
SPFD-Based Delay Resynthesis
Andrea Costamagna, Chang Meng, Giovanni De Micheli
Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

Abstract—We propose novel algorithms for post-mapping delay
optimization, referred to as delay resynthesis. The state-of-the-
art approach optimizes delay by rewriting with optimal local
substructures. However, it is limited to local transformations,
does not exploit don’t cares, and relies on a basic decomposition
heuristic to handle subnetworks with more than four inputs.
Our method overcomes these limitations by employing modern
resynthesis techniques for non-local optimization and integrating
don’t care conditions. In addition, we introduce a more powerful
decomposition strategy that extends beyond prior methods.
Central to our approach is the set of pairs of functions to be
distinguished (SPFD), a Boolean function representation that
captures functional dependencies between nodes for finer-grained
logic restructuring. Experimental results on EPFL benchmarks
show a 5.70% delay improvement over the state of the art.

Index Terms—Resynthesis, Delay, SPFD

I. INTRODUCTION

WHILE the demand for higher computing performance
continues to grow, CMOS technology has entered the

deep nanometer regime, where financial and physical con-
straints limit further speed improvements through transistor
scaling alone. This challenge necessitates greater emphasis on
design-level optimization of digital systems.

This challenge can be addressed at the logic synthesis level
by enhancing delay-oriented optimization. Several techniques
have been proposed to perform rewriting aimed at reducing
the critical path of combinational circuits [1]. The theory of
equioptimizable arrival time patterns (TEAP) underpins the
state of the art in delay optimization [2]. TEAP enables one to
construct databases storing several circuits for each function,
ensuring optimal delay for specific arrival time profiles.

However, TEAP-based approaches are constrained by mem-
ory limitations, restricting databases to 4-input functions and
relying on simple decomposition heuristics to extend sub-
circuit sizes. Additionally, these methods use only local struc-
tural information and do not exploit don’t cares.

This paper addresses these limitations by integrating TEAP
within a modern resynthesis engine that enables non-local
and don’t care-aware database-based rewriting. Furthermore,
inspired by recent works on delay-driven LUT-mapping [3],
we enhance the decomposition heuristic for scaling up sub-
circuit replacements with a novel don’t care-aware synthesis
technique for networks of four input look-up tables (4-LUT).
Applied to the EPFL benchmarks after delay-oriented opti-
mization and mapping, our approach reduces delay by 5.70%
compared to the state-of-the-art, demonstrating effectiveness.

II. BACKGROUND

A. Logic Synthesis Basics
A Boolean network is a directed acyclic graph (DAG) in

which nodes represent logic gates and edges represent wires.

This work was supported in part by Synopsys.

A mapped network is a Boolean network where each node
corresponds to a cell from a technology library. The arrival
time of a node x, tAx , is the earliest time at which its output
stabilizes. The required time, tRx , is the latest time at which a
signal x can change without increasing the circuit delay.

Each node x in a combinational circuit implements a
Boolean function, referred to as its global node functionality.
A dependency cut is a subset C = (x,L), where L consists of
nodes that do not lie on any path from x to a circuit output.
The Boolean function f , called the cut functionality, expresses
the global functionality of x in terms of L, i.e., x = f(L).

A dependency cut C = (x,L) is a structural cut if the circuit
contains a sub-network that implements the cut functionality.
A reconvergence-driven cut is a structural cut constructed
using heuristics that maximize the number of reconvergent
paths from the leaves L to the root x [4].

B. Boolean Basics

We represent an incompletely specified Boolean function f :
Bn → {0, 1, ∗} as two completely specified Boolean functions:

1) The onset τ : Bn → B τM =1/0⇔fM =1/0
2) The careset µ : Bn → B µM =0⇔fM =∗.

Where fM is the value of the function f at minterm M ∈ Bn.
The information contained in a Boolean function is its

capability to distinguish two minterms (M,K) when τMµM ̸=
τKµK . The set Υf = {(τ, µ)} compactly encodes this
information, often called set of pairs of functions to be
distinguished (SPFD) or information graph (IG) [5].

