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Abstract—This paper presents a novel resynthesis engine for
minimizing the dynamic power of digital circuits. Traditional
logic synthesis methods primarily focus on zero-delay tog-
gles—logic state changes occurring between the start and end of a
clock cycle. In contrast, our engine targets both zero-delay toggles
and glitches, unintended transitions within a clock cycle caused
by path imbalances. Glitches significantly contribute to power
consumption in arithmetic circuits, making their minimization a
critical challenge in electronic design. The proposed method uses
a database of Pareto-optimal netlists to replace sub-networks
in the target circuit with power-efficient alternatives. These
replacements are guided by a simulation-driven cost function that
evaluates workload-independent switching activity and penalizes
gates with high fan-out. We call our approach Lazy Man’s
Resynthesis because it builds on an algorithm named Lazy
Man’s Synthesis, extending it from technology-independent delay
optimization to post-mapping power optimization. Applied to the
ISCAS and EPFL benchmarks, our method reduces glitching
activity by 4.72% and dynamic power by 9.44%, achieving a
7.61% improvement over the state-of-the-art.

Index Terms—Resynthesis, Dynamic Power, Glitching

I. INTRODUCTION

M INIMIZING the power consumption of digital circuits
is a fundamental concern in electronics. Poor design

choices in the early stages of the design flow can propagate
biases that degrade circuit’s efficiency. Hence, addressing these
issues early in the process, such as at the logic synthesis stage,
is crucial for optimizing circuits’ performance metrics.

A significant contributor to dynamic power consumption
comes from glitches, unwanted transitions within a single
clock cycle. In arithmetic circuits, glitches can account for up
to 70% of the dynamic power consumption [1]. As systems
increasingly rely on arithmetic-intensive operations, mitigating
glitches is a critical challenge of modern design automation.

Logic synthesis typically consists of two stages: optimiz-
ing an abstract circuit representation and transforming it
into a gate-level netlist through technology mapping. How-
ever, estimating glitching activity accurately from technology-
independent representations is challenging. This limitation
highlights the need for netlist-level restructuring after tech-
nology mapping, a process known as resynthesis [2].

This paper presents a versatile resynthesis engine for mini-
mizing power in digital circuits. The proposed engine extends
the Lazy Man’s Synthesis (LMS) paradigm to the mapped
design space, enabling efficient power optimization. Orig-
inally developed for delay-oriented, technology-independent

optimization, LMS leverages low-cost substructures identified
during graph traversal [3]. In our approach, LMS is adapted
to address structural issues, such as path imbalances in recon-
vergent paths, which are a major source of glitching.

A key advantage of our engine is the possibility to use it
for workload-independent power estimation and optimization,
setting it apart from most prior works. Experimental results on
the EPFL and ISCAS benchmarks demonstrate its effective-
ness, achieving a 4.72% average reduction in glitching activity
and 9.44% in dynamic power consumption.

II. BACKGROUND

A. Logic Synthesis Basics

A Boolean network is a directed acyclic graph where nodes
represent logic gates and edges represent wires. And-inverter
graphs (AIGs) are technology-independent Boolean networks
where each node is a two-input AND gate, and complemented
edges identify inverters. A mapped network is a Boolean
network where each node is a cell from a technology library.
Technology mapping is the process of converting a technology-
independent Boolean network into a mapped network [4], [5].

Investigating switching requires identifying the time inter-
vals when toggles occur. The arrival time of a node v, tAv ,
is the earliest time at which its output is stable. The sensing
time, tSv , is the earliest time at which a signal can change.
The activity interval is the interval [tSv , t

A
v ] in which the node’s

output might toggle within a clock cycle.
Each node v in a combinational circuit implements a

Boolean function, named global node functionality. A depen-
dency cut is a subset C = (v,L), where L contains nodes that
are not on any path from v to any circuit’s output and such
that there is a Boolean function f , named cut functionality,
relating the global functionalities of v and L as v = f(L).

