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Abstract—This paper addresses the challenge of reducing the
number of nodes in Look-Up Table (LUT) networks with two
significant applications. First, Field-Programmable Gate Arrays
(FPGAs) can be modelled as networks of LUTs, and minimizing
the node count is imperative to meet resource constraints. Sec-
ond, in area-oriented design space exploration for standard-cell
designs, collapsing a circuit into a LUT network, restructuring
it, and later remapping to the original representation helps
escape local minima. Thus, the development of algorithms for
optimizing and restructuring LUT networks holds considerable
promise for area-oriented optimization. Substitution (also called
resubstitution) is a powerful logic minimization method that
can identify non-local logic dependencies and exploit them for
logic minimization. State-of-the-art substitution algorithms for
LUT networks rely heavily on SAT solving, limiting the number
of optimization attempts and the size of the substitution sub-
networks to one node [1]. Conversely, our method relies on circuit
simulation to increase the number of substitution candidates and
enables substitutions with more than one node. The experimental
results show that the proposed method identifies optimization
opportunities overlooked by other methods, improving 11 out
of 23 best-known results in the EPFL synthesis competition and
yielding a 3.46% area reduction compared to the state-of-the-art.

Index Terms—FPGA, logic synthesis, area optimization, resub-
stitution, information graphs

I. INTRODUCTION

AREA-oriented optimization is a crucial challenge in
digital design. Indeed, efficient area utilization directly

translates to cost savings in semiconductor manufacturing,
correlates with more compact layouts, and improved wiring
delays and power consumption. Despite decades of research,
the ongoing demand for more efficient systems calls for more
effort in area-oriented optimization strategies [2], [3].

This paper addresses the challenge of reducing the number
of nodes in networks of Look-Up Tables (LUTs). This task
is important for two reasons. First, Field-Programmable Gate
Arrays (FPGAs) can be modelled as networks of LUTs, and
minimizing the node count is essential for meeting resource
constraints [4]. Second, in high-effort area-oriented design
space exploration for standard cells, collapsing a network
representation to an LUT network, restructuring it, and later
deriving a new network in the original representation helps to
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escape local minima. Therefore, developing algorithms for op-
timizing and restructuring networks of LUTs broadly impacts
the area-oriented optimization of combinational circuits.

Substitution, sometimes called resubstitution, is a method
that tries to express (resynthesize) the function of a node using
a set of candidate nodes already present in the network [5]. The
transformation is accepted if the new implementation reduces
the node count. The candidate nodes are named divisors
because resynthesis generally occurs through a decomposition
presenting the mathematical structure of a division [6]–[8].

Existing resubstitution-like algorithms for LUT networks,
such as mfs [1], optimize circuit parts called windows. For
each node of the network, called pivot, mfs solves a de-
pendency cut selection problem, i.e., it identifies a subset of
divisors that can be used to express the function of the pivot.
The larger the window size, the more global information is
used, resulting in higher optimization quality. However, mfs
heavily relies on SAT solving for identifying dependency cuts,
limiting the usable window size. Furthermore, the resynthesis
subnetwork in mfs contains a single node.

Recently, simulation-guided approaches [6], [9], [10] have
been proposed to harness non-local information beyond the
constraints of conventional methods. These algorithms analyze
functional simulations of the network to identify resubstitution
candidates. Since exhaustive simulation of industrial-scale
designs is prohibitive, only partial functional information can
be analyzed, and obtained by simulating the network with a
subset of its input patterns. SAT solving remains necessary
to verify the correctness of the replacements. However, SAT-
based equivalence checking is significantly more efficient than
SAT-based dependency cut selection, enhancing scalability.

Simulation guided resubstitution algorithms have been pro-
posed for simple circuit representations, like And-Inverter
Graphs (AIGs). However, no such engine has yet been pro-
posed for LUT networks because the higher expressiveness of
their nodes’ functionalities increases the complexity of effi-
ciently addressing dependency cuts selection and resynthesis.
This paper tackles this challenge, overcoming the limitations
of current approaches, in particular mfs. This is achieved by
devising novel techniques to solve two related problems:

1) How to perform dependency cuts selection without SAT?
2) How to enable resubstitution with more than one LUT?

Efficient solutions to the second problem are valuable because
they facilitate the use of dependency cuts involving more
divisors than the network’s maximum fan-in size. For instance,
given a network of 6-LUTs and a dependency cut made of 8
divisors, it might be possible to find a resubstitution using
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multiple 6-LUTs rather than a single one. An example can be
observed in Figure 4.

The techniques proposed in this paper define a novel resub-
stitution engine with enhanced logic restructuring capabilities,
which improve design space exploration. The experiments
show that our heuristics identify optimization opportunities
missed by other state-of-the-art engines, improving 11 of the
best results in the EPFL competition. Furthermore, our heuris-
tic proves effective for design space exploration, resulting in
a 3.46% smaller area for the EPFL benchmarks when used as
a replacement for mfs in an optimization flow.

The rest of this paper is organized as follows. Section II
provides the preliminary background. Section III describes our
engine. Sections IV and V present our algorithmic solutions
to dependency cuts selection and LUT resynthesis. Section VI
details the experiments, and Section VII concludes the paper.

II. PRELIMINARIES

This section introduces the background and formalizes the
theoretical notions underlying the proposed algorithms.

A. Boolean Functions And The Information They Contain

A Boolean variable xi is a variable that takes values in the
Boolean space B = {0, 1}. The literals of a variable xi are
the functions xi, x

′
i :B→B that distinguish with their values

when the variable is 1 from when it is 0. The input values for
which a Boolean function is 1 are said to satisfy the function.

Let X = (x1, . . . , xn) be an ordered set of Boolean vari-
ables. The n-dimensional Boolean space Bn = {0, 1}n is the
set of all the 2n n-dimensional tuples obtained by assigning 0
and 1 to the variables in X in all possible ways. The literals
xi and x′

i partition the tuples in Bn into two sub-sets, based
on whether xi or x′

i is satisfied. Given k Boolean variables,
a product of their literals is named cube C and is a Boolean
function C : Bn → B. A cube identifies the subset of tuples
from Bn satisfying it. For instance, Bn is partitioned into 4
parts based on the satisfaction of the cubes x′

ix
′
j , x′

ixj , xix
′
j ,

and xixj . A minterm of Bn is a cube of n variables, and it
identifies a 1-dimensional subset of Bn, i.e., a single point (or
tuple).

A completely specified Boolean function f : Bn → B
associates each minterm M with a Boolean value fM ∈ B.
The function partitions Bn into two sets: the onset minterms
(P1) satisfy the function, and the offset minterms (P0) satisfy
its negation1. The information of a Boolean function is the
separation it induces in Bn by distinguishing P1 from P0. A
completely specified function is in one-to-one correspondence
with its onset minterms, so we use P1 and f interchangeably.

An incompletely specified Boolean function f : Bn →
{0, 1, ∗} is defined over a subset of Bn, where the symbol
∗ denotes a don’t care minterm, i.e., a minterm for which the
function is undefined. A partially specified Boolean function
f :Bn→{0, 1, ∗, ?} is a function whose value is unknown for
some minterms, named don’t knows (?).

1Note that some authors use the term minterm for the onset minterms only.

