4 foreach F ∈ lib do
5 {F .S,F .σroot} ← select_initial_scheduling(F ,C.L)
6 target MD of root node σtarget ← min{F .σroot | F ∈ lib}
7 while σtarget < σroot do
8 foreach F ∈ lib do
9 if F .σroot = σtarget then

10 SAT instance ζ ← extended_SAT_encoding(C. f ,F)
11 abstract XAG N ′ ← SAT_solving(ζ)
12 if N ′
= NULL then
13 XAG N ← decompose_XOR_clouds(N ′)
14 return N

15 else
16 {F .S,F .σroot} ← update_scheduling(F)
17 σtarget ← σtarget + 1
18 return N

If all elements in S1 are d, indicating all leaves are already scheduled to the lowest
level, it means there is no F-based circuit implementation for cut C. Otherwise, each
�i in the subsequent scheduling solution S2 = (�1, · · · ,�n) is determined to be
min{d, σroot + 1 − σi }, where σroot is the previously expected MD of the root of cut C,
calculated with S1 as the scheduling solution. Given the algorithmic similarity between
determining the subsequent scheduling solution and the second step of identifying the
initial scheduling solution (lines 12-14 in Algo. 2), the corresponding pseudocode is
omitted.

4.4. Exact Synthesis Paradigm for Sub-circuits

Algo. 3 outlines our exact synthesis paradigm for synthesizing optimal implementations
for sub-circuits.

The exact synthesis paradigm for function (Algorithm 1) is initially invoked to gen-
erate a baseline implementation for the target cut. This implementation is guaranteed
to be optimal under the condition of a balanced input MD (line 2). The baseline imple-
mentation establishes a known lowest MD for the root of the cut, which serves as an
upper bound for the target MD in the paradigm (line 7). For each AND fence candidate,
its initial scheduling solution, along with the corresponding lowest expected MD of the
root, is obtained by applying Algorithm 2. The optimality of the solution is ensured
by prioritizing the investigation of AND fence candidate with the potential to achieve
the lowest expected MD of the cut’s root. If it turns out to be infeasible, its scheduling
solution and its lowest expected MD of the root are updated (line 16).

 6 Page 22 of 36 M. Yu, G. De Micheli

4.5. Classifying Exact Synthesis Queries

Optimizing the FHE cost of a logic network consists of a series of queries of optimally
synthesizing sub-circuits, each of which is handled by invoking the exact synthesis
paradigm (Algo. 3). However, some queries may share the same optimal solutions.
By identifying exact synthesis queries with identical optimal solutions, the synthesized
solutions can be reused to avoid repetitive SAT solving, improving the efficiency of
optimizing the circuit. To that end, we address the following question: “Under what
conditions do two cuts share identical optimal implementations?”

Aligning with our strategy for optimally synthesizing circuits for functions as detailed
in Section 3, the Boolean classification technique is utilized. However, recognizing that
not all affine-equivalent operations preserve MD under an imbalanced input MD, we
have opted for NPN classification [24], as NPN-equivalent operations reliably maintain
MD (see Appendix A.1 for an in-depth introduction to NPN classification). Through
NPN classification, two cuts share the same optimal implementation if: (1) their local
functions belong to the same NPN equivalence class, and (2) their input MD aligns after
reordering elements following the NPN canonicalization process.

Moreover, we found that the second requirement can be generalized by generating a
signature for the input MD of a cut and basing the identification on signatures. Deriving
a signature from the input level of a cut involves two distinct steps.

Lemma 1. (Alignment)
Let C1, C2 be n-cuts with the same local function and input MDs L1 = (σ1, . . . , σn)

andL2 = (σ ′
1, . . . , σ

′
n). If σi −σ ′

i is a constant a for all i , then the two cuts have identical
optimal implementations.

Proof. The proof of this lemma is provided in Appendix C.1. �

Lemma 1 serves as the first step of the derivation of signatures, termed alignment. This
step involves subtracting the minimum element σ1 from each element in L.

Lemma 2. (Dominance)
Let C1 be an n-cut with input MD L1 = (σ1, . . . , σn) (sorted) and optimal XAG

MD d. If there exists i with σi − σi−1 ≥ d, then the optimal implementation for C1
is also optimal for any n-cut C2 with the same local function and input MD L2 =
(0, . . . , 0, σi+1 − σi , . . . , σn − σi).

Proof. The proof of this lemma is provided in Appendix C.2. �

Lemma 2 suggests that in the presence of a substantial gap among the MD of the target
cut’s leaves, attention should be directed only to those with the potential to form the
critical path. The remaining leaves can be treated as if their MD is zero since they cannot
be part of the critical path. This insight gives birth to the dominance step.

The two steps jointly facilitate deriving a signature of the input MD of a cut, as outlined
in Algo. 4. The configuration of the parameter θ depends on n, the size of the target
cut. For example, when targeting 5-cuts, θ is set to 3 because the MD of AND fence

Faster Homomorphic Operations and Beyond… Page 23 of 36 6

Algorithm 4: Deriving the signature of an input MD
Input: Input MD of the target n-cut, L = (σ1, · · · , σn); Threshold θ .
Output: Signature of L, sig.

1 sig ← L
2 foreach σ ∈ sig do
3 σ ← σ − σ1 � Alignment
4 for i ← n to 2 do
5 if σi − σi−1 ≥ θ then
6 foreach σ ∈ sig do
7 σ ← max{0, σ − σi } � Dominance
8 break
9 return sig

candidates does not exceed this value. The signature of the input MD of a cut serves as
an additional label of an exact synthesis query, as evidenced by Theorem 3.

Theorem 3. Given two n-cuts C1 and C2 with identical local functions and distinct
input MD L1 and L2. If the signatures derived from L1 and L2 following Algo. 4 are
the same, cuts C1 and C2 share the same FHE-cost-optimal circuit implementation.

Proof. Follows from Lemmata 1 and 2. �

To summarize, effective classification of exact synthesis queries is realized by la-
belling each query with (1) the NPN representative function of the cut’s local function,
and (2) the signature of the cut’s input MD, preventing meaningless invocation of the
paradigm (Algo. 3).