A dependency cut C = (v,L) is a structural cut if the circuit
contains a sub-network implementing the cut functionality. A
reconvergence-driven cut is a structural cut built following
heuristics that maximize the number of reconvergent paths
from the leaves L to the root v. Reconvergence is a key
concept for this paper because it generates don’t cares [6],
important degrees of freedom for Boolean optimization, and
unbalanced reconvergent paths are a source of glitching [7].

B. Dynamic Power Optimization in Logic Synthesis

The power dissipated by a gate vi depends on its switching
activity S(vi), which is influenced by the input switching
patterns and the circuit’s structure. Let Vdd denote the supply979-8-3315-2801-0/25/$31.00 ©2025 IEEE



voltage, and C(vi) the output load of node vi. The average
dynamic power dissipation can be expressed as:

P =
1

2

n∑
i=1

V 2
ddS(vi)C(vi) (1)

Accurately estimating S(vi) is crucial for low-power syn-
thesis, but it is challenging because workloads are rarely
known at design time. Additionally, the vast input space in
industrial-scale designs makes exhaustive simulation impracti-
cal, and sampling input pattern pairs for statistically significant
evaluation becomes computationally intractable.

Switching activity consists of two components: zero-delay
switches S0(vi), which are logic transitions within a clock
cycle, and glitches Sg(vi), unintended transitions that happen
before the gate stabilizes [7]. Several techniques have been
proposed to optimize power before and during technology
mapping. Most approaches primarily target zero-delay switch-
ing [8]. Although efforts to mitigate glitches during LUT
mapping have been explored [9], extending these techniques
to standard-cell-based designs remains largely unexplored.

Panda et al. [2] proposed addressing glitching after map-
ping, using an optimization algorithm based on rewiring,
which replaces one or more gate inputs with other network
signals while preserving the design’s functionality. They intro-
duced heuristics to reduce switching activity, accounting for
glitching, and employed statistical methods to estimate power
consumption when workloads are unknown.

C. A Cost Function Aligned with the Mapping Assumptions

Technology libraries offer multiple size instances for each
cell type, with larger cells providing higher driving strength.
To improve efficiency, modern mappers rely on characteristic
cells with load-independent pin-to-pin delays, assuming that
driving constraints can be met through gate sizing [4].

Gate sizing can also mitigate unwanted toggles by balancing
signal delays and aligning information flow [10]. Another rel-
evant approach, gate freezing, prevents unnecessary transitions
using gates that can be frozen with a control signal [11].
However, these techniques cannot resolve structural sources
of glitching, such as imbalances on reconvergent paths.

This work addresses this challenge by optimizing mapped
netlists to minimize the following cost function:

F =

n∑
i=1

S(vi)|FO(vi)| (2)

Minimizing this cost function is important for two key
reasons. First, the output load of a gate is influenced by factors
such as the input load of the nodes in its fan-out and wiring
capacitances. While these quantities are unavailable during
mapping, a first-order approximation assumes the output load
is proportional to the fan-out size: C(vi) ∝ |FO(vi)|. This
assumption combined with the load-independent delay model
implies that F ∝ P . Additionally, F favors netlists with
smaller fan-out sizes, reducing the likelihood of selecting large
cells during sizing and minimizing internal gate switching.

D. Boolean Network Optimization and Resynthesis

Logic synthesis algorithms fall into three categories:
1) Cut-based rewriting: Identifies structural cuts within a

circuit and replaces the corresponding sub-networks with
functionally equivalent, lower-cost alternatives [12].

2) Window-based resubstitution: Extracts large sub-
networks, referred to as windows, performs exhaustive
simulation to determine the local functionality of
the nodes they contain, and replaces portions of the
windows with more efficient sub-networks [13].

3) Simulation-guided resubstitution: A specialized form of
window-based resubstitution in which the functional
information of the window’s nodes is represented by
simulation signatures, Boolean vectors that approximate
the global functionality of the nodes [14].