B. Graphs

A graph G = (V,E) is a pair (V,E) where V is a set of
vertices, and E is a set of edges. A graph is undirected if
the edges are unordered pairs, otherwise, it is directed. The
adjacency matrix A of a graph G = (V,E) is a Boolean matrix
such that Ai,j = 1 if the edge (vi, vj) exists. The degree
of a node is the number of edges containing the node. This
paper considers two types of graphs: directed acyclic graphs to
model combinatorial circuits and search spaces, and undirected
colored graphs to represent and manipulate Boolean functions.

1) Directed Acyclic Graphs: A path p = vi → · · · → vj
is a sequence of vertices connecting vertex vi to vertex vj ,
following the order induced by the edges set. A directed graph
is acyclic if no path passes through the same node more than
once. If there is an edge connecting node vi to node vj , vi is
in the fanin of vj , and vj is in the fanout of vi. If there is a
path from a node vi to a node vj , vi is in the transitive fanin
(TFI) of vj , and vj is in the transitive fanout (TFO) of vi. The
maximum fanout free cone (MFFC) of node x is the subset of
nodes in the TFI of x such that every path from a node in the
subset to the POs passes through x. When removing the node
x, the MFFC can also be removed.

2) Undirected Colored Graphs: An undirected graph G =
(V,E) is colored if there is a label, named "color", associated
with each vertex. An undirected graph G = (V,E) is bipartite
if its vertices can be divided into two disjoint and independent
sets P0 and P1, that is, every edge connects a vertex in P0

to one in P1. The parts can be identified with a coloring
in which no two adjacent vertices have the same color. An
undirected bipartite graph is complete if each vertex of one part
is connected to each vertex of the other part. The edges set of a
complete bipartite graph is the cartesian product E = P0×P1.

C. Representing Combinatorial Circuits with Logic Networks

A logic network is a directed acyclic graph where the nodes
are partitioned into three classes, named primary inputs (PIs),
primary outputs (POs), and internal nodes:

• The PIs are nodes without fanins in the network.
• The POs are nodes without fanouts in the network.
• Internal nodes encode single-output Boolean functions.

A k-input look-up table network (k-LUT) is a logic network
in which the nodes are k-input look-up tables.

A structural cut C of a node x in a logic network is a
pair C = (x,L), where x is a node, called root, and L is
a set of nodes, called leaves, such that 1) every path from
any primary input (PI) to node x passes through at least one
leaf and 2) for each leaf v ∈ L, there is at least one path
from a PI to x passing through v and not through any other
leaf. A reconvergence-driven cut of size k is a structural cut
of size k constructed to maximize the number of nodes and
reconvergences included in the cut [7].

A structural cut C = (x,L) identifies a single-output sub-
network whose inputs are the leaves of the cut, and the output
is the node x. This subnetwork represents a Boolean function
that we name cut funtionality. If all the cut leaves are PIs, the
cut functionality is the global function of the node.
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Fig. 1: A structural cut and a dependency cut.

A more general object is the dependency cut C = (x,L)
that is not (necessarily) a structural cut in the current topology,
but it has the potential to become one. Given a target node x,
a dependency cut is a subset C = (x,L), where L contains
nodes that are not in the TFO of the target and such that there
is a function f : B|L| → {0, 1, ∗} realizing x = f(L). If
such a function exists, it is called a dependency function, and
the condition for its existence is simply the definition of a
function, that in this context is the dependency theorem [10],
[11]:

Theorem 1. Let x be a node, and L = {xi}Ki=1 be a set of
nodes not in the TFO of x. The set C = (x,L) is a dependency
cut iff the global functionalities of the nodes in C satisfy

∀Mi,Mj ∈ Bn xMi ̸= xMj⇒∃xl ∈ L s.t. xl,Mi ̸= xl,Mj .

With an abuse of notation, we indicate the global function
of a variable with the same name as the variable itself, so that
xl,Mi

is the value of the Boolean function of node xl evaluated
at minterm Mi.

A structural cut satisfies Theorem 1, so it is a dependency
cut. But a dependency cut is not necessarily a structural cut,
as illustrated in Figure 1. Every dependency cut C = (x,L)
(structural or not) is embedded in an environment, which is
the surrounding network. Consequently, some minterms might
never appear at the leaves of the cut. The satisfiability don’t
care set of the cut functionality f (DCf ) includes the tuples
from B|L| never appearing at L. In this case, f is incompletely
specified.

D. Peephole Optimization
In logic synthesis, peephole optimization is an algorithmic

technique that involves optimizing small sub-networks, named
windows, to improve the overall circuit. Each window is built
from a node, named pivot, and consists of the pivot’s MFFC
and a set of candidate divisors. This set is first initialized
with the nodes on the paths between the MFFC leaves and
the inputs of the window, which sets the boundaries for the
network sub-portion considered for the optimization. Next, it
is enlarged with nodes outside the TFI with both the fanins in
the divisors’ set.

Every peephole heuristic addresses three main problems:
1) Identify a dependency cut C = (x,L), for the target x.
2) Resynthesize the cut functionality
3) Replace the MFFC according to a cost function.
There are three types of peephole optimization, which differ

from the information analyzed while attempting resynthesis:

1) Cut rewriting: This method relies on structural informa-
tion by enumerating structural cuts for each pivot node.

2) Window-based resubstitution: this heuristic exhaustively
simulates each window. The information analyzed is the
function of the divisors with respect to the window’s leaves.

3) Simulation-guided resubstitution: The information an-
alyzed by this heuristic are approximations of the global
functions of the divisors, named simulation signatures.

A simulation signature is a p-dimensional simulation vector
of a node, obtained by simulating the network with p simula-
tion patterns assigned at the network’s inputs. The i-th entry
of a simulation signature of a node is the value of the global
function of the node on the i-th simulation pattern.

Simulation signatures enable analyzing global information
in modern circuits, in which the dimensionality of Bn makes
it unfeasible to exhaustively simulate circuits. Simulation
signatures are approximations of the global functions of the
nodes, which can be used during optimization.

E. Previous Work on Optimizing Look-Up Table Networks

Several existing algorithms address area optimization of
LUT networks and are implemented in ABC [12].

Command mfs [1] is a window-based resubstitution algo-
rithm using don’t-cares to re-express the target node using
a single k-LUT with reduced fanins number. The support
selection problem is solved as an instance of a satisfiability
problem, which checks if the dependency theorem is satisfied
by a subset of k or fewer divisors.

Unlike mfs, our approach is not limited to a single k-
LUT. Furthermore, our support selection method is based
on simulation signatures, while SAT solving is only used to
verify functional equivalence. In other words, our engine is
simulation-guided [6].

Command lutpack [13] employs Boolean decomposition
to re-express LUT sub-networks using fewer k-LUT. How-
ever, the support selection strategy corresponds to finding
structural cuts and is agnostic of global don’t-cares. Our
technique considers global don’t-cares and relies on the notion
of dependency cuts rather than employing a cut-rewriting
approach. Furthermore, our resynthesis algorithm enhances
Boolean decomposition with a new strategy based on don’t-
cares.

F. Representing Boolean Functions with Information Graphs

In order to devise algorithms exploiting global functional
information, we need effective ways of analyzing mutual de-
pendencies between simulation signatures. Information graphs
(IGs) represent the information of a Boolean function (Sec-
tion II-A). First introduced by Józwiak [14], they offer a
graphical representation of sets of pairs of functions to be
distinguished (SPFDs), which are of great practical utility in
resubstitution [15]–[18]. We propose a new formulation of IGs,
at the basis of our algorithms.