5. MC-aware MD Optimization

Building upon Algo. 3, we introduce an innovative MC-aware MD minimization al-
gorithm. Also, we engineer an FHE circuit optimization flow. Central to this flow is
our MC-aware MD minimization algorithm, complemented by the integration of an
advanced MD reduction algorithm, ESOP balancing [26].

5.1. Overview of the Algorithm

Algo. 5 outlines our MC-aware MD minimization algorithm. It takes a baseline XAG
implementation of the target function as input and outputs one with minimized FHE
cost.

A cache is utilized to store determined optimal implementations, preventing redundant
calls to exact synthesis. As introduced in Section 4.5, NPN-equivalent representative
functions and signatures derived from input levels are employed as indices to categorize
queries for optimal implementations of cuts effectively.

The algorithm traverses all nodes forming the critical path in topological order (lines
4). For a given node n, cuts rooted at it are enumerated, and their optimal implementations

 6 Page 24 of 36 M. Yu, G. De Micheli

Algorithm 5: MC-aware MD minimization
Input: XAG implementation of the target function, N .
Output: Optimized XAG Nopt.

1 Nopt ← N
2 cache ← optimal circuits of small-scale functions
3 set of cuts C ← cut_enumeration(Nopt)
4 foreach node n on Nopt’s critical path in topological order do
5 implnew ← ∅
6 foreach cut C ∈ cuts rooted on n C[n] do
7 f ← local function of cut C
8 {representative function fr , signature sig} ← NPN_classification (f ,C.L)
9 sig ← derive_signature(sig)

10 implnew[C] ← cache[{ fr , sig}]
11 if implnew[C] = NULL then
12 implnew[C] ← exact_synthesis_for_cuts(C)
13 cache[{ fr , sig}] ← implnew[C]
14 cut C′ ← arg minC∈C[n](C.δn)
15 rewrite C′ with implnew[C′]
16 return Nopt

are obtained and collected in implnew. For a cut C with a local function f and input MD
L, we determine the NPN-equivalent representative function fr and derive the signature
of L, denoted as sig, which are used to access the cache (lines 7-8). If the optimal
implementation is not yet in the cache, exact synthesis (Algo. 3) is employed, and the
cache is subsequently updated (lines 11-12). Among the optimal implementations of all
cuts rooted at node n, the one resulting in the minimum δn , i.e., the lowest level of MD
at node n, is selected to replace the original implementation of the corresponding cut in
the baseline circuit (lines 13-14).

5.2. An FHE Circuit Optimization Flow

Intuitively, the proposed MC-aware MD minimization algorithm and ESOP balancing,
the most advanced MD optimization algorithm in the literature, explore orthogonal de-
sign spaces: In MC-aware MD minimization, the carefully devised AND fence candidate
selection scheme excludes those local moves that reduce MD at the cost of a significant
increase in MC. In contrast, ESOP balancing aggressively minimizes MD by balancing
the ESOP representation of any encountered cut without considering MC. Their distinct
action logics inspire us to build a flow that combines the strengths of both.

Our FHE circuit optimization flow is outlined in Algo. 6. The parameter num_restarts
controls the number of rounds involved in each execution of the flow. In each round,
the decision of which optimization algorithm, out of the two candidates, to apply is
made by the random_engine (line 7). Once one algorithm is recognized to be unable to
further optimize the circuit, switch_opt_algo intentionally selects the other algorithm
for optimization; If neither of the two algorithms can achieve further optimization, the
round is terminated (lines 9-15). The best design encountered so far is recorded and is
regarded as the starting point for the following rounds of exploration. To break out of
local optimal, every restart begins with a relaxation (line 5). This procedure significantly

Faster Homomorphic Operations and Beyond… Page 25 of 36 6

Algorithm 6: FHE Circuit Optimization Flow
Input: XAG N that implements the target function.
Output: Optimized XAG N .
Parameter : num_restarts, cost_metric.

1 Nbest ← N , Nopt ← N
2 for i ← 1 to num_restarts do
3 N ← Nopt
4 if i
= 1 then
5 N ←relaxation(N)
6 while true do
7 optimization algorithm η ← random_engine()
8 Nopt ← apply_opt_algo(N , η)
9 if cost_metric(Nopt) ≥ cost_metric(N) then

10 η ← switch_opt_algo(η)
11 Nopt ← apply_opt_algo(N , η)
12 if cost_metric(Nopt) ≥ cost_metric(N) then
13 break
14 else
15 N ← Nopt

16 if cost_metric(N) < cost_metric(Nbest) then
17 Nbest ← N

18 return Nbest

increases the MC and MD of the circuit by representing all XOR nodes in the XAG as a

combination of three AND nodes, following a⊕b = (a∧b)∨(a∧b) and a∨b = a ∧ b.
We also introduce the parameter cost_metric to enable tuning of the cost metric in our
optimization flow. This setting facilitates investigating the impact of the adopted cost
metric on the quality of the optimized FHE circuit. As an example, we later explore
two configurations in the experimental stage: (1) MD, the commonly used cost metric in
prior works on FHE circuit optimization, and (2) FHE cost, the cost metric that motivates
this work.

6. Experimental Evaluation

In this section, we showcase our experimental results, organized into two main parts:

(1) Evaluation of MC-aware MD minimization as a standalone optimization algorithm.
(2) Assessment of the FHE circuit optimization flow, which integrates MC-aware MD

minimization and ESOP balancing, with MD and FHE cost tested as the cost metric.