These techniques can be applied to both technology-
independent representations (e.g., AIGs) and mapped net-
works. In the latter case, logic optimization is referred to
as resynthesis. Resynthesis leverages technology-specific in-
formation while maintaining computational efficiency through
simple delay models and lightweight data structures.

OPTIMIZATION WITH
STRUCTURAL CUT

OPTIMIZATION WITH
NON-STRUCTURAL CUT

TARGET NODE

FUNCTIONAL
INFORMATION

CUT FUNCTONALITY

SUBSTITUTED NODE

STRUCTURAL CUT

NON-STRUCTURAL 
CUT

Fig. 1. Resynthesis techniques illustrated. The node v ( ) serves as the root for
a reconvergent-driven cut C = (v,L = {li}4i=0), defining a window of nodes.
Each node in the window is simulated to extract functional information. Two
optimizations follow: (top) a structural cut with blue leaves ( ) or (bottom) a
non-structural cut with red leaves ( ). In both cases, the cut-functionality is
extracted, an optimal sub-network is selected from a database, and the original
root node ( ) is replaced with a new node ( ) preserving the functionality.

Figure 1 illustrates two possible transformations within
a mapped network. The top example illustrates cut-based
rewriting, while the bottom example shows simulation-guided
resubstitution using small simulation signatures. If exhaustive
simulation of the leaves were employed instead, the latter ex-
ample would serve to exemplify window-based resubstitution.

A notable example of cut rewriting is Lazy Man’s Synthesis
(LMS) [3]. LMS minimizes the depth of AIGs by exploiting
smaller substructures that are optimized for specific input
arrival profiles. These substructures are extracted from larger
AIGs and stored in a database for use as rewriting candidates.

An emerging trend in logic synthesis involves orchestrating
multiple optimization strategies during graph traversal [15].
For instance, a recently proposed area-oriented resynthesis



engine integrates cut-based rewriting, window-based resub-
stitution, and simulation-guided resubstitution [16]. The en-
gine leverages a database of precomputed netlists, derived
by mapping minimum-size AIGs, to guide optimization. This
work extends the resynthesis engine in [16] to target power
optimization. Inspired by the LMS approach, databases are
constructed through the traversal of large mapped networks.

III. POWER-ORIENTED LAZY MAN’S RESYNTHESIS

This section presents our novel resynthesis engine for
power-oriented optimization of combinational circuits after
technology mapping, assuming that no information on the
workload is available. We propose an efficient functional sim-
ulator for accurate power estimation, a timing-aware Boolean
function canonization technique for compact netlist storage,
and dominance relations, inspired by Lazy Man’s Synthesis,
to construct a database with close-to-optimum sub-networks.

A. Word-Level Simulation for Power Evaluation

We propose a word-level simulator for detailed analysis of
signal transitions, enabling efficient power evaluation. Each
node v in the circuit stores a Boolean matrix φv ∈ BP×T ,
where P is the number of input pattern pairs and T is the
number of quantization steps for the interval [tSv , t

A
v ]. Column

j of φv corresponds to time tjv = tSv + (tAv − tSv )j/(T − 1).

GLITCH

Fig. 2. Representation of the power simulator for a three-input pairs workload
for (a, b, c): (0, 0, 0) → (0, 0, 0), (1, 0, 0) → (0, 0, 0), and (0, 1, 0) →
(1, 0, 0). The activity interval of each node v ([tSv , t

A
v ]) is quantized into

T = 4 steps, identifying a Boolean matrix φv ∈ B3×4, where each column is
associated with a quantization step of the activity interval. To obtain φm(tm),
we must evaluate the EXOR function at its fanins, in the quantization step
corresponding to ta= tSa+(tm−δa,m−tSa )/(T−1) and tb= tSb+(tm−δb,m−
tSb )/(T−1), with δv,m the pin-to-pin delay from the technology library.