Let xi : Bn → B be a Boolean function with SPFD
Υxi

. The SPFD difference Υf − Υxi
= {(τ, µxi), (τ, µx

′
i)}

generates another SPFD, where the information shared by
xi and f is removed. Each subset (τ, µi) identifies a dis-
joints set of minterms not yet distinguished after using the
information in xi. This operation can be iterated: Υf −
Υxi
−Υxj

= {(τ, µxixj), (τ, µx
′
ixj), (τ, µxix

′
j), (τ, µx

′
ix

′
j)}.

{..(τi, µi)..} contains the same information as {..(τ ′i , µi)..}.
The set C = (x,L) is a dependency cut if and only if the

SPFDs of the global functions of x and L = {xi}Li=1 satisfy

Υx −
∑
xi∈L

Υxi
= ∅ (1)

In this paper we propose a timing-aware algorithm for select-
ing non-structural dependency cuts using Eq. (1).

C. Exact Delay Resynthesis

Let us define the main problem in delay optimization:

EXACT DELAY SYNTHESIS

Given: 1) A Boolean function f : Bn 7→ Bm;
2) A set of input arrival times t = (ti)

n
i=1;

3) A technology library ℓ=(gatei)
nL
i=1.

Find a circuit N synthesizing f , and minimizing
the output(s) arrival time mintA(N)(f, t, ℓ).

This problem is intractable, so its optimum solution can
only be found for small values of n. Hence, larger circuits
are first represented as sub-optimal networks, and optimized
through resynthesis, which amounts to replacing sub-optimal
circuits in a cut with an optimum alternative from a database.

Since arrival time pattern are real valued vectors t ∈ Rn,
defining a complete delay-based database was considered an
unfeasible task until the theory of equioptimizable arrival
patterns (TEAP) [2] enabled defining finite-size databases.

D. Theory of Equioptimizable Arrival Patterns
Let dMUX be the delay of a multiplexer from the gate

library L. Using Shannon decomposition, we can prove that
the exact delay circuit of an n-input function must satisfy
mintA(N)(f, t, ℓ) ≤ ∆(n, ℓ)+max(t) = n ·dMUX +max(t).

Using this observation, Amarù et al. [2] devised the com-
pression strategy sketched in Fig. 1, which maps an arrival
time pattern t to t′ = Γ(t), while ensuring that t and t′ share
the same exact delay circuit. This compression strategy maps

Fig. 1. Arrival time lossless compression t′ = Γ(t) ∈ [0,∆(n,L)]n.

infinitely many input arrival patterns to (∆(n, ℓ)+1)n classes,
enabling resynthesis through database-based rewriting.

Memory constraints limit databases to 4-input functions.
However, less local rewriting using structural cuts with size
L > 4 can optimize delay further. The authors address
this issue using decomposition. First, they attempt 2-operands
disjoint support decomposition on the latest arriving variable:
f(S) = xi⊙h(S\xi). In case of success, the problem reduces
to synthesizing a (L− 1)-input function. Otherwise, Shannon
decomposition reduces the problem to the synthesis of two
(L − 1) input functions: f(S) = x′

if0(S\xi) + xif1(S\xi).
When the support size is 4, the database is used. In this paper,
we propose a more powerful decomposition using SPFDs.

III. SPFD-BASED DELAY RESYNTHESIS

A. Delay-Oriented Resynthesis
Algorithm 1 outlines the resynthesis engine, whose goal is

to reduce the arrival time of the nodes on the combinational
critical paths. For each of these nodes, a window is built from

a reconvergence-driven cut, and a set of candidate dependency
cuts is obtained by both structural cut enumeration and non-
structural cut selection, as discussed in Sec. III-D.

Each candidate cut has size at most k, which is a parameter
of the engine. Based on this value, the cut functionalities
are decomposed into 4-LUT networks using the SPFD-based
decomposition discussed in Sec. III-E. Next, we traverse the
4-LUT networks in topological order. For each 4-LUT we
identify the patterns never appearing at its inputs, that are local
don’t cares that we exploit during database look-up. This gives
us a pair (τ, µ) for each 4-LUT, where τ, µ : B4 → B.