Definition II.1. The Information graph (IG) of an incom-
pletely specified Boolean function x : Bn → {0, 1, ∗}, is an
undirected graph in which the vertices are the elements of
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Fig. 2: Information graphs of simple two-input functions.

Bn, and each onset minterm Px
1 is connected to each offset

minterms Px
0 , identifying a complete bipartite sub-graph:

Υx = (V = Bn, E = Px
0 × Px

1 ) (1)

The edges represent the capability of the function to distin-
guish the onset minterms from the offset minterms. We define
the following coloring for IGs:

• Color 0: all the offset minterms, with non-zero degree.
• Color 1: all the onset minterms, with non-zero degree.
• Color 2: all don’t care minterms, with degree zero.

Figure 2 illustrates the information graph of some simple two-
input functions, represented as truth tables. x1 and x0 identify
the encoding of the two independent variables of the Boolean
space B2, and x identifies an incompletely specified Boolean
function. For an incompletely specified function, the vertices
with degree 0 are the don’t care minterms, and the function
is not required to distinguish them from other minterms. On
the contrary, each onset (offset) minterm must be distinguished
from the offset (onset) minterms. Hence, the degree of an onset
(offset) vertex in the IG of an incompletely specified function
is equal to the size of the offset (onset).

The algorithms in this paper rely on transformations of
IGs that remove edges and swap onset with offset minterms.
Hence, a vertex can undergo the following color changes:

Color 2← Color 0 ⇌ Color 1→ Color 2

G. Covering Information Graphs

(a) 1-covered information graph.

(b) 2-covered information graph.

Fig. 3: Covering information graphs.

Let us consider two Boolean functions x, xi : Bn →
{0, 1, ∗}, with IGs Υx and Υxi

. We consider the case in which

the don’t care set of xi is contained in the don’t care set of
x, which is always true for the simulation signatures in our
setting. The edge covering of Υx by Υxi is the operation of
removing from Υx the edges that are in common with Υxi

, i.e.,
removing from Υx all the minterm pairs that are distinguished
by Υxi

. We name the result of this operation a 1-covered IG:

Υ1
x

.
= Υx ≻ Υxi

= (V = Bn, E = E1
0 ∪ E1

1) (2)

Figure 3a represents the covering of an IG to obtain a 1-
covered IG. The sub-graph identified by E1

0 (E1
1 ) contains the

minterm pairs that x distinguishes, but xi does not because
they are in its offset (onset). In simple terms, this operation
can be described as a cofactoring of the information graph with
respect to the variable under consideration [5]. More explicitly:

E1
0 = (Px,1

0,0 × P
x,1
0,1 ) = ((Pxi

0 ∩ Px
0 )× (Pxi

0 ∩ Px
1 )) (3)

E1
1 = (Px,1

1,0 × P
x,1
1,1 ) = ((Pxi

1 ∩ Px
0 )× (Pxi

1 ∩ Px
1 )) (4)

where, the subset Px,t
q,b is characterized by 4 attributes:

1) x is the node whose IG is being covered.
2) q is the index of the complete sub-graph identified by

the partition, whose edges set is Eq = (Px,t
q,0 × P

x,t
q,1).

3) b differentiates the onset minterms from the offset
minterms in the complete sub-graph of the partition.

4) t identifies how many covering steps have been per-
formed up to the definition of the subset.

This notation helps introduce the recursive expression of a t-
covered IG, presented in the following. If all the sets Px,1

i,j

are non-empty, this operation results in two complete bipartite
sub-graphs, in which we preserve the coloring of the graph
that we are covering ( Υx ). Figure 3a explicitly shows these
sub-graphs.

E1
0 = (Px,1

0,0 × P
x,1
0,1 ) (5)

E1
1 = (Px,1

1,0 × P
x,1
1,1 ) (6)

If Px,1
i,0 or Px,1

i,1 is empty, the minterms in the non-empty subset
are colored as detached: there is no remaining information

E1
i = (∅× Px,1

i,1 )⇒ P
x,1
i,1 7→ P

x,1
i,1 (7)

E1
i = (Px,1

i,0 ×∅)⇒ Px,1
i,0 7→ P

x,1
i,0 (8)

The covering can be iterated using a set of IGs:

Definition II.2. Given a function x : Bn → {0, 1, ∗} and an
ordered set of functions L = (xi)

K−1
i=0 , xi : Bn → {0, 1, ∗},

the covering process Υ0
x → · · · → ΥK

x is the sequence of
transformations of Υx where each step t removes the edges
that are present in Υxt

, generating a t-covered IG.

Υ0
x = Υx = (V = Bn, E = Px,0

0,0 × P
x,0
0,1 )

Υt
x = Υt−1

x ≻ Υxt

= (V = Bn, E = Et
0 ∪ Et

1 ∪ · · · ∪ Et
2t−1)

where the edges are recursively defined as

Et
q=2m = (Px,t

q,0 × P
x,t
q,1) = (Pxt

0 ∩ P
x,t−1
m,0 )× (Pxt

0 ∩ P
x,t−1
m,1 )

Et
q=2m+1 = (Px,t

q,0 × P
x,t
q,1) = (Pxt

1 ∩ P
x,t−1
m,0 )× (Pxt

1 ∩ P
x,t−1
m,1 )

Υt
x contains at most 2t complete bipartite sub-graphs. For

instance, Figure 3b shows a 2-covered information graph,
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having 3 ≤ 22 complete bipartite sub-graphs. Also in this
case, if nodes become detached, their color is updated

Et
k = (∅× Px,t

k,1) = (∅× Px,t
k,1) = ∅

Et
k = (Px,t

k,0 ×∅) = (Px,t
k,0 ×∅) = ∅

Figure 3b shows that the second covering detaches one vertex.
If the edges set of a K-covered information graph ΥK

x is
empty (||ΥK

x ||E = 0), we say the IG is completely covered.

H. Dependency Cuts and Information Graphs Covering

Covering of information graphs is important because it
offers an algorithmic technique for identifying dependency
cuts, implied by the following corollary of Theorem 1:

Corollary 1. Let x be a target node and L = {xi}Ki=1 be a
set of nodes not in the TFO of x. If the K-covered IG

ΥK
x = Υx ≻ Υx1

≻ · · · ≻ ΥxK

is completely covered, then C = (x,L) is a dependency cut.

Proof. Let Υx and Υxi
be the IGs of the global functionalities

of the target node x, and of any node xi ∈ L, and let us
consider two minterms Mi,Mj ∈ Bn. By definition II.1, if
Υx has the edge (Mi,Mj), it must be true that xMi

̸= xMj
.

In turns, Theorem 1 states that C = (x,L) is a dependency
cut if and only if there is at least one node xl ∈ L such that
xl,Mi

̸= xl,Mj
. Hence, there is at least one IG Υxl

having
the edge (Mi,Mj). Since the covering process removes all
the common edges, and for each edge of Υx there is at least
one node in L whose IG has the same edge, the K-covered
information graph must be fully covered.

Corollary 1 implies that the dependency cut selection prob-
lem can be addressed by identifying a set of nodes L whose
IGs completely cover the IG of the target x.