Each column j of φv is computed in parallel by evaluating
the corresponding columns of the fan-in node matrices. For
each fan-in and time-step, the relevant column in the fan-in
matrix is determined by shifting the simulation time tjv by the
pin-to-pin cell delay and extracting the appropriate column
based on the fan-in’s activity interval. Efficient simulation
is achieved by representing each gate as a chain of binary
Boolean operators, enabling word-level evaluation [17]. This
approach allows the rows of φv to be populated in parallel.
Algorithm 1 outlines the computations performed by our
simulator to evaluate the cost function F for a netlist G, given
a workload W. Specifically, S(v) denotes the total switching
activity of node v, S0(v) represents its zero-delay switching,

Algorithm 1: Window-Based Power Estimation

Data: Mapped network G, workload W ∈ BI×P×T

Result: A power estimation F for G.
1 {φv}v∈G ← simulate G with W;
2 for v ∈ G do
3 S(v) = 1

P

∑P
p=1

∑T
t=1 |φv

p,t ⊕ φv
p,t−1|;

4 S0(v) =
1
P

∑P
p=1 |φv

p,0 ⊕ φv
p,T−1|;

5 Sg(v) = S(v)− S0(v);

6 return
∑

v∈G S(v) · |FO(v)|;

and Sg(v) isolates its glitching activity. These computations
are efficiently executed using bit-wise operations, leveraging
word-level Boolean differences and pop-count techniques.

After simulating the network with the workload W, we
obtain a simulation matrix φv for each node v (line 1),
from which switching activity and dynamic power evaluation
follow directly with efficient bit-wise operations (lines 2-
6). Figure 2 illustrates the application of the simulator to a
small network, highlighting the simulator’s ability to capture
dynamic switching activity, including glitches.

B. Leveraging the Simulator for Power-Oriented Optimization

To ensure computational efficiency, we limit the number of
pattern pairs considered to P ∼212. Let I represent the number
of primary inputs in the network. When P≪22I—a common
scenario in industrial designs—the workload W significantly
under-samples the vast space of possible input transitions.
Optimizing netlists based on this limited simulation data can
lead to suboptimal or counterproductive results, especially if
the network is later evaluated with a different workload W̃.

As described in Section II-D, our resynthesis approach
combines three strategies, two of which involve constructing
windows using the heuristic from Riener et al. [6]. This process
involves identifying a reconvergence-driven cut C = (v,L),
collecting the nodes between the root v and the leaves L, and
adding side nodes with fanins in the current set (see Fig.1).
Windows constructed in this way are optimal regions for
optimization and allow us to achieve workload independence.

The reconvergence-driven cut maximizes the presence of
don’t-cares, enabling effective Boolean optimization [6]. Addi-
tionally, these windows are particularly suitable for glitching-
aware power minimization, as unbalanced reconvergent paths
are a significant source of glitches. Furthermore, the number
of leaves of a window is considerably smaller than the number
of primary inputs. Hence, a local workload W can capture a
substantial portion of potential events at the window’s inputs.
We assume that any pattern pair might occur at the window’s
leaves since don’t-cares signals can appear as glitches.

We leverage this observation to reduce workload depen-
dence during optimization by assigning W to the matrices φv

of the window’s leaves. Efficient simulation then computes the
corresponding matrices for the other nodes within the window.
This information serves two key purposes:

1) Evaluating the reduction in power consumption when
specific nodes are removed.



2) Assessing the additional cost of incorporating a sub-
network whose inputs are nodes within the window.

Efficient simulation of sub-networks with local workloads is
a crucial step in our approach, as it allows us to compare the
current design with potential alternative restructurings.

C. Timing-Aware Permutation-Canonization

We adopt a database-rewriting approach that relies on
pre-synthesized sub-networks [16]. Inspired by modern
technology-aware synthesis [18] and LMS [3], our method
stores multiple sub-network implementations for each func-
tionality. This accounts for the fact that a sub-network’s
optimality depends on the input arrival times.