We enumerate all the acceptable functions by assigning the
don’t care minterms to the onset or to the offset, and select
the database entry yielding the smallest arrival time. After
synthesizing the entire 4-LUT network, if the output arrival
time is lower than the target node, we substitute it.

This approach introduces several key innovations:
• Section III-B presents a systematic method for selecting

arrival time patterns to populate the database.
• Section III-C details our strategy for constructing

databases with up to 6-input gates.
• Section III-D introduces our algorithm for selecting non-

structural cuts, extending optimization beyond the locality
constraints of structural-based state-of-the-art approaches.

• Section III-E describes our SPFD-based heuristic for
synthesizing 4-LUT networks.

Algorithm 1: Delay-Oriented Resynthesis
Data: circuit G, database D, support size L
Result: A new mapped circuit optimized for delay

1 for v ∈ G on critical paths do
2 Build and simulate a window for node v;
3 cands← {Delay-aware dependency cuts of size L};
4 cands← {Enumeration of structural cuts of size L};
5 Nbest ← ∅, tAbest = tAx ;
6 for (x,L, f) ∈ cands do
7 N ← ∅;
8 4LUTs←SPFD-decomposition(f);
9 for τ ∈ 4-LUTs do

10 µ← Compute Satisfiability don’t cares;
11 Ni← delay-match with don’t cares from D;
12 N← add Ni;

13 if tA(N) < tAbest then
14 (Nbest, t

A
best)← (N , tA(N));

15 if tAbest < tAx then
16 x← Substitute with Nbest;

17 return the optimized circuit;

B. Lossy Quantization of the Arrival Time Patterns
Although finite, the number of arrival pattern classes identi-

fied by TEAP, (∆(n, ℓ)+1)n, is too large to be stored. Lossy
quantization is needed to identify tractable delay sets [2].

A lossy quantization procedure identifies a characteristic
subset of all possible input arrival time patterns. We employ k-
means clustering, which aims to partition a set of observations

into k clusters in which each observation belongs to the cluster
with the nearest mean, serving as a prototype of the cluster.

We enumerate structural cuts over the EPFL benchmarks
after delay-oriented technology mapping. The arrival time
patterns were re-normalized using the transformation Γ and
sorted by arrival time to induce an ordering. Next, we identify
the k-means, quantize them onto intervals of duration dMUX .
With this procedure we select the set of input arrival time
patterns {0, 0, 0, 0}, dMUX{3, 3, 0, 0}, and dMUX{3, 0, 0, 0}.
The enumeration of all possible 11 permutations generates the
input arrival patterns used to populate the database.

C. Database Construction
We construct a database using circuit enumeration with

gates from the 7nm asap7 technology library. Unlike prior
works with simplified libraries and uniform gate delays, we
incorporate precise pin-to-pin delays from the .genlib file.

For each arrival time pattern, we construct D2, a database of
circuits using 1 and 2-input gates. Arrival times are discretized
using a quantization time step, chosen to be smaller than the
smallest pin-to-pin delay in L. The database is built level by
level by sweeping over pairs of existing sub-circuits in order
of arrival, evaluating each gate according to pin-to-pin delays,
and adding a new sub-circuit if it implements a unique function
and its arrival time aligns with the current quantization step.

This method produces a near-optimal database in minutes.
Minor arrival time fluctuations occur due to quantization errors
and pin-to-pin delay variations, which prevent a strict ordering.

Since exhaustive enumeration with larger gates is infeasi-
ble, we employ an incremental approach, in which we use
resynthesis to optimize a database, while accepting some
sub-optimality. After generating D2, we construct D3 (up
to 3-input gates) by considering triplets of the earliest N
arriving functions and substituting entries based on arrival
time comparisons. This process continues until D6, which is
a database of 4-input functions using up to 6-input gates.

D. Non-Structural Cut Selection Using Delay Information
Our algorithm supports rewriting with nonstructural cuts,

enabling nonlocal optimizations by uncovering nontrivial de-
pendencies between a node and distant parts of the circuit that
are overlooked during technology mapping or structural-cut-
based rewriting [6]. This section describes how these essential
dependencies are identified.