I. Information Graph Representations

Practical simulation signatures typically range in size
around p ∼ 210. Consequently, representing IGs becomes
challenging from a memory perspective, as it would require
O(p2) bits2. Recent advancements in resubstitution [19] have
harnessed the insight that IGs can be constructively repre-
sented during a covering process. This led to the development
of a specialized data structure tailored for performing covering
processes on t-covered IGs, facilitating operations such as
evaluating the remaining edges when covering Υt

x with the
IG of a divisor ||Υt

x ≻ Υxi
||E , and performing a covering

step Υt+1
x = Υt

x ≻ Υxi
.

Building upon this foundation, the authors of the cited
work proposed identifying dependency cuts through a covering
process, where each step involves sampling a divisor from a
probability distribution:

P (xi;β, t) ∝ e−β||Υt
x≻Υxi

||E (9)

This distribution and its parameters were initially proposed as
an ansatz for dependency cuts selection in simple representa-
tions, such as xor-and inverter graphs. In contrast, this paper

2Assuming one bit per onset/offset minterm pair.

introduces a novel approach: inferring models for the probabil-
ity distribution from experimental data. This systematic data-
driven method replaces predefined heuristics, enabling more
efficient resubstitution in complex LUT networks and leading
to improved optimization results.

J. Markov Decision Process
A Markov Decision Process (MDP) is a discrete-time

stochastic control process used for modelling decision-making
in situations where outcomes are partly random and partly
under the control of a decision maker [20].

The significance of MDPs emerges in several areas: notably,
they are essential for structuring decision-making problems by
clearly defining states, actions, rewards, and transitions. This
structure makes it possible to handle stochastic environments
where outcomes are uncertain [21].

The decision maker starts from an initial state and does an
action. We consider the case where the relationship between
the states and the action taken is a conditional probability,
expressing the likelihood of an action given the current state.
After a chosen action, the transition model maps the state-
action pair into a new state. Here, we model the transition
model as a deterministic map. Finally, for each action-state
pair, the agent receives a reward. In short, an MDP presents
the following features:

1) A set of possible states S.
2) A set of possible actions A.
3) A transition model T : S ×A → S.
4) A real-valued reward function R : S ×A → [0, 1].
5) A policy P (·|s) : A → [0, 1].
Inspired by previous work on covering processes for re-

substitution [19], in this work, we characterize an MDP for
finding dependency cuts by adding one node at a time. This
paper formalizes the covering process as an MDP and proposes
a technique for inferring policies from data.

III. SIMULATION-GUIDED RESUBSTITUTION FOR LUT
NETWORKS

In this section, we discuss the structure of our algorithm
for optimizing LUT networks. We adopt a simulation-guided
approach, relying on the analysis of simulation signatures to
identify resubstitution candidates, and on SAT solving to verify
that functional equivalence is preserved. The engine relies on
the solution of two sub-problems:

1) How to perform dependency cuts selection without SAT?
2) How to enable resubstitution with more than one LUT?

After explaining the role of these sub-problems in the algo-
rithm, we discuss our algorithmic choices.

A. The Simulation-Guided Algorithmic Structure
Algorithm 1 illustrates our resubstitution engine. The algo-

rithm starts by randomly sampling p tuples from the Boolean
space Bn, where n is the number of PIs of the circuit. Next, we
simulate the input patterns, generating a simulation signature
of size p for each node, and we perform peephole optimization
one node at a time. Figure 4 illustrates the key algorithmic
steps for each node. N is a parameter of the engine indicating
the number of optimization attempts per node.
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Algorithm 1: Resubstitution For k-LUT networks
Data: A k-LUT network G
Result: The k-LUT network after restructuring and

optimization
1 Bsig ← Sample p patterns at random from Bn;
2 Bcex ← ∅ ;
3 σp ← Functional simulation of G using Bsig;
4 for x ∈ G do
5 Cs = (x,Ls)←Find a reconvergence driven cut;
6 Build a window from Cs;
7 for N iterations do
8 L ← Solve the covering problem for Υx;
9 f(·)← Extract the functionality for C = (x,L);

10 R ← Resynthesize f ;
11 if Area(R) ≤ Area(MFFC) then
12 xnew ←Resynthesize Cd;
13 if xnew and x are globally equivalent then
14 Substitute x with xnew;
15 Go to the next node;

16 else
17 Save the counter-example in Bcex;
18 if |Bcex| is equal to a word length then
19 σ64 ← Simulate G using Bcex;
20 Replace oldest signatures with σ64;
21 Bcex ← ∅ ;

22 return the optimized circuit;

Fig. 4: Template of simulation-guided resubstitution for LUT
networks, with a detail on LUT decomposition.

1) Window construction: For each node x, we build a
window characterized by two parameters: W is the maximum
size of the reconvergence-driven cut; D is the maximum
number of divisors. As shown in Figure 4, during the win-
dow construction, we can compute the number of LUTs in
the MFFC, which sets the potential gain of a resubstitution
candidate.

2) Dependency-cut selection: Selecting a candidate depen-
dency cut occurs through a stochastic exploration of the search
space introduced in Section IV. The stochastic nature of the
engine is such that different resubstitution attempts sample
different supports.

3) Functionality extraction: Given a dependency cut C for
a target node x, we extract f : B|L| → {0, 1, ∗} by considering
each minterm M ∈ B|L|, and assigning it to onset, offset, and
don’t care set of the cut function based on its appearance and
the value of the target signature. The result can be encoded in
a |L|-LUT, where k ≤ |L| ≤ K, with:

• k: maximum fanin of the LUTs.
• K: maximum dependency cut size.

K is a parameter and k depends on the k-LUT network.
4) Resynthesis: We propose a decomposition-based resyn-

thesis engine, which generates a k-LUT sub-network by de-
composing the |L|-LUT of the dependency function, while
optionally taking the don’t cares into account. Section V
discusses the details of this algorithm.

5) Equivalence Checking and Substitution: If the area of
the resynthesized sub-network can restructure the network
without increasing area (or while improving area), we verify if
the new node is functionally equivalent to the old one. In the
case of a failure, the counter-example returned by the SAT
solver can be used to update the simulation signatures, as
suggested by the simulation guided paradigm [6], [9].

B. Support Selection, Resynthesis, and Generalization

Corollary 1 maps dependency-cut selection to set cover-
ing [22], [23]. The goal is to find optimal dependency cuts:

Definition III.1. A dependency cut found from the analysis
of simulation signatures is optimal if it yields the smallest
resynthesis sub-network generalizing to the don’t-knows.

The condition of the generalization comes from the fact
that a resubstitution candidate is not committed unless its
output node is functionally equivalent to the target node for
all possible input patterns, including the don’t knows.

There is no guarantee that the minimum-size solution to the
set covering problem using simulation signatures yields the
optimal dependency cut. However, targeting the minimization
of the dependency cut size is an educated guess. Indeed, on
average, smaller supports yield smaller resynthesis sizes, with
higher chances of meeting the size constraints imposed by
the MFFC. According to the Minimum Description Length
principle (MDL), smaller supports should also be chosen
because they yield compact descriptions of the observations,
which have a higher likelihood of generalizing to unseen
patterns [24].

Previous works on partially specified Boolean functions
showed that strong mutual dependencies between inputs and
outputs can aid in a model’s ability to generalize to unseen data
[25], [26]. The coverage on an IG is a measure of such mu-
tual dependency [14], which motivates investigating support
selection algorithms where at each step we add variables to
the support based on the analysis of IGs. Section IV addresses
the challenge of devising algorithms to address this problem.