6.1. Experimental Setups

All experiments were conducted on an Apple M1 Max chip with 32GB memory. The
following details outline the setups.
Implementation:Our implementation is open-sourced and publicly available at https://

github.com/MingfeiYu/hatter. The proposed MC-aware MD minimization algorithm is
implemented using the C++ logic network library mockturtle. The exact synthesis

https://github.com/MingfeiYu/hatter
https://github.com/MingfeiYu/hatter

 6 Page 26 of 36 M. Yu, G. De Micheli

solver is based on the C++ reasoning library bill, with glucose [3] chosen as the
underlying SAT solver. Both mockturtle and bill are part of the EPFL logic syn-
thesis libraries [35]. The back-end executor is built upon the homomorphic encryption
library HElib [25], with the BGV scheme selected and the plaintext space configured
to binary. We set the security level to 128-bit(i.e., λ = 128), and other parameters,
within the context of leveled FHE, are configured accordingly by HElib to ensure
the entire computation can be correctly performed without invoking bootstrapping. To
manage the growth of ciphertext size during the computation, we conservatively apply
relinearization after each homomorphic AND operation.
Baseline: LOBSTER [28], the state-of-the-art FHE circuit optimization tool is cho-

sen as the baseline to compare to. Additionally, we introduce an assessment of ESOP
balancing [26], recognized as the most advanced MD reduction algorithm. This evalu-
ation serves as the first exploration of ESOP balancing’s performance in the context of
FHE circuit optimization. As both ESOP balancing and the proposed MC-aware MD
minimization are cut-based, we uniformly set the target cut size as 5 in this experiment.
Benchmark: The 25 involved benchmarks are aligned with [28]. They are collected

from four benchmark suites:Cingulatabenchmarks [9], homomorphic sorting bench-
marks [10],Hacker’sDelight benchmarks [40], and EPFL benchmarks [2]. The functions
of the benchmarks vary from medical diagnosis, sorting, and bit-twiddling hacks to ran-
dom/control logic and are believed to represent computations of interest in potential
FHE applications. See [28] for a detailed description of the benchmarks.

6.2. Evaluating MC-aware MD minimization

In Table 2, we report MC, MD, the circuit optimization time in seconds (Opt.)4, and
the circuit execution time in seconds (Exec.). Both ESOP balancing and MC-aware
MD minimization are iteratively applied until convergence, and the number of runs is
recorded (#iter.). The shortest execution time for each benchmark is highlighted in blue.
If no improvement over the initial circuit is achieved by any algorithms, no marking is
made.
Circuit optimization time: As MC-aware MD minimization relies on on-the-fly

exact synthesis to provide the optimal implementations for the encountered cuts, the
optimization time is typically longer than ESOP balancing. However, the runtime over-
head proves to be acceptable. We attribute this achievement to our well-designed SAT
encoding, exact synthesis paradigm, and strategies to avoid unnecessary SAT solving,
such as the exact synthesis query classification technique. Due to the unavailability of
the source code for LOBSTER, we are unable to measure its circuit optimization time
directly. However, as reported in [28], LOBSTER allocates a 125-hour time budget for
the rewriting rule learning phase for each benchmark, and the term rewriting phase takes
around eight hours for relatively large benchmarks such as msort, isort, and bsort. In
comparison, our MC-aware MD minimization achieves circuit optimization four orders
of magnitude faster than LOBSTER.
Quality of optimized circuits:Among the 25 benchmarks evaluated, improved circuit

designs were achieved for 21 benchmarks by at least one of the approaches. Within

4Runtime shorter than 0.005s is written as 0.00s

Faster Homomorphic Operations and Beyond… Page 27 of 36 6

Ta
bl
e
2.

C
om

pa
ri

ng
M

C
-a

w
ar

e
M

D
m

in
im

iz
at

io
n

ag
ai

ns
ts

ta
te

-o
f-

th
e-

ar
t.

B
en

ch
m

ar
k

In
iti

al
L
O
B
S
T
E
R

E
SO

P
B

al
an

ci
ng

M
C

-a
w

ar
e

M
D

M
in

im
iz

at
io

n
M

C
M

D
E

xe
c.

[s
]

M
C

M
D

E
xe

c.
[s

]
M

C
M

D
#i

te
r.

O
pt

.[
s]

E
xe

c.
[s

]
M

C
M

D
#i

te
r.

O
pt

.[
s]

E
xe

c.
[s

]

ca
rd

io
10

9
10

14
.4

7
11

6
8

10
.0

0
12

0
8

3
0.

11
10

.3
7

10
8

8
3

9.
81

9.
35

ds
or

t
70

8
9

59
.9

1
79

3
8

51
.8

4
94

8
7

2
0.

13
50

.4
9

70
8

8
2

3.
22

45
.1
8

m
so

rt
81

0
45

19
64

.6
9

14
50

36
11

25
.3
0

15
69

36
8

0.
75

12
29

.3
0

77
4

45
2

0.
74

12
28

.8
8

is
or

t
81

0
45

18
30

.1
2

14
82

36
10

69
.8
8

15
69

36
8

0.
75

12
27

.4
6

77
4

45
2

0.
49

12
12

.0
8

bs
or

t
81

0
45

19
00

.5
1

14
82

36
11

12
.1
9

15
69

36
8

0.
75

12
26

.7
1

77
4

45
2

0.
49

12
13

.1
7

os
or

t
70

2
25

52
0.

77
14

04
20

33
3.

97
14

04
20

6
0.

47
40

5.
50

63
8

25
2

0.
62

27
3.
56

hd
01

87
6

5.
16

87
6

5.
52

10
2

5
2

0.
00

3.
42

87
6

1
0.

27
5.

53
hd

02
76

6
5.

67
76

6
5.

24
76

6
1

0.
00

5.
15

76
6

1
0.

27
5.

13
hd

03
27

5
1.

78
27

5
1.

38
30

4
2

0.
02

1.
45

29
4

2
0.

89
1.

43
hd

04
75

10
20

.7
9

78
8

9.
20

74
7

3
0.

05
5.
09

63
8

4
9.

53
6.

03
hd

05
12

1
7

9.
15

12
1

7
8.

02
18

4
6

2
0.

01
10

.0
0

12
1

7
1

0.
09

7.
95

hd
06

12
1

7
7.

11
12

1
7

8.
00

18
4

6
2

0.
02

10
.0

2
12

1
7

1
0.

06
8.

00
hd

07
17

5
4.

25
13

3
0.

99
19

3
2

0.
01

0.
51

15
3

3
0.

78
0.
48

hd
08

18
6

2.
03

18
5

1.
00

26
4

2
0.

01
1.

24
16

5
2

0.
17

0.
94

hd
09

13
4

14
30

.4
2

17
7

10
20

.7
3

17
3

10
4

0.
06

17
.6

0
13

4
10

4
8.