Algorithm 2: Delay-Aware Dependency Cut Selection

Data: A node x, a set of candidate nodes D = {xi}Ni=0

Result: A dependency cut C = (x,L) with |L| ≤ L
1 tAmax ← tAx − ⟨d⟩, tAmin ← minxi∈D tAxi

;
2 for t = [1, N] do
3 for xj ∈ Dt = {xi : t

A
xi

< tAmin + t
tAmax−tAmin)

N } do
4 Υ← Υx −Υxj

L ← {xj};
5 while Υ ̸= ∅ ∧ |L| < k do
6 L ← L ∪ argminxl∈Dt

(|Υ−Υxl
|)

7 if Υ = ∅ then
8 return C = (x,L);

Let Υ = {(τi, µi)}Pi=1 be an SPFD. The number of
remaining minterms to be distinguished can be computed as
|Υ| .=

∑P
i=1 |τiµi|1|τ ′iµi|1. This metric enables the design of

algorithms for solving Eq. (1), as the one in Algorithm 2.
Given a node x, we identify a set of candidate nodes D by

constructing a subnetwork (window) from a reconvergence-
driven cut rooted in x [4]. We evaluate the functionality of
each node through exhaustive simulation of the sub-network.
We identify the earliest arrival time tAmin and estimate the
latest arrival time as the difference between the arrival time of
the target node and the average cell delay in the database ⟨d⟩.

We partition D into N subsets based on arrival time intervals
[tAmin, tmin+i(tAmax−tAmin)/N], i ∈ [1, N], prioritizing early-
arriving variables to aid delay-reducing rewriting. For each
subset, we seek a dependency cut of size k, initializing the
search by enforcing one node in the solution—capturing cases
missed by greedy methods. We then proceed greedily.

E. SPFD-Based Decomposition
Let f : BL → {0, 1, ∗} be the cut functionality of a

dependency cut C = (x,L). We decompose f as a network
of 4-LUTs, to be replaced with database entries. We devise
the delay-aware SPFD-based decomposition reported in Algo-
rithm 3. Fig. 2 illustrates the recursive step of the procedure.

Let S = {xi}Li=1 ⊆ L be the functional support of f , sorted
so that ti ≥ ti+1. The termination condition of the recursion
occurs when |S| ≤ 4: a 4-LUT is obtained by interpolating
the support functions {xi}L−1

i=0 with the target f .
If the termination check fails, we delay the latest arriving

variables x0 and x1, placing them in the support of the
top 4-LUT h. The SPFD difference Υ − Υx0

− Υx1
=

{(τ, µ0), (τ, µ1), (τ, µ2), (τ, µ3)} lists minterm pairs that x0

and x1 cannot distinguish, necessitating two new functions,
p and q. We derive candidates for p and q by enumerating
functions that retain unsynthesized information from the SPFD
difference. Fig. 2 shows the enumeration of the 28 candidates:

1) p = (τµ0, µ0) q = (τ(µ1 + µ2 + µ3), µ1 + µ2 + µ3)
...

28) p = (τ ′µ0+τµ2, µ0+µ2) q = (τ ′µ1+τµ3, µ1+µ3)

Fig. 2. Decomposition of a k-LUT into a 4-LUT, and two (L − 1)-LUTs
and SPFD-enumeration of candidates p and q.

We iterate through the candidate functions p and q, extract
their functional supports, and select the most suitable ones

based on two criteria: (i) the earliest arriving variables and (ii)
a measure of total support size to favor compact synthesis.

This decomposition procedure inherently includes both
Shannon decomposition and two-operand disjoint support de-
composition. Explicitly, the functions p17 = (τx0, µx0) and
q17 = (τx′

0, µx
′
0) identify the Shannon decomposition.