IV. BOOLEAN SELECTION OF DEPENDENCY CUTS

Dependency-cut selection is the problem of identifying a set
of nodes within the circuit that contains sufficient information
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Fig. 5: Representation of the support selection problem as a
set covering problem over the minterm pairs, and some sub-
spaces of the search space.

to re-synthesize a target node. When limiting the solution size
to K, the problem formulation is as follows:

K-DEPENDENCY CUT SELECTION

Given: 1) A target node x.
2) A set of candidate divisors D = {xi}Di=1.

Find a subset L ⊆ D, |L| ≤ K satisfying Theorem 1.

Designing algorithms for efficiently addressing this problem
is pivotal for building a successful resubstitution engine.
The algorithms we propose in this section cope with the
intractability of exhaustively exploring the solution space of
this problem by confining the search to regions having a higher
likelihood of containing a valid solution.

A. Guiding Tree Search with Decision Processes

We represent the search space for the dependency cut
selection problem as a tree, as shown in Figure 5. The search
tree has maximum depth K, which is the threshold value set
for the support size. Each node in the tree, except for the root,
corresponds to a divisor from the set D = {xi}Di=1, and the
first level has one node per divisor branching from the root.

Each node at level l identifies a partial solution to the
covering problem, consisting of collecting all the divisors on
the path between the node and the root. Each node at level l
branches to D − l candidate divisors, which are the divisors
from D, not yet in the partial solution.

As a consequence of the branching, the total size of the tree
search is

(
D
K

)
= O(DK). For typical values, e.g., D = 100

and K = 6, it is impossible to enumerate through all the
possible combinations in a window, especially since one such
enumeration should be done for several windows of the order
of the number of nodes in the initial network. Furthermore,
in most windows, a solution of size K does not exist, so
most nodes would experience the worst-case runtime O(DK)
without identifying optimizations.

For each window, the stringent runtime constraints imposed
by logic synthesis force us to explore a fraction D−K of
the search tree. Consequently, devising efficient policies to

guide tree search is of paramount importance. The goal is
to devise an engine that exploits empirical evidence to guide
the tree search. Since the model of the empirical observations
might be limited, the engine should allow for some exploration
capability in the limited number of runs available.

B. Markov Decision Processes for Support Selection
We describe the dependency cut selection problem as a

Markov Decision Process (MDP) in which, at each step, the
decision maker should choose which divisor to add to the
dependency cut. The decision maker has N possible attempts
and a maximum number of steps K for each attempt. At each
attempt q, it starts from a state s0q = |Υ0

x; Υx1
, . . . ,ΥxD

⟩,
characterized by the IGs of the target node and the divisors in
the window. The selector transitions from one state to the next,
and at the t-th iteration, the state is stq = |Υt

x; Υx1
, . . . ,ΥxD

⟩,
for some t-covered IG defined by the process s0q → · · · → stq .

At step t of the q-th attempt, the decision maker takes an
action atq ∈ A = D, corresponding to choosing a divisor.
The decision occurs by sampling an action using a condi-
tional policy, that in this context is a conditional probability
P (·|stq) : A → [0, 1]. This probability distribution should have
a high value for the divisors that are likely to appear in a valid
solution, and sampling allows us some degree of exploration
to balance the limitation of the empirical model.

Let atq ∼ P (·|stq) be the action sampled using the condi-
tional policy. The transition model is a covering step, in which

T (st+1
q , stq, a

t
q) = δ(st+1

q , |Υt
x ≻ Υat

q
; Υx1

, . . . ,ΥxD
⟩) (10)

This decision process terminates after at most K steps. If
termination occurs because the target information graph (IG) is
fully covered, a dependency cut is identified. However, most
possible subsets of size K do not yield a valid dependency
cut, and it is unclear whether unsuccessful solutions give any
insight into the usefulness of the divisors they contain. Con-
sequently, the MDP for dependency cut selection has sparse
rewards. Learning an optimal policy for each new sub-problem
through online learning is significantly challenging in this
context due to high sampling complexity [27], that is, a high
number of random trials needed to learn an effective policy.
Hence, online learning is impractical for the timing constraints
of logic synthesis. Therefore, it is essential to develop offline
learning strategies to create policies from known solutions to
the dependency cut selection problem [28].

Let Lt = (x1, . . . , xt) be the partial solution, from
which we want to choose the next divisor, and stq =
|Υt

x; Υx1 , . . . ,ΥxD
⟩ be the corresponding state. The goal is

to identify a function P (xi ∈ D|Lt) expressing the likelihood
that the divisor xi should be added given the partial solution.
As commonly done when modelling decision processes, for
simplicity reasons, we assume that the process is Markovian,
i.e., that we can identify the best next divisor just by consid-
ering the state of the problem at the current iteration. In this
case, the function to identify becomes P (xi|Lt) ≃ P (xi|stq).

C. Analyzing the Policy of a Greedy Algorithm
Greedy support selection (GSS) is the simplest dependency

cuts selection algorithm that can be formalized as an MDP. At

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3525617

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 202X 8

TABLE I: ISCAS benchmarks: average percentage area varia-
tion after applying mfs, mfs2, and algorithm 1 with random,
GSS, and enumeration support selection.

mfs mfs2 rnd gss enu
⟨δ100⟩[%] −1.35 −1.46 −0.43 −1.94 −2.61

each step, the divisor whose IG covers most of the remaining
edges is selected, and ties are broken at random:

P (xi ∈ L|stq) ∝ δ(||Υt
x ≻ Υxi

||E − min
xj∈D

||Υt
x ≻ Υxj

||E)
(11)

GSS is fast and simple but can fail to find some solutions. For
instance, Figure 5 shows that GSS cannot find a solution when
imposing a size constraint of 3 because it can only explore the
sub-space of the search space highlighted in yellow. Conse-
quently, it fails to find the existing solution with 3 divisors,
for which non-greedy choices should be made. Consequently,
we need policies with higher exploration capabilities.

To evaluate the possible improvements of using more refined
policies, we compare GSS with an enumerative approach in
a simple problem, and for small benchmarks. We consider
the ISCAS benchmarks, after technology-independent opti-
mization and 4-LUT mapping (resyn2rs; fraig; st;
dch; if -a -C 12 -K 4). For each of them, we run
Algorithm 1 setting the number of support sampling attempts
to 100, for each pivot node.

As a baseline, we also report the result of choosing the next
divisor at random at each branching point of the search tree.
We limit the support size K to 4 to compare the performances
with mfs. Table I reports the average results using two
versions of mfs: mfs and mfs2. In both cases, we activate
high-effort resubstitution, we set the number of windows to the
number of nodes in the mapped network, and we allow 200
levels of depth increase for aggressive area optimization [1].
The key observations are the following:

1) GSS can beat the state-of-the-art in area optimization.
2) GSS misses optimization opportunities.

The result for enumeration gives an idea of what quality we
can hope to achieve by refining the tree search exploration, but
it does not scale to industrial designs. The challenge is to find
more efficient ways to explore the search space, reducing the
gap between enumeration results and an MDP-based heuristic.