78
14

.7
8

hd
10

35
6

3.
54

36
5

1.
71

34
5

1
0.

01
1.

69
32

5
4

1.
51

1.
66

hd
11

39
1

18
13

3.
65

39
1

15
93

.5
4

41
1

13
2

0.
08

79
.4
6

38
5

14
3

9.
74

83
.4

6
hd

12
11

6
16

29
.7

3
11

6
15

26
.5

3
12

6
12

3
0.

09
20

.2
5

10
7

13
3

0.
76

24
.2

2
ba

r
31

41
12

46
0.

61
30

15
11

37
0.

77
22

66
8

2
0.

15
16

3.
12

18
41

9
4

28
.8

5
14

9.
08

ca
vl

c
65

5
16

14
4.

26
66

8
10

63
.8

8
71

3
8

7
0.

37
52

.6
7

60
7

11
7

42
.8

9
76

.4
6

ct
rl

10
7

8
9.

87
12

0
5

4.
15

10
7

4
5

0.
03

3.
97

89
4

5
9.

85
3.
49

de
c

30
4

3
4.

03
30

4
3

4.
08

30
4

3
1

0.
01

4.
13

29
2

3
2

0.
32

3.
97

i2
c

11
57

15
31

1.
52

12
15

8
93

.3
4

12
54

7
9

0.
24

71
.5
3

11
52

10
6

19
.9

5
10

9.
30

in
t2

flo
at

21
3

15
56

.2
7

23
4

8
17

.4
3

24
0

7
5

0.
10

14
.1
4

20
5

10
5

4.
34

21
.2

1
ro

ut
er

17
0

19
97

.4
8

19
0

10
30

.1
8

23
2

9
5

0.
13

19
.3
4

18
6

13
4

1.
95

37
.2

8
To

ta
l

76
27

.7
8

44
68

.8
7

46
34

.6
1

45
42

.6
2

N
or

m
.

1.
71

1.
00

1.
04

1.
02

 6 Page 28 of 36 M. Yu, G. De Micheli

these 21 benchmarks, the updated best-known implementations are attributed as follows:
LOBSTER accounts for 3, ESOP balancing for 8, and MC-aware MD minimization for
10 of the improved designs. Interestingly, compared to LOBSTER and ESOP balancing,
MC-aware MD minimization reaches saturation at significantly different design points.
Circuits optimized by MC-aware MD minimization consistently exhibit the lowest MC
among the three, aligning with the algorithm’s philosophy of considering both MC and
MD in the optimization process. Additionally, while both ESOP balancing andLOBSTER
focus exclusively on MD reduction, we observed that ESOP balancing consistently
achieves a lower, or at least equal, MD compared to LOBSTER.
Discrepancy in the performance of MC-aware MD Minimization: Analysis of

cases where the best designs are achieved applying either LOBSTER or ESOP balancing
reveals instances where MC-aware MD minimization fails to produce low-FHE-cost
designs. This discrepancy can be attributed to the observation that MC-aware MD min-
imization typically converges with fewer iterations compared to ESOP balancing. In
exploring the design space, the strict adherence to slightly increased MC may overlook
intermediate design points with significantly higher MC, which can prevent reaching
designs with reduced FHE costs. This observation motivates the joint application of
MC-aware MD minimization and ESOP balancing, as introduced in Section 5.2. By
leveraging ESOP balancing’s ability to reduce MD without constraining MC increases,
this approach complements MC-aware MD minimization and enables a more compre-
hensive exploration of the design space.

6.3. Evaluating FHE Circuit Optimization Flow

In this experiment, we evaluate the FHE circuit optimization flow devised in Sec-
tion 5.2. Two different settings of cost metrics are considered and are distinguished as
FHE-cost-oriented and MD-oriented in Table 3. When running the flow, the number of
restarts is set to 5 times to strike a balance between the circuit optimization time and the
efforts in design space exploration. The fastest execution achieved on each benchmark,
with the results shown in Table 2 considered as well, is highlighted in blue. No high-
lights are applied if the circuits optimized by the flow under both settings are not better
than the initial designs or those from previous experiments. When the optimization flow
produces optimal designs with identical MC and MD values under both settings, both
circuit execution times are highlighted, even if there are slight differences. The total
execution time is normalized to that achieved by LOBSTER.

The optimization flow, with either FHE cost or MD configured as the cost metric,
offers the best implementations for 17 out of the 21 benchmarks where designs better than
the initial ones are produced. More remarkably, 11 designs have never been discovered
before by solely applying one of the three optimization algorithms (i.e.,LOBSTER, ESOP
balancing, and MC-aware MD minimization), evidencing the flow’s ability to explore
the design space comprehensively. For instance, on benchmarks msort, isort, and bsort,
where LOBSTER used to dominate the other two optimization algorithms, with FHE cost
configured as the cost metric, the flow achieved implementations with homomorphic
execution respectively 21.68%, 14.43%, and 20.84% faster than those optimized by
LOBSTER. Notably, in the MD-oriented setting, the flow discovered designs with the new
lowest MD values for benchmarks bar, ctrl, and int2float. This also provides convincing

Faster Homomorphic Operations and Beyond… Page 29 of 36 6

Table 3. Exploring cost metrics within the proposed flow.

Benchmark FHE-cost-oriented MD-oriented
MC MD Opt.[s] Exec.[s] MC MD Opt.[s] Exec.[s]