Algorithm 3: SPFD-decomposition

Data: f = (τ, µ), support S = {xi}L−1
i=0 sorted by t

Result: A 4-LUT network implementing f
1 if L ≤ 4 then
2 return h←interpolate from {xi}L−1

i=0 and f ;

3 {(pi, qi)}28i=1 ← Υf −Υx1 −Υx0 ;
4 tAbest ← tAx1

i∗ ← 17 P ∗ ← (L− 1)2;
5 for i ∈ [1, 28] do
6 Sp ←functional support pi sorted by arrival time;
7 Sq ←functional support qi sorted by arrival time;
8 if Sp,0 ̸= x0 ∧ Sq,0 ̸= x0 then
9 tAworst = max{maxxi∈Sp

(tAxi
),maxxi∈Sq

(tAxi
)};

10 if tAworst < tAbest then
11 (tAbest, i

∗)← (tAworst, i);

12 else if (tAworst = tAbest) ∧ (|Sp||Sq| ≤ P ∗) then
13 (P ∗, i∗)← (|Sp||Sq|, i);

14 p, q ← pi∗ , qi∗ ;
15 yp ←SPFD-decomposition(p,Sp);
16 yq ←SPFD-decomposition(q,Sq);
17 return h←interpolate from {x0, x1, yp, yq} and f ;

IV. EXPERIMENTS

We compare the state-of-the-art engine (EDR) [2] with our
engine (IDR) under two baseline conditions. In both cases,
we begin with the following ABC flow [7]: first, we apply
resyn2rs twice to remove redundancies and reduce the
number of nodes. Finally, we minimize the circuit depth with
SOP-balancing (if -g), and we do mapping to the asap7
technology library, followed by delay resynthesis. For EDR, we
use a database containing up to 3 input gates, which is better
than any database achievable with enumeration. For IDR, we
employ the database constructed as described in Section III-C.

Table I presents the results for the EPFL benchmarks. In the
first experiment, we perform resynthesis after area-oriented
mapping using L = 4 → 5 → 6 → 6, with 8 structural
cuts. This setup investigates high-effort delay-optimization
in a region of the design space with abundant optimization
opportunities. Under comparable area overhead, IDR achieves
a 7.19% delay improvement over EDR.

In the second experiment, we perform delay-oriented map-
ping to investigate improvements beyond initial delay-driven
optimization and mapping. We enumerate 12 structural cuts
and perform resynthesis with L=4→5→6→7→8, obtaining
a delay improvement of 5.70% over the state of the art.

V. CONCLUSIONS

This paper discusses new algorithmic techniques for delay-
oriented optimization after technology mapping. We address

TABLE I
COMPARISON WITH STATE-OF-THE-ART DELAY RESYNTHESIS [2]

Area-Oriented Mapping

benchmark area delay runtime
baseline EDR[%] IDR[%] baseline EDR[%] IDR[%] EDR[s] IDR[s]

adder 70.40 104.60 91.52 3050.05 −32.08 −66.22 0.15 1.74
bar 129.61 −0.00 10.45 198.66 0.00 −0.26 0.03 0.23
div 2758.48 0.47 0.44 51598.82 −0.21 −0.28 9.44 8.68
hyp 13930.18 11.23 35.75 326123.66 −3.68 −11.33 278.24 1108.98
log2 1578.50 4.53 3.92 5531.19 −12.40 −14.47 147.92 100.28
max 152.58 151.39 14.43 1794.88 −4.54 −18.36 0.82 0.78
mult 1387.33 5.02 7.28 3641.84 −13.62 −28.52 42.31 41.07
sin 296.15 16.94 20.28 2683.45 −13.55 −18.13 19.44 19.44
sqrt 1254.19 58.49 133.07 87101.96 −14.46 −24.09 50.24 162.33
square 1089.26 5.31 5.52 3292.83 −29.89 −53.64 1.82 4.06
arbiter 467.82 5.21 4.40 851.30 −0.73 −1.16 0.43 0.81
cavlc 32.78 0.15 10.92 228.92 −1.29 −9.35 0.01 0.10
ctrl 5.85 8.38 16.75 125.05 −2.27 −12.32 0.00 0.16
dec 27.06 5.28 8.02 86.33 −4.04 −7.41 0.02 0.06
i2c 56.73 4.78 5.82 246.74 −19.48 −23.34 0.01 0.05
int2float 10.77 0.00 4.18 175.88 0.00 −2.22 0.00 0.15
memctrl 2063.17 0.68 0.65 1386.03 −6.97 −9.61 2.25 2.71
priority 29.40 66.05 99.05 1527.32 −35.16 −34.12 0.05 0.48
router 9.03 16.06 27.35 319.40 −17.59 −21.44 0.01 0.05
voter 548.25 1.56 1.42 1003.74 −4.41 −3.97 4.86 5.08