D. Offline Learning of the Policy Function

Eq. 11 for greedy support selection assigns a non-zero cost
only to the divisors that maximize the coverage of the IG.
Inspired by the policy of GSS, we define a normalized cost:

Ansatz 1. Let D = {xi}Di=1 be a set of divisors and stq =
|Υt

x; Υx1
, . . . ,ΥxD

⟩ be a partial solution to an MDP. Then,
the normalized cost

H(xi, s
t
q) =

||Υt
x ≻ Υxi ||E −minxj∈D ||Υt

x ≻ Υxj ||E
||Υt

x||E −minxj∈D ||Υt
x ≻ Υxj

||E
(12)

is a good metric to guide tree search exploration.

The normalized cost is a real number in the range [0, 1].
The divisors with 0 normalized cost cover most of the edges,
i.e., the ones that GSS would choose. The divisors with 1
normalized cost are the ones not covering any edge, such as
the ones selected in the previous steps.

We repeat the experiment in the previous section, but rather
than committing the valid resubstitutions we save all the
dependency cuts found by enumeration. Next, for each cut
C = (L, x), we artificially define a covering process. Starting
from s0q = |Υ0

x; Υx1 , . . . ,ΥxD
⟩, at each step, we take the

divisors with the smallest normalized cost from L, cover the
graph, and transition to the next state. If the greedy approach
can find the solution, the normalized cost of the divisor chosen
at each step is 0. Otherwise, the normalized cost is some value
higher than 0. By plotting the frequency of the normalized
costs, we obtain the empirical frequency associated with the
probability that a divisor has a normalized cost, given that it
is chosen as the next support divisor: P̂ (H(xi, s

t
q)|xi ∈ L).

Figure 6 shows that many valid supports can be identified by
GSS. However, the normalized cost is larger than 0 in many
cases, in correspondence with supports missed by GSS.

Figure 6 also shows the empirical distribution of the normal-
ized costs P̂ (H(xi, s

t
q)). Using Bayes’ Theorem, we estimate

the posterior probability that a divisor should be included in
the solution, given its normalized cost (Figure 6).

P̂ (xi∈L|H(xi, s
t
q)) ∝

P̂ (H(xi,Υ
t
x)|xi∈L)

P̂ (H(xi, stq))
(13)

Fig. 6: Empirical distributions of the normalized cost, of the
likelihood of a normalized cost given that the divisor belongs
to a valid dependency cut, and the estimator of the probability
that a divisor is valid, given its normalized cost.

In this setting, learning a policy involves defining a para-
metric model and using it to fit the empirical data on P̂ (·|H).

E. Parametric Models For The Policy

We fit the posterior distribution with three models. The first
model mirrors the ansatz of the paper [19].

P1(xi∈L|H) = α1e
−β1H

As Figure 6 shows, this model fits well with the main
behaviour but underestimates the probability that a dependency
cut might distribute the information more evenly among the
divisors. The second model is an hyperexponential [29]:

P2(xi∈L|H) =
2∑

i=1

αie
−βiH
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This model accounts for the fact that the distinguishing power
of a valid support divisor either highly correlates with that
of the target function or shares the information with other
divisors. The third model encodes the distribution of this
information with peaks at specific cost values.

P3(xi∈L|H) =
2∑

i=1

αie
−βiH +

4∑
i=3

αie
− (H−µi)

2

2σ2
i

This model accounts for the fact that some values of the
normalized cost are more likely than others (Figure 6).

Algorithm 2 shows how to use these probability distribu-
tions to guide the tree exploration for support selection. To
avoid overfitting the parameters, we fit them on the ISCAS
benchmarks and validate the models on the EPFL benchmarks.
These models for the posterior distributions are not guaranteed

Algorithm 2: SUPPORT SELECTION<MODEL>(x,D;K)

1 while trials < maxtrials AND !solution found do
2 t← 0 Lt ← ∅;
3 while |C| < K do
4 evaluate the normalized costs H;
5 sample a divisor d ∼ PMODEL(xi∈L|H);
6 Lt+1 ← Lt ∪ {d};
7 Υt+1

x ← Υt
x ≻ Υd;

8 t← t+ 1;
9 if C = (Lt, x) satisfies Theorem 1 then

10 return C = (Lt, x) = (L, x);

to extend to other circuit representations and optimization
objectives. This paper only shows that fitting them with some
benchmarks and for some target objectives generalizes to
other benchmarks when optimizing them for the same target
objectives. Instead, the fact that the normalized cost is a good
optimization metric is a general observation.

Table II reports the results of the three methods for the
EPFL benchmarks. These benchmarks were not used to fit
the parameters of our algorithms, so they represent a valid
test set. We observe a monotonic improvement when going
from greedy to the second model. Instead, while the third
model is the one that better fits the posterior probability, it
does not generalize well to designs that were not available
during training. In light of these results, which are consistent
with the MDL [24], we prioritize the second model.

V. LOOK-UP TABLE SYNTHESIS WITH DON’T-CARES

Given a dependency cut, it is possible to obtain the de-
pendency function f : BK → {0, 1, ∗} by looking at the
simulation signatures and filling in the entries of a K-LUT
based on the patterns appearing at the leaves of the cut. If a
pattern does not appear, we treat it as a don’t-care. This section
discusses how to decompose this K-LUT into a network of
k-LUTs, with k < K, while taking don’t-cares into account.
This is important because it enables resubstitutions exploiting
dependency cuts of size K > k. If a dependency cut has
a size larger than the maximum fan-in of the k-LUTs, we

TABLE II: Comparison of the state-of-the-art resubstitution
with our engine, using the three policies for divisor selection.
The results are shown for the EPFL benchmarks represented
as 4-LUT networks. Each algorithm was run for 3 iterations.

design mfs mfs2 greedy P1 P2 P3

bar 1152 1152 1152 1152 1150 1152
div 4475 4475 4426 4420 4412 4399
log2 9690 9689 9618 9592 9580 9576
multiplier 7285 7285 7275 7273 7234 7244
sin 1828 1828 1806 1799 1790 1785
sqrt 7508 7508 7438 7383 7037 7003
square 5765 5765 5454 5409 5319 5294
cavlc 278 277 273 273 269 268
ctrl 51 50 47 48 44 46
i2c 439 433 439 435 435 437
int2float 78 78 84 84 84 84
mem_ctrl 15209 15552 15099 15184 15139 15145
priority 260 260 257 258 256 258
router 81 72 90 88 89 86
voter 2523 2525 2414 2371 2310 2322

−1.56% −2.16% −1.99% −2.21% −3.22% −3.18%

cannot perform resubstitution by adding a single node, because
it would not be legal for the chosen technology. Instead, if we
can express the cut functionality as a sub-network of k-LUTs,
and this sub-network area is smaller than the current MFFC,
the decomposition enables additional optimizations.

LUT SYNTHESIS WITH DON’T-CARES

Given: 1) A function f : BK → {0, 1, ∗}.
2) A maximum fanin size is k

Find a kLUT network synthesizing f .

The support for don’t cares information, enabled by using
IGs, sets this method apart from previous resynthesis engines
for LUTs, like the one used in Lutpack.

A. Information Graph Transformations

We start by defining some IG transformations needed to
understand the proposed decomposition.