cardio 108 8 70.36 9.35 117 8 45.61 10.16
dsort 708 7 26.77 39.42 948 7 38.28 50.50
msort 788 42 53.86 881.38 1391 36 182.86 1180.46
isort 816 42 45.56 915.46 1324 36 88.24 1178.53
bsort 788 42 45.45 880.41 1354 36 107.31 1214.01
osort 750 24 20.54 320.54 1261 20 121.63 394.29
hd01 102 5 0.14 3.42 102 5 0.22 3.38
hd02 76 6 3.53 5.13 76 6 1.89 5.15
hd03 30 4 3.88 1.27 30 4 1.46 1.49
hd04 67 7 17.38 4.81 74 7 14.05 5.11
hd05 121 7 7.95 8.08 184 6 5.66 10.03
hd06 121 7 5.18 7.99 184 6 7.06 10.00
hd07 15 3 1.02 0.48 15 3 0.65 0.49
hd08 21 4 0.67 0.92 21 4 0.62 1.12
hd09 155 10 14.84 16.38 150 10 11.46 16.00
hd10 32 5 1.44 1.67 32 5 0.55 1.71
hd11 423 13 32.12 83.88 410 13 22.90 80.88
hd12 115 12 3.73 19.35 115 12 3.96 19.30
bar 1942 8 127.06 145.10 2710 7 185.75 160.52
cavlc 691 9 122.10 56.19 717 8 85.62 53.05
ctrl 97 4 10.76 3.71 115 3 12.94 2.02
dec 292 3 1.81 3.96 292 3 2.28 3.94
i2c 1252 7 57.85 70.74 1236 8 22.80 91.04
int2float 217 8 32.24 17.24 309 6 10.49 17.10
router 229 9 19.38 19.06 257 9 15.03 22.07
Total 3515.94 4532.35
Norm. 0.79 1.01

evidence that by hybridly applying MC-aware MD minimization and ESOP balancing,
the flow can explore the design space that solely applying any existing algorithm failed
to reach.
Impact of cost metric selection: When utilizing FHE cost as the cost metric, the

optimization flow yields optimal implementations for 15 out of the 21 improved bench-
marks, resulting in a 21.32% reduction in homomorphic execution time compared to
LOBSTER. Moreover, when compared to the initial circuit designs, the reduction in-
creases to 53.91%, corresponding to a speedup of more than a factor of two. Conversely,
when MD is selected as the cost metric, optimal implementations are achieved for only 7
benchmarks, with a total execution time slightly inferior to LOBSTER. It is noteworthy
that the MD-oriented setting consistently produces circuits with the lowest MD for nearly
all benchmarks, except i2c. Despite its superiority in MD, the resulting designs exhibit
inferior execution times, highlighting the importance of carefully managing increases
in MC when optimizing FHE circuits.

 6 Page 30 of 36 M. Yu, G. De Micheli

7. Discussion

This section reflects on the capabilities, limitations, and future potential of the proposed
MC-aware MD minimization-centered Boolean FHE circuit optimization framework.
While our method achieves notable improvements in homomorphic evaluation perfor-
mance by simultaneously addressing circuit MC and MD, it also opens new directions
for further research. We discuss the significance of our joint optimization strategy, ex-
plore how the approach could be extended to arithmetic FHE circuits, and highlight open
challenges in cost modeling, particularly regarding the impact of multiplicative levels
on runtime.

7.1. The Importance of Joint MC and MD Optimization

The experimental results in this work highlight the necessity of jointly optimizing both
MC and MD in FHE circuit design. Our analysis demonstrates that reducing MD with-
out regard for increases in MC can lead to suboptimal or even degraded homomorphic
evaluation performance. This underscores the need for circuit optimization frameworks
that explicitly account for both metrics — an objective achieved by the approach pre-
sented here. It should be emphasized that, while we adopted MC × MD2 as a practical
and empirically grounded cost metric, the main contribution of this work is the develop-
ment of a reconfigurable, MC-aware MD optimization algorithm. This algorithm allows
users to specify custom cost models, supporting future research and application-driven
exploration of optimal FHE circuit cost formulations.

7.2. Extension to Arithmetic FHE Circuits

While the proposed MC-aware MD minimization technique is demonstrated primar-
ily on Boolean circuits, its applicability extends naturally to arithmetic FHE circuit
optimization. Although our exact synthesis framework relies on SAT for functionality
verification (see Section 3.2), which is limited to the binary field, this can be generalized.
By adopting a satisfiability modulo theories (SMT) approach, equivalence checking can
be performed over arbitrary finite fields, thus accommodating arithmetic circuits over
different moduli. With this extension — while preserving the concept of AND fence
enumeration (see Section 3.1.3) — our methodology provides an effective strategy for
low-cost arithmetic circuit synthesis in FHE, broadening the impact and flexibility of
the proposed approach.

7.3. Limitations and Directions for Future Work

A notable limitation of the current study arises from the use of a uniform cost model,
which assumes that each homomorphic multiplication incurs the same computational ex-
pense, regardless of its multiplicative level. Our experimental results — particularly for
the msort, isort, and bsort benchmarks — indicate that circuits optimized by LOBSTER,
while exhibiting higher FHE cost values due to increased MC, can nonetheless out-
perform the initial circuit designs in terms of actual execution time. This observation

Faster Homomorphic Operations and Beyond… Page 31 of 36 6

suggests that the cost of homomorphic multiplications may be more accurately modeled
as a function of their specific multiplicative level.

As discussed in the introduction, each homomorphic multiplication in a leveled FHE
scheme consumes one level of the noise budget. As a ciphertext progresses through suc-
cessive multiplications, its remaining noise budget (i.e., the number of available modulus
prime factors) decreases, resulting in ciphertexts of smaller size and, consequently, faster
subsequent homomorphic multiplications. Despite the significance of this effect for FHE
circuit optimization, it has yet to be fully incorporated into prevailing cost models.

Nevertheless, this limitation does not diminish the central contribution of this work:
to our knowledge, this is the first algorithmic framework to achieve joint MC-MD opti-
mization for FHE circuit synthesis — a significant advance not only within the domain
of FHE circuit optimization, but also in the broader context of Boolean circuit optimiza-
tion. This foundational achievement paves the way for further improvements as cost
models and evaluation strategies become increasingly sophisticated.

8. Conclusion

Existing research in homomorphic computation acceleration via circuit optimization
has predominantly focused on reducing the MD of Boolean circuits. While MD influ-
ences the execution time of individual homomorphic operations, the overall execution
time is contingent not only on MD but also on MC. Recognizing this intricate rela-
tionship necessitates a more nuanced approach in incorporating the trade-off between
MD reduction and MC increase into the FHE circuit optimization problem, to achieve
enhanced homomorphic computation acceleration. This study is the first to undertake
this challenge.