From a memory perspective, storing all possible sub-
network implementations for different arrival patterns is in-
feasible. To overcome this, we introduce a timing-aware
Permutation-canonization, which maximizes the number of
storable functions. This process ensures that only representa-
tive functions are stored, with other functions derived through
input permutations, thus reducing storage requirements. The
timing-awareness of this approach further enhances our en-
gine’s ability to optimize for balance during resynthesis.

Fig. 3. Timing-aware P -canonization of a netlist for efficient database storage.
The example assumes a cut C = (v,L) with functionality f = x2x1x′

0.
To attempt resynthesis, we first apply P -canonization to find the input
permutation yielding the lexicographically smallest truth table. Swapping x2

and x0 gives 0x08 < 0x40. The resulting characteristic function r = y′2y1y0
is symmetric in y1 and y0, so we reorder them to prioritize the earliest arrival.
Netlists are stored in the database with symmetric pins ordered so that those
with the longest path to the output pin appear first. Consequently, sorting
input variables in the reverse order enhances balancing.

The left-hand side of Figure 3 illustrates the Permutation-
canonization procedure. Given a Boolean function extracted
from a network, we identify input permutations that mini-
mize the function’s truth table lexicographically. For instance,
consider f = x2x1x

′
0 (hexadecimal representation: 0x40). By

permuting x2 and x0, we obtain f = y′2y1y0 (0x08), which
is lexicographically smaller. Input permutations are cost-free;
only the smallest representation is stored.

Given a Boolean function f , if two variables xi and xj

satisfy the condition f(..., xj , ..., xi, ...) = f(..., xi, ..., xj , ...),
e.g., x0 and x1 for f = x2(x1⊕x0), we exploit this symmetry
to enhance balancing during database matching. We assign
labels to each sub-network input based on the longest path to

the output. Inputs within the same symmetry group are then
sorted in decreasing order of path length. During matching,
inputs with the latest (earliest) arrival times are paired with
pins having the shortest (longest) path lengths.

This timing-aware matching strategy helps balance the paths
to the target node. For example, Figure 3 shows that the
variables in the symmetry group {y0, y1} are sorted by their
longest paths, assuming tAy1

> tAy0
. Balancing such paths re-

duces the potential for glitches in reconvergent sub-networks.

D. Netlist Dominance

A key challenge in optimizing database storage is determin-
ing which structures to retain, given limited space compared
to all the possible netlists. Using the LMS terminology, the
goal is to define dominance of a netlist over another one.

Let Gi and Gj be two netlists implementing the same
Boolean function f : Bn → B. Their sorted pin-to-pin delays
are {dik}nk=1 and {djk}nk=1. We define the following properties:

• Delay Dominance: Gi

D
≻ Gj if dik ≥ djk for all k, with at

least one strict inequality.
• Area Dominance: Gi

A
≻ Gj if the area of Gi is greater

than the area of Gj .
• Power Dominance: Gi

P
≻ Gj if the zero-delay power

consumption of Gi is greater than that of Gj .

If all three dominations apply, Gi is dominated by Gj (Gi≻
Gj). A netlist is Pareto-optimal if it is not dominated by any
other functionally equivalent netlist.

E. Database Construction

A key distinction of our method from prior resynthesis
techniques lies in its innovative application of the LMS ap-
proach. While traditional LMS focuses on delay-optimization
for AIGs, we extend its scope to post-mapping resynthesis and
consider metrics beyond delay.

Algorithm 2 outlines the database construction process. For
each node, we enumerate a set of structural cuts (line 2). Each
cut Ci defines a sub-network Gi (line 4) that implements a
Boolean function f (line 5). If no sub-network implementing
f exists in the database, we insert Gi (lines 6–7). Otherwise,
we evaluate Gi against the stored sub-networks based on delay,
power, and area, where power estimation is limited to zero-
delay power for efficient comparison. If Gi dominates any
stored sub-network, it replaces the weaker one (lines 10–11).
If it outperforms all stored sub-networks in at least one metric
and the database has capacity, we add it (lines 13–14). If
no additional sub-network can be stored, we retain the most
balanced one, as symmetry arguments suggest that it will
maximize the success rate in resubstitution.