Definition V.1. Let Υt
x be a t-covered IG, and A be the

adjacency matrix of the IG. The adjacency preserving trans-
formations {∆m}2

t−1
m=0 are the transformations

∆m(Υt
x) = {V = Bn, E = δm(Et

0)∪· · ·∪δm(Et
2t−1)} (14)

where three cases are possible
1) δm(Et

i = P
x,t
i,0 ×∅) = (Px,t

i,0 ×∅)

2) δm(Et
i = ∅× Px,t

i,1 ) = (∅× Px,t
i,1 )

3) δm(Et
i = P

x,t
i,0 × P

x,t
i,1 ) =

{
(Px,t

i,0 × P
x,t
i,1 ) if mi = 1

(Px,t
i,1 × P

x,t
i,0 ) if mi = 0

where mi is the i-th bit of the binary representation of m.

These transformations are the IGs obtained by inverting the
colors of the Color 0 and Color 1 vertices, according to the
index of the transformation m. Since the transformation has
the effect of swapping the colors in some of the bipartite
sub-graphs, the adjacency structure, which is agnostic of the
coloring, is preserved. Figure 7 shows 4 adjacency preserving
transformations.
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Fig. 7: Adjacency preserving transformations.

Definition V.2. Let Υt
x be a t-covered IG, and ∆m an

adjacency-preserving transformation. The projection operator
Π is the operator collapsing the IG ∆m(Υt

x) into a Boolean
function π = Π(∆m(Υt

x)). The Boolean function π : BK →
{0, 1, ∗} is defined as

πM =


0 if vertex M has Color 0
1 if vertex M has Color 1
∗ if vertex M has Color 2

For instance, the projections for the example in Figure 7 are

x2 x1 x0 Π∆0 Π∆1 Π∆2 Π∆3

0 0 0 0 1 0 1
0 0 1 1 1 0 0
0 1 0 1 0 1 0
0 1 1 0 0 1 1
1 0 0 1 0 1 0
1 0 1 0 0 1 1
1 1 0 0 1 0 1
1 1 1 ∗ ∗ ∗ ∗

(15)

Only half of the projected functions provide new information,
since the other half is related to the first one by negation.

The result of the covering process is twofold:

1) From one covered IG, many functions can be derived,
and their IGs have the same adjacency matrix, i.e., the
same distinguishing power.

2) The covering process can enlarge the don’t-care set of
the original function DCx⊆DCΠ(∆m(Υt

x))
.

The set of minterms detached during the covering process cor-
responds to the vertices that undergo a coloring transformation
into Color 2 and correspond to the set DCΠ(∆m(Υt

x))
\DCx.

Definition V.3. Let x : BK → {0, 1, ∗} be a Boolean
function, Υt

x = Υx1
≻ · · · ≻ Υxt

be a covering process, Υt
x

the resulting t-covered IG, and ∆m an adjacency-preserving
transformation. These transformations are support-reducing if
the support size after the projection is smaller than K.

The term reduced support is used for the support of the
function obtained after a support-reducing transformation.
For instance, Eq. 15 shows that the projection operation of
the second adjacency preserving transformation is support-
reducing since Π(∆1(Υ

1
x)) does not depend on x1. Its reduced

support is (x2, x1), and its reduced functionality now fits in a
2-LUT implementing the function Π(∆1(Υ

1
x)) = x2⊕̄x1.

B. Decomposing a K-LUT into Two k-LUTs

The transformation discussed in the previous section results
is an intuitive approach for detecting when a K-LUT can be
decomposed into two k-LUTs, possibly sharing some fanins.

Theorem 2. Let x : BK → {0, 1, ∗} be a Boolean function,
L = {xi}ni=1 be a set of functions satisfying Theorem 1, and
k a desired fanin size. If it is true that:

1) K ≤ 2k − 1.
2) There is a subset LT ⊂ L, named top subset, |LT | = k−

1 for which there is a support-reducing transformation.
3) The reduced support LB ⊂ L satisfies |LB | ≤ k.

Then, x can be decomposed using two k-input functions.

x = g(LT , h(LB)) g, h : Bk → B (16)

Proof. By definition of support-reducing transformation, the
IG of the function h(LB) covers the (k − 1)-covered IG
obtained with the covering process defined by the variables
LT . Hence, the set LT ∪ {h} satisfies Theorem 1, implying
the existence of a dependency function g : Bk → B.

This remark provides an operational definition of the key
engine of our decomposition, which is reported in Algorithm 3.

Algorithm 3: 2_decompose(x)
1 χ←sort_by_coverage(x1, . . . , xn);
2 for

(
n

k−1

)
support subsets LT = {xi}k−1

i=1 ⊂ L do
3 Υk−1

x ← Υx ≻ Υx1
≻ Υx2

≻ · · · ≻ Υxk−1
;

4 m←get_m_minimizing_ones();
5 iter← 0;
6 while iter ≤ 1 + effort · 2k−2 do
7 h← Π(∆m(ΥK−1

x ));
8 LB ← get_support(h);
9 if |LB | ≤ k then

10 return g(LT , h(LB));;

11 iter←mod(iter++,2k−1) m++;

The first step sorts the divisors by coverage of Υx, so that
in the enumeration of all possible top subsets, we will first
consider the input variables leading to the highest IG coverage.
This choice was empirically verified to speed up synthesis.
Next, we consider all the possible combinations of k − 1
divisors as the input of the top LUT, and we cover the IG
with them. Using theorem 2, a decomposition into two k-LUTs
exists if and only if there is a k-input function covering the
remaining edges of the IG. This function can be the projection
of any adjacency-preserving transformation. Iterating through
all the possible transformations would allow us to find a
solution when present, but it requires an exponential number
of trials in the worst case. To reduce the runtime effort, we
introduce the parameter effort, in the range [0, 1], where 0
corresponds to only one adjacency preserving transformation,
and 1 considers all of them. To maximize the chances that a
solution is found in the first few iterations, the first adjacency-
preserving transformation we consider minimizes the number
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Fig. 8: Example of two-decomposition: for a candidate subsets
of top variables, the covered IG is obtained, and a support-
reducing transformation allows for the encapsulation of the
reminder function into a 3-LUT, enabling decomposition.

of ones in the projected function. This choice detects many
decompositions with the lowest effort ( see Section VI-A ).

Figure 8 shows an example. We represent the IG Υf of a
4-input function f : B4 → B that we want to decompose into
two 3-LUTs. The figure shows the case in which the attempted
top subset is LT = {x1, x0}. After covering Υf with Υx1 and
Υx0 , the 4 complete bipartite sub-graphs that can be covered
by the function g are extracted. Next, the figure shows an
adjacency-preserving transformation that is support-reducing
after the projection step. The function depends on x1, which is
automatically detected to be a shared variable. Once obtained
g, it is possible to extract the functionality of h that allows to
recover the function f .

We attempt this decomposition every time the support size
is K ≤ 2k − 1. When the decomposition fails, or when K >
2k − 1, we try performing one step of top disjoint-support
decomposition [30], and fallback to Shannon decomposition
in case of failure. We use as the branching variable the one
covering most edges in the IG, and we recursively apply the
decomposition to the cofactors after updating their care sets
with the branching variable. We discuss the details of these
choices in the next sub-sections.