Based on empirical observations, we adopt FHE cost, formulated as MC×MD2, as a
refined metric for FHE circuit optimization, which necessitates the simultaneous opti-
mization of both circuit MC and MD. To address this, we introduce (a) an exact algorithm
for synthesizing FHE-cost-optimal circuits, (b) a heuristic algorithm named MC-aware
MD minimization that leverages the exact algorithm to efficiently optimize FHE circuit
designs, and (c) an FHE circuit optimization flow that integrates our proposed algo-
rithms with existing MD reduction techniques from the literature. Experimental evalu-
ations demonstrate that the optimized FHE circuits achieve an average 1.27× speedup
in homomorphic computation, along with substantial reductions in circuit optimization
time. These improvements mark a significant step toward realizing lower-latency and
lower-power-consumption general-purpose FHE applications.

Simultaneously, this work lays the groundwork for further advancements in FHE cir-
cuit optimization. The optimal cost metric for FHE circuit optimization varies depending
on the specific FHE scheme and security parameters, a topic that warrants further explo-
ration. This study provides a practical tool to tackle this challenge, as both the proposed
MC-aware MD minimization algorithm and the FHE circuit optimization flow can be
readily adjusted to accommodate different specifications of FHE cost.

 6 Page 32 of 36 M. Yu, G. De Micheli

Funding Open access funding provided by EPFL Lausanne

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A. Boolean Classification Techniques

Boolean function classification is the process of categorizing Boolean functions into different classes based on
various characteristics and properties of the functions. The two Boolean classification techniques employed
in this paper are NPN classification and affine function classification.

A.1. NPN Classification

Based on an n-variable Boolean function f (x1, · · · , xi , · · · , x j , · · · , xn), the three NPN-equivalent operations
are:

1. Input negation: f
xi→xi−−−−→ f ′.

2. Input permutation: f
xi↔x j−−−−→ f ′.

3. Output negation: f
f−→ f ′.

Theorem 4. NPN-equivalent operations are MD-preserving.

Proof. Without loss of generality, we consider the impact of input permutation on MD, as it is evident that
input and output negations do not affect the MD of an XAG. Recall that, as revealed by Eq. 5, the MD d of an
XAG with n PIs satisfies

d = max{σa + �a | 1 ≤ a ≤ n}.

If we permute any two input variables, say xi and x j , the values of σi and σ j are exchanged, as are the values
of �i and � j . However, this exchange does not affect the value of d. Therefore, NPN-equivalent operations
are MD-preserving. �

A.2. Affine Function Classification

Affine function classification is a more effective Boolean function classification technique, in the sense that
the set of affine-equivalent operations is the superset of the set of NPN-equivalent operations. Besides the
three NPN-equivalent operations, affine-equivalent operations further include:

1. Translational operation: f
xi→(xi⊕x j)−−−−−−−−→ f ′.

2. Disjoint translational operation: f
⊕xi−−→ f ′.

Due to the inclusion of the translational operation, affine-equivalent operations are conditionally MD-preserving,
as demonstrated in the following sub-section.

http://creativecommons.org/licenses/by/4.0/

Faster Homomorphic Operations and Beyond… Page 33 of 36 6

A.3. Proof of Theorem 1

Proof. Noting that input negation, input permutation, and output negation have been demonstrated to be
MD-preserving operations, without loss of generality, we focus our analysis exclusively on the impact of
translational operations and disjoint translational operations on MD.
Recall that the MD d of an XAG with n PIs satisfies

d = max{σa + �a | 1 ≤ a ≤ n}.
Considering a translational operation applied to two input variables, xi and x j , the term σi +�i is transformed
into max{σi , σ j } + �i . The value of d may change only if:

σ j > σi , and σ j + �i > max{σa + �a | 1 ≤ a ≤ n}.
However, when the input variables share an identical MD (σi = σ j), the aforementioned condition is excluded,
demonstrating the MD-preserving nature of translational operations.
For a disjoint translational operation on any input variable xi , a direct path from xi to the PO of the XAG is
introduced. This operation does not affect the critical paths in the XAG, and consequently, it does not alter the
value of d.
Thus, we conclude that affine-equivalent operations are MD-preserving if the input variables share an identical
MD. �

B. Proof of Theorem 2

Proof. We prove the contrapositive. Assume there exists an abstract XAG N2 that implements f with fence
F2 = (c1, . . . , cd−1) of MD d − 1. We construct an abstract XAG N1 of MD d that still implements f .
Let r denote the (unique) PO signal of N2. Form N1 by adding one final step at local MD level d whose two
XOR-cloud fan-ins are both the singleton {r}, i.e., the new step computes

r ′ = r ∧ r = r.

This preserves the overall Boolean function (since r ∧ r ≡ r), increases the depth by exactly one, and respects
the abstract-XAG constraints: each fan-in comes from a strictly lower MD level and at least one comes from
the immediately preceding level. The resulting fence is F1 = (c1, . . . , cd−1, 1), which has MD d.
Thus, if a realization exists at depth d − 1, a realization also exists at depth d. Taking the contrapositive, if no
abstract XAG exists at MD d, then none exists at MD d − 1. �

C. Proof of Signature Derivation Rules

C.1. Proof of Lemma 1

Proof. Fix any fence F of depth d and any schedule S = (�1, . . . , �n) ∈ {0, . . . , d}n (the earliest local-
MD level at which each leaf may be used). For an input-MD vector L, the root MD realized by (F ,S)

equals

σroot(F ,S;L) = max
1≤i≤n

{σi + �i }.

If σ ′
i = σi − a for all i , then

σroot(F ,S;L2) = max
i

{σ ′
i + �i } = max

i
{σi + �i − a} = σroot(F ,S;L1) − a.

Hence, for any two candidate implementations N1 and N2 (each induced by some (F1,S1) and (F2,S2)),
the ordering of their root MDs is preserved under the shift from L1 to L2:

σroot(N1;L1) ≤ σroot(N2;L1) ⇐⇒ σroot(N1;L2) ≤ σroot(N2;L2).