This algorithm runs in linear time with respect to the
network size, ensuring high efficiency. Moreover, it can be
executed offline across various benchmarks to populate the
database. Subsequently, database lookups occur in constant
time, making the rewriting process highly efficient, as demon-
strated in the experimental section.



Algorithm 2: Database Construction
Data: A mapped circuit G, a database D
Result: The database D optimized.

1 for v ∈ G do
2 C = {(v,Li)}i ← enumerate structural cuts;
3 for Ci = (v,Li) ∈ C do
4 Gi ← get sub-network for Ci;
5 f ← extract the cut functionality;
6 if D[f ] = ∅ then
7 D[f ]← {Gi};
8 else
9 for Gj ∈ D[fs] do

10 if Gj ≻ Gi then
11 replace Gj with Gi in D;

12 else if Gi is Pareto-optimal then
13 if |D[f ]| <max capacity then
14 D[f ] = D[f ] ∪ {Gi};
15 else
16 Store the most balanced one;

17 return D;

F. Glitching-Aware Resynthesis

Algorithm 3 presents our resynthesis engine, which extends
the foundational work of [16], introduced in Sec. II-D, to
incorporate power optimization. The process starts with an
initial dynamic power evaluation to identify nodes with high
switching activity (line2). For each node v, the switching
activity S(v) is estimated by simulating a large reconvergence-
driven cut rooted at v using a local workload W. Optimization
is then applied to the top N nodes ranked by their cost
S(v)|FO(v)|, where N is an user defined parameter.

Next, the algorithm orchestrates various optimization strate-
gies to identify the optimal transformation for each window,
if any. The process begins by evaluating potential improve-
ments using the least expensive procedures: cut rewriting and
window-based resubstitution (lines 5-10). If either method can
improve the network, the best transformation is applied.

If no improvements are identified, the algorithm proceeds to
simulation-guided resubstitution, provided the node’s level in
the network does not exceed a predefined limit L (lines 11-17).
This restriction helps mitigate excessive runtime, as validating
the correctness of a substitution via equivalence checking gets
increasingly computationally expensive at higher node levels.

When substituting the root of the window v with another
node, a sub-network Gr can be removed as it becomes
redundant. The cost of Gr is calculated as:

Fr =
∑

v′∈Gr

(
S(v′)|FO(v′)|+

∑
v′′∈FI(v′)∧v′′ /∈Gr

S(v′′)

)
(3)

The second term accounts for the fact that removing a node in
Ge also eliminates its connections with nodes in its fan-ins.

Algorithm 3: LMS Resynthesis
Data: mapped circuit G, database D
Result: A new mapped circuit optimized for power

1 W ∈ BP×T ← sample a local workload;
2 G← sort the network G;
3 for v ∈ G and it++<N do
4 Build and simulate a window for node v;
5 C1, G1 ← Find the best structural cut;
6 C2, G2 ← Find window-based dependency cut;
7 R1,R2 ← reward of substituting G1 and G2;
8 if ∃R∗ > 0 and constraints satisfied then
9 vnew ← Synthesize the netlist G∗ with R∗;

10 Substitute v with vnew;

11 else if level(v) < L then
12 C3, G3 ← Find signature-based dependency cut;
13 R3 ← reward of substituting G3;
14 if R > 0 and constraints satisfied then
15 vnew ←Insert G3;
16 if vnew and v are globally equivalent then
17 Substitute v with vnew;

18 return the optimized circuit;

The cost of a candidate replacement Gc is computed by
obtaining the matrices φvi for its nodes, and computing

Fc =
∑

v′∈Gc

S(v′)|FO(v′)|+ S(vc,out)|FO(v)| (4)

The last term combines the switching activity of the output
of the candidate netlist vc,out with the fan-out nodes it would
inherit from the root of the window if the resubstitution is
successful. The reward of this replacement is R = Fr −Fc.