23.31% 25.06% −10.82% −18.01% 27.91s 72.86s

Delay-Oriented Mapping

benchmark area delay runtime
baseline EDR[%] IDR[%] baseline EDR[%] IDR[%] EDR[s] IDR[s]

adder 82.67 19.41 73.70 1712.20 −3.92 −65.67 0.22 3.13
bar 183.25 −0.00 −0.00 158.12 0.00 0.00 0.49 4.05
div 3480.78 0.44 1.90 29100.80 −0.17 −0.24 165.28 97.54
hyp 23548.87 0.11 0.36 182533.34 −0.01 −0.02 303.47 425.21
log2 2405.75 0.36 0.61 3061.95 −0.03 −0.10 513.72 475.41
max 187.24 13.70 113.11 1150.23 −5.80 −16.79 3.32 11.98
mult 2089.54 0.43 1.59 2063.06 −1.06 −15.85 75.29 89.57
sin 526.48 0.09 0.60 1464.55 0.00 −0.01 176.86 180.27
sqrt 3471.26 1.84 3.91 44043.51 −0.00 −0.37 158.86 325.34
square 1133.42 2.23 3.78 1583.30 −10.84 −32.29 2.55 4.89
arbiter 448.25 1.89 0.56 500.84 −0.04 −0.76 0.95 1.30
cavlc 39.10 −0.00 0.26 160.48 0.00 0.00 0.04 0.34
ctrl 7.72 −0.00 11.01 91.42 0.00 0.00 0.01 0.15
dec 27.44 0.00 25.15 66.15 0.00 −0.45 0.04 0.95
i2c 62.73 −0.00 3.78 133.82 0.00 −1.11 0.03 0.25
int2float 12.29 0.41 10.09 139.55 −0.08 −1.38 0.03 0.39
memctrl 2267.93 0.09 0.74 800.37 −0.03 −0.23 3.37 6.62
priority 35.15 −0.00 7.74 564.25 0.00 −0.70 0.08 0.32
router 14.39 1.18 1.18 177.79 0.00 0.00 0.03 0.17
voter 1313.12 0.12 0.73 631.59 0.00 −0.00 13.97 21.78

2.11% 13.04% −1.10% −6.80% 70.93s 82.48s

the limitations of a state-of-the-art engine, achieving substan-
tial improvements, with an average delay reduction of 5.70%.
Future works will use this engine for design space exploration.

ACKNOWLEDGEMENTS

The authors thank Alessandro Tempia Calvino and Alan
Mishchenko for the insightful discussions.

REFERENCES

[1] W. Yang, L. Wang, and A. Mishchenko, “Lazy man’s logic synthesis,” in
Proceedings of the International Conference on Computer-Aided Design,
2012, pp. 597–604.

[2] L. Amarú, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, P.-E. Gail-
lardon, J. Olson, R. Brayton, and G. De Micheli, “Enabling exact delay
synthesis,” in 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2017, pp. 352–359.

[3] A. T. Calvino, G. De Micheli, A. Mishchenko, and R. Brayton, “Enhanc-
ing delay-driven lut mapping with boolean decomposition,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
2024.

[4] H. Riener, S.-Y. Lee, A. Mishchenko, and G. De Micheli, “Boolean rewrit-
ing strikes back: Reconvergence-driven windowing meets resynthesis,” in
2022 27th Asia and South Pacific Design Automation Conference (ASP-
DAC). IEEE, 2022, pp. 395–402.

[5] A. Costamagna, A. T. Calvino, A. Mishchenko, and G. De Micheli, “Area-
oriented resubstitution for networks of look-up tables,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2025.

[6] ——, “Area-oriented optimization after standard-cell mapping,” in Pro-
ceedings of the 30th Asia and South Pacific Design Automation Confer-
ence, 2025, pp. 1112–1119.

[7] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Computer Aided Verification: 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings
22. Springer, 2010, pp. 24–40.