 6 Page 34 of 36 M. Yu, G. De Micheli

Therefore, the set of minimizers (optimal implementations) is the same for L1 and L2. �

C.2. Proof of Lemma 2

Proof. Let d be the minimum root MD achievable for C1. Consider any candidate implementation (fence
and schedule), and let �a be the maximum number of AND levels from leaf xa to the root (so 0 ≤ �a ≤ d).
The root MD under L1 is

σroot(L1) = max
1≤a≤n

{σa + �a}.

Step 1 (non-critical prefix). Because σi − σi−1 ≥ d and �a ≤ d, for every a ≤ i − 1 we have

σa + �a ≤ σi−1 + d ≤ σi .

Hence, leaves 1, . . . , i − 1 can never exceed the contribution of leaf i (whose term is at least σi). Therefore,

σroot(L1) = max
a≥i

{σa + �a}.

Intuitively, a sufficiently large gap at position i prevents earlier leaves from becoming critical in any depth-d
implementation.
Step 2 (flatten the prefix). Define a modified input-MD vector

L3 = (σi , . . . , σi︸ ︷︷ ︸
i entries

, σi+1, . . . , σn).

For any implementation (same �),

σroot(L3) = max
{
σi , max

a≥i
{σa + �a}

}
= max

a≥i
{σa + �a} = σroot(L1).

Thus, the ordering of implementations (and hence, the set of optimizers) is identical under L1 and L3.
Step 3 (align to L2). Observe that L2 is obtained from L3 by subtracting the constant σi from every entry:
the first i entries become 0, and the remaining entries become σa − σi . By Lemma 1 (Alignment), subtracting
a constant from all inputs preserves the order of all candidate implementations (it shifts all σa + �a by the
same constant). Therefore, the set of optimizers under L3 and L2 coincides.
Combining the above steps shows that the optimal implementation for C1 (under L1) is also optimal for C2
(under L2). �

References

[1] Pascal Aubry, Sergiu Carpov, and Renaud Sirdey. Faster homomorphic encryption is not enough: Im-
proved heuristic for multiplicative depth minimization of boolean circuits. In Proceedings of the Cryp-
tographers’ Track at the RSA Conference, volume 12006, pp. 345–363. Springer, 2020.

[2] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The EPFL combinational bench-
mark suite. In Proceedings of International Workshop on Logic & Synthesis, 2015.

[3] Gilles Audemard and Laurent Simon. Glucose SAT solver 4.1, 2017.
[4] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption

without bootstrapping. In Innovations in Theoretical Computer Science, pp. 309–325. ACM, 2012.
[5] Robert K. Brayton and Alan Mishchenko. ABC: an academic industrial-strength verification tool. In

Proceedings of the 22nd International Conference on Computer Aided Verification, volume 6174, pages
24–40. Springer, 2010.

[6] Joan Boyar, René Peralta, and Denis Pochuev. On the multiplicative complexity of boolean functions
over the basis (∧, ⊕, 1). Theor. Comput. Sci., 235(1):43–57, 2000.

Faster Homomorphic Operations and Beyond… Page 35 of 36 6

[7] Sergiu Carpov. A fast heuristic for mapping boolean circuits to functional bootstrapping. Cryptology
ePrint Archive, Paper 2024/1204, 2024.

[8] Sergiu Carpov, Pascal Aubry, and Renaud Sirdey. A multi-start heuristic for multiplicative depth min-
imization of boolean circuits. In Proceedings of the 28th International Workshop on Combinatorial
Algorithms, volume 10765, pages 275–286. Springer, 2017.

[9] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. Armadillo: A compilation chain for privacy preserving
applications. In Proceedings of the 3rd International Workshop on Security in Cloud Computing, pp.
13–19. ACM, 2015.

[10] Gizem S. Çetin, Yarkin Doröz, Berk Sunar, and Erkay Savas. Depth optimized efficient homomorphic
sorting. In Proceedings of the 4th International Conference on Cryptology and Information Security in
Latin America, volume 9230, pages 61–80. Springer, 2015.

[11] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast fully homomor-
phic encryption over the torus. Journal of Cryptology, 33:34–91, 2020.

[12] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arithmetic
of approximate numbers. In Advances in Cryptology – ASIACRYPT 2017, pp. 409–437, 2017.

[13] Seonyoung Cheon, Yongwoo Lee, Dongkwan Kim, Ju Min Lee, Sunchul Jung, Taekyung Kim, Dongyoon
Lee, and Hanjun Kim. Dacapo: Automatic bootstrapping management for efficient fully homomorphic
encryption. In USENIX Security, 2024.

[14] Sergiu Carpov, Thanh-Hai Nguyen, Renaud Sirdey, Gianpiero Costantino, and Fabio Martinelli. Practical
privacy-preserving medical diagnosis using homomorphic encryption. In Proceedings of the 9th IEEE
International Conference on Cloud Computing, pp. 593–599. IEEE Computer Society, 2016.

[15] Ana Costache and Nigel P. Smart. Which ring based somewhat homomorphic encryption scheme is
best? In Proceedings of the Cryptographers’ Track at the RSA Conference, volume 9610, pages 325–
340. Springer, 2016.

[16] Çagdas Çalik, Meltem Sönmez Turan, and René Peralta. The multiplicative complexity of 6-variable
boolean functions. Cryptogr. Commun., 11(1):93–107, 2019.

[17] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic encryption in less than a
second. In EUROCRYPT, pages 617–640, 2015.

[18] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin E. Lauter, Saeed Maleki, Madanlal Musu-
vathi, and Todd Mytkowicz. CHET: An optimizing compiler for fully-homomorphic neural-network
inferencing. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 142–156. ACM, 2019.

[19] Colin R. Edwards. The application of the rademacher-walsh transform to boolean function classification
and threshold logic synthesis. IEEE Trans. Computers, 24(1):48–62, 1975.

[20] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryp-
tol. ePrint Arch., pp. 144, 2012.

[21] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor, 41st
ACM STOC, pp. 169–178. ACM Press, May / June 2009.

[22] Charles Gouert, Dimitris Mouris, and Nektarios Georgios Tsoutsos. SoK: New insights into fully ho-
momorphic encryption libraries via standardized benchmarks. Proceedings on Privacy Enhancing Tech-
nologies, (3):154–172, 2023.