IV. EXPERIMENTS

In this section, we evaluate Lazy Man’s Resynthesis (LMR).
The experiments were performed on an i7-1365U CPU
machine and use the 7nm asap7 technology library [19].

A. Glitch-Aware Resynthesis After Zero-Delay Synthesis

This experiment shows that the dynamic power in circuits
optimized with traditional zero-delay synthesis techniques, can
be reduced by incorporating glitching-aware optimization.

We evaluate the EPFL and ISCAS benchmarks by apply-
ing all available power-oriented optimization algorithms in
ABC [8]. First, we apply a rewriting step to reduce area
and eliminate functional redundancies by merging equivalent
nodes. Next, we perform depth-reducing AIG balancing to
minimize glitches at the AIG level, followed by high-effort
power-oriented mapping. To further optimize the baseline for
power, we convert the network to an LUT (strash; dch;
if -p;), where efficient power-oriented logic restructuring
is available in ABC. We then run mfs -p; twice. Finally,
we apply power-oriented mapping using map -p;.

Table I shows that circuits optimized using traditional ap-
proaches exhibit glitches, which can be reduced through LMR.



The resulting network is evaluated using a random global
workload, generated through random processes with seeds
distinct from those used for the local workload. This ensures
that the quality of the results is validated on input pattern
pairs that differ from those of the local workload.Note that the
average includes both the ISCAS and the EPFL benchmarks.

TABLE I
GLITCHING-AWARE RESYNTHESIS AFTER ZERO-DELAY SYNTHESIS.

Benchmark Glitching Switching Time [s]
ABC [8] LMR ABC [8] LMR

adder 100.81 93.53 399.72 366.41 0.21
bar 953.98 874.56 1725.85 1713.04 1.31
div 83.46 70.65 9560.70 9571.96 66.73
hyp 63926.70 63418.64 130022.05 129539.99 512.34
log2 8487.71 3276.94 14576.59 9297.93 52.60
max 134.71 113.06 987.68 961.89 0.62
multiplier 9621.40 4675.39 15442.18 10448.13 34.28
sin 2333.03 603.95 3503.66 1756.83 5.19
sqrt 416.09 151.58 5099.89 5270.87 27.73
square 7086.76 6790.39 10698.16 10559.58 15.57
arbiter 198.12 178.12 2136.80 1981.88 440.59
cavlc 67.14 65.98 182.13 186.84 0.30
ctrl 10.55 10.64 31.37 32.24 0.05
dec 8.48 14.44 23.13 40.74 0.54
i2c 79.89 75.07 272.20 264.69 1.10
int2float 20.15 19.98 63.48 66.37 0.05
mem_ctrl 2702.79 2164.49 8788.43 8373.39 698.63
priority 101.23 88.87 307.48 291.42 0.21
voter 8877.67 7127.10 11516.02 9656.27 14.97

−14.81% −6.16% 62.53s

B. Comparison With State-of-the-Art

The algorithm most similar to ours is that of Panda et al. [2].
We adapt their method within our framework to ensure a fair
comparison. Specifically, we implement their procedure as a
window-based resynthesis. For each node v, we extract the
node’s function f and identify the permissible functions of
the fan-in node q. We then use this set to rewire the fan-in to
a node using the cost functions in Eq. 3 and Eq. 4.

The results, shown in Table II, compare both engines ap-
plied to netlists mapped after area-oriented optimization, AIG
balancing, and aggressive power-oriented technology mapping,
followed by resynthesis. The table is divided into two sections:
arithmetic benchmarks and random logic. In both cases, the
algorithm reduces dynamic power consumption by over 8%,
though the source of optimization differs across benchmarks.