C. Decomposition with More Than Two k-LUTs

If the K-LUT cannot be decomposed into two k-LUTs, we
can reduce the support with a Shannon decomposition:

f = xifxi
+ x′

ifx′
i

.
= ite(xi, fxi

, fx′
i
) (17)

where xi is the branching variable, and fxi
(fx′

i
) is the

positive (negative) cofactor. The K-LUT will be decomposed

into one 3-LUT for the multiplexer, and two K̃-LUTs, where
K̃ ≤ K−1. Since we want to minimize the number of LUTs,
it is beneficial to choose the branching variable resulting in
reminder functions requiring the smallest number of LUTs to
be synthesized. Also in this case, we use IGs:

x∗ = argmin
xi

||Υf ≻ Υxi
||E (18)

The branching variable is the one whose IG covers most of
the edges in the target IG. Since Eq. 18 relies on IGs, it can
take don’t cares into consideration during variable selection.

Fig. 9: Choosing a variable resulting in an unique reminder.

Figure 9 motivates this choice with an example. By choosing
the variable x1 over variable x3, the number of remaining
edges to cover are ||Υx ≻ Υx1

||E = 20 < ||Υx ≻ Υx3
||E =

24. These edges are distributed between the two reminder
functions. Since synthesis ends when an IG is completely
covered, prioritizing branching variables that minimize the
number of remaining edges is related to identifying higher
simplicity of the reminder functions, which yields simpler
decomposability. For instance, Figure 9 shows that the variable
minimizing the number of remaining edges is the one requir-
ing a single reminder, whereas the other candidate variable
requires at least two more LUTs.

D. Collecting the Top-Down Decompositions

A Boolean functions f : BK → {0, 1, ∗} is top-down
decomposable on the variable xi when

f = xi ⊙ h(x1, . . . , xi−1, xi+1, . . . , xK) (19)

with ⊙ indicating a 2-input function. All the possible top-down
decompositions can be obtained by listing the special cases of
the Shannon decomposition: f = xi ∨ f0, f = xi < f0,
f = xi ≤ f1, f = xi ∧ f1, and f = xi ⊕ f0.

Since a Boolean function can be top-down decomposable
in more than one variable, it is valuable to detect the cases
in which the function can be top-down decomposed in up to
k−1 variables. Indeed, let us consider the case in which k = 3
and f satisfies

f = xi ⊙i (xj ⊙j h(L\{xi, xj})) (20)
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Algorithm 4: Recursive Top-Down Decomposition

Data: A K-LUT for f : BK → {0, 1, ∗}
Result: A top-down decomposed network of k-LUTs

1 LT = ∅, S = {xi}K−1
i=0 and h← f ;

2 while |LT | < k, and LT is updated do
3 for xi ∈ S do
4 if hxi

= ⊥ or hxi
= ⊤ then

5 h← hx′
i
;

6 else if hx′
i
= ⊥ or hx′

i
= ⊤ then

7 h← hxi ;

8 else if hx′
i
= hxi

then
9 h← hx′

i
+ h′

xi
;

10 if h updated then
11 LT ← LT ∪ xi;
12 S ← S\xi;

13 xt ← decompose h;
14 LT ← LT ∪ {xt};
15 k-LUT← extract top k-LUT from LT

Then, f can be cast in the form f = g(LT , h(LB)). If |LB| ≤
k, this condition is a particular case of the decomposition into
two LUTs. However, this technique becomes interesting when
|LB| > k, as it provides a way to reduce the support size with
fewer LUTs compared to Shannon’s decomposition.

Algorithm 4 illustrates the approach to identify a top-down
decomposition step. In this case, the don’t care-awareness
comes from the fact that don’t cares are used when performing
the functional tests on the Boolean function.

VI. EXPERIMENTS

This section discusses our experiments on optimizing LUT
networks for area. After comparing our decomposition algo-
rithm against existing methods, we investigate the effective-
ness of our resubstitution algorithm.

A. LUT Decomposition

Table III shows the success rate of our decomposition when
trying to decompose a K-LUT in a sub-network composed
of two 4-LUTs. The method is indicated with IG44 to say
that we use IG-based synthesis of a two nodes 4-LUT sub-
network. The table considers practical functions, i.e., Boolean
functions frequently appearing in modern hardware designs.
Table III refers to the case in Algorithm 11 when the effort
is set to the maximum value. Except for the 6-variables case,
our algorithm identifies all the provably optimum results, and
it does it faster than using a SAT formulation. The failure
in the 6-variables case is because, for runtime reasons, our
support reduction algorithm is not exact but heuristic, so it
occasionally misses some optimization opportunities. Thanks
to the small optimality gap, our heuristic achieves better results
than disjoint support decomposition (DSD) and other methods
used in lutpack ( the first two lines of Table III ).

To ensure scalability, we reduce the effort as much as
possible. Table IV shows that the heuristics of Algorithm 11

TABLE III: Decomposition of the practical functions.

5 vars (1233) 6 vars (7351) 7 vars (41071)
success time[s] success time[s] success time[s]

DSD 55.31% 0.25 23.30% 1.81 16.52% 11.8
lpack [13] 91.08% 0.34 45.65% 2.11 18.70% 12.72
IG44 96.67% 0.45 63.77% 31.64 20.86% 740.27
SAT 96.67% 1.47 64.22% 34.98 20.86% 766.11

allow us to identify most opportunities for 2-decomposition in
a single attempt. By increasing effort, other optimizations are
identified. However, even in the lowest-effort configuration,
the success rate is higher than in DSD and lutpack.

TABLE IV: Decomposition quality and effort.

effort 5 vars (1233) 6 vars (7351) 7 vars (41071)
success time[s] success time[s] success time[s]

0% 95.94% 0.033 60.94% 0.52 18.90% 10.26
20% 96.59% 0.046 62.88% 1.64 19.32% 47.71
50% 96.67% 0.057 63.68% 3.48 20.26% 108.44

Finally, we test our algorithm in the presence of don’t-cares.
We take all the practical functions, for which there is no
2-decomposition, and we randomly generate a care-set. We
compare our don’t-cares-aware heuristic IG44∗ with IG440,
which sets to 0 all the don’t-cares, and IG44p, which assigns
a random value to them. Table V shows that leveraging don’t-
cares yields superior resynthesis quality.

TABLE V: Successrate of 2-decomposition with don’t-cares.

5 vars 6 vars (128350) 7 vars (260620)

IG44p 28.39% 0.00% 0.00%
IG440 70.91% 4.94% 0.46%
IG44∗ 99.88% 92.60% 38.39%

B. Resubstitution Statistics

In this experiment, we investigate the statistics of an op-
timization run. We consider the IWLS and EPFL bench-
marks, initially represented as networks of and-inverter graphs
(AIGs). We optimize them with one round of resyn2rs, and
map them using the area-oriented LUT mapper with structural
choices in ABC (dch; if -a -K 4).

Table VI reports the optimization statistics, including the
number of attempted substitutions, the sizes of the resynthe-
sis sub-networks, the number of successes, and the average
number of don’t-cares exploited by the accepted substitutions.

TABLE VI: Statistics for the EPFL and IWLS benchmarks.

1-resub 2-resub 3-resub 4-resub 5-resub

GSS
valid 37606 2441 0 4 1
trial 40697 3712 1 7 1
⟨|DCx|⟩ 10% 28% 0% 32% 25%

P1

valid 33419 2919 1 9 1
trial 36447 4298 1 17 2
⟨|DCx|⟩ 11% 28% 25% 27% 13%

P2

valid 36281 3923 5 9 3
trial 39306 5466 13 25 5
⟨|DCx|⟩ 