[23] Zhenyu Guan, Ran Mao, Qianyun Zhang, Zhou Zhang, Zian Zhao, and Song Bian. AutoHog: Automating
homomorphic gate design for large-scale logic circuit evaluation. IEEETransactions onComputer-Aided
Design of Integrated Circuits and Systems, 43(7):1971–1983, 2024.

[24] Eiichi Goto and H. Takahasi. Some theorems useful in threshold logic for enumerating boolean functions.
In Proceedings of the 2nd International Federation for Information Processing Congress, pp. 747–752,
1962.

[25] Shai Halevi and Victor Shoup. Design and implementation of helib: a homomorphic encryption library.
IACR Cryptol. ePrint Arch., pp. 1481, 2020.

[26] Thomas Häner and Mathias Soeken. Lowering the t-depth of quantum circuits via logic network opti-
mization. ACM Trans. Quantum Computing, 3(2), 2022.

[27] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 4: Generating All Trees–
History of Combinatorial Generation. Addison-Wesley Professional, 2013.

 6 Page 36 of 36 M. Yu, G. De Micheli

[28] Dongkwon Lee, Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi. Optimizing homomorphic evaluation
circuits by program synthesis and term rewriting. InProceedings of the 41st ACMSIGPLAN International
Conference on Programming Language Design and Implementation, pp. 503–518. ACM, 2020.

[29] Tancrède Lepoint and Pascal Paillier. On the minimal number of bootstrappings in homomorphic circuits.
In Financial Cryptography and Data Security, volume 7862, pages 189–200. Springer, 2013.

[30] Alan Mishchenko, Satrajit Chatterjee, and Robert K. Brayton. Improvements to technology mapping for
lut-based fpgas. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 26(2):240–253, 2007.

[31] Johannes Mono, Chiara Marcolla, Georg Land, Tim Güneysu, and Najwa Aaraj. Finding and evaluating
parameters for BGV. In Progress in Cryptology - AFRICACRYPT 2023, pages 370–394, 2023.

[32] Marie Paindavoine and Bastien Vialla. Minimizing the number of bootstrappings in fully homomorphic
encryption. In Proceedings of the 22nd International Conference on Selected Areas in Cryptography,
volume 9566, pages 25–43. Springer, 2015.

[33] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On data banks and privacy homomorphisms.
Foundations of Secure Computation, 4(11):169–180, 1978.

[34] Mathias Soeken. Determining the multiplicative complexity of boolean functions using SAT, 2020.
[35] Mathias Soeken, Heinz Riener, Winston Haaswijk, and Giovanni De Micheli. The EPFL logic synthesis

libraries, 2018.
[36] Meltem Sönmez Turan and René Peralta. The multiplicative complexity of boolean functions on four

and five variables. IACR Cryptol. ePrint Arch., pp. 848, 2015.
[37] Eleonora Testa, Mathias Soeken, Luca G. Amarù, and Giovanni De Micheli. Reducing the multiplicative

complexity in logic networks for cryptography and security applications. In Proceedings of the 56th
Annual Design Automation Conference, pp. 1–6. ACM, 2019.

[38] Grigori S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pp. 466–483. Springer,
1983.

[39] Jelle Vos, Mauro Conti, and Zekeriya Erkin. Oraqle: A depth-aware secure computation compiler. In
Proceedings of the 12th Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
pp. 43–50, 2024.

[40] Henry S. Warren. Hacker’s Delight, Second Edition. Pearson Education, 2013.
[41] Mingfei Yu, Sergiu Carpov, Alessandro Tempia Calvino, and Giovanni De Micheli. On the synthesis of

high-performance homomorphic Boolean circuits. In Proceedings of the 12th Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, pp. 51–63, 2024.

[42] Mingfei Yu and Giovanni De Micheli. Striving for both quality and speed: Logic synthesis for practical
garbled circuits. In Proceedings of the IEEE/ACM International Conference on Computer Aided Design,
pp. 1–9. IEEE, 2023.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Faster Homomorphic Operations and Beyond: Expediting Homomorphic Computation via Boolean Circuit Optimization
	1. Introduction
	2. Background
	2.1. FHE Schemes: Leveled vs. Fast Bootstrapping
	2.2. Boolean circuit
	2.3. Circuit Optimization in Leveled FHE Schemes
	2.3.1. MD Reduction
	2.3.2. Arithmetic Circuit vs. Boolean Circuit
	2.3.3. Automatic Bootstrapping Management
	2.3.4. Significance of MC-Aware MD Miminization

	3. FHE-Cost-Optimum Synthesis for Boolean Functions
	3.1. Overview of the Methodology
	3.1.1. AND Fence
	3.1.2. Abstract XAG
	3.1.3. Sketch of Methodology

	3.2. SAT Encoding
	3.2.1. Variables
	3.2.2. Clauses

	3.3. Identification of AND Fence Candidates
	3.4. Exact Synthesis Paradigm for Boolean Functions
	4. Exact Synthesis for Sub-circuits
	4.1. Impacts of Non-zero Input MD
	4.2. Integrating Scheduling into SAT Encoding
	4.3. Strategic Selection of Scheduling Solutions
	4.3.1. Identification of the Initial Scheduling Solution
	4.3.2. Identification of the Subsequent Scheduling Solution

	4.4. Exact Synthesis Paradigm for Sub-circuits
	4.5. Classifying Exact Synthesis Queries

	5. MC-aware MD Optimization
	5.1. Overview of the Algorithm
	5.2. An FHE Circuit Optimization Flow

	6. Experimental Evaluation
	6.1. Experimental Setups
	6.2. Evaluating MC-aware MD minimization
	6.3. Evaluating FHE Circuit Optimization Flow

	7. Discussion
	7.1. The Importance of Joint MC and MD Optimization
	7.2. Extension to Arithmetic FHE Circuits
	7.3. Limitations and Directions for Future Work

	8. Conclusion
	A. Boolean Classification Techniques
	A.1. NPN Classification
	A.2. Affine Function Classification
	A.3. Proof of Theorem 1

	B. Proof of Theorem 2
	C. Proof of Signature Derivation Rules
	C.1. Proof of Lemma 1
	C.2. Proof of Lemma 2
	References