For the arithmetic benchmarks, glitch minimization plays
a significant role in power reduction, which aligns with the
motivation of this work. Interestingly, the engine also opti-
mizes non-arithmetic designs. This is due to the cost func-
tion’s high expressiveness, which simultaneously accounts for
structural sources of glitching, functionally-dependent zero-
delay switching, and the effect of large fanouts. As a result,
the engine is flexible enough to address the dominant power-
consumption contributors based on the circuit’s properties.

During optimization we impose strict delay constraints to
avoid performance degradation due to the increase in delay.
Under this constraint, the average delay variation in all bench-
marks is −2.74%, with an area reduction of −0.68%. The
improvement over the state-of-the-art is expected, as input
rewiring is a specific case of dependency-cut selection.

C. Correlation With OpenROAD

Our experiments demonstrate that local optimization of the
cost function in Eq. 2 effectively reduces power. However, its
impact on later design stages requires further verification. To
examine this correlation, Table III presents results obtained
using OpenROAD [20] on a subset of the EPFL and ISCAS
benchmarks, selecting the smallest ones to enable fast design
closure. Specifically, we analyze internal and switching power,
showing that minimizing Eq. 2 reduces switching activity
and encourages the use of smaller gates after sizing, thereby
lowering internal power. Although these results are based on
a default flow without circuit-specific tuning, both metrics
improve in almost all benchmarks, validating our assumptions
and demonstrating the effectiveness of our method.

V. CONCLUSIONS

This paper presents a resynthesis engine for optimizing
dynamic power after technology mapping. By extending the
Lazy Man’s Synthesis paradigm to post-mapping power opti-
mization, we demonstrate its effectiveness in reducing power
consumption. Experimental results show an average reduction
of 4.72% in glitching and 9.44% in dynamic power, with these
improvements carrying over to later stages of the design flow.

ACKNOWLEDGEMENTS

We thank Raj B. Apte for making this publication possible,
Alan Mishchenko and Chang Meng for the fruitful discussions
and Robert O’Callahan for the invaluable technical support.

REFERENCES

[1] Shen, Ghosh, Devadas, and Keutzer, “On average power dissipation and
random pattern testability of cmos combinational logic networks,” in
1992 IEEE/ACM International Conference on Computer-Aided Design.
IEEE, 1992, pp. 402–407.

[2] R. Panda and F. N. Najm, “Post-mapping transformations for low-power
synthesis,” VLSI Design, vol. 7, no. 3, pp. 289–301, 1998.

[3] W. Yang, L. Wang, and A. Mishchenko, “Lazy man’s logic synthesis,” in
Proceedings of the International Conference on Computer-Aided Design,
2012, pp. 597–604.

[4] S. Chatterjee, A. Mishchenko, R. K. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 25,
no. 12, pp. 2894–2903, 2006.

[5] A. T. Calvino, H. Riener, S. Rai, A. Kumar, and G. De Micheli,
“A versatile mapping approach for technology mapping and graph
optimization,” in 2022 27th Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 2022, pp. 410–416.

[6] H. Riener, S.-Y. Lee, A. Mishchenko, and G. De Micheli, “Boolean
rewriting strikes back: Reconvergence-driven windowing meets resyn-
thesis,” in 2022 27th Asia and South Pacific Design Automation Con-
ference (ASP-DAC). IEEE, 2022, pp. 395–402.

[7] N. Miskov-Zivanov and D. Marculescu, “Modeling and analysis of ser in
combinational circuits,” in Workshop on Silicon Errors in Logic-System
Effects (SELSE), 2010.

[8] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Computer Aided Verification: 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings
22. Springer, 2010, pp. 24–40.

[9] L. Cheng, D. Chen, and M. D. Wong, “Glitchmap: An fpga technology
mapper for low power considering glitches,” in Proceedings of the 44th
annual design automation conference, 2007, pp. 318–323.

[10] M. Hashimoto, H. Onodera, and K. Tamaru, “A power optimization
method considering glitch reduction by gate sizing,” in Proceedings of
the 1998 international symposium on Low power electronics and design,
1998, pp. 221–226.



TABLE II
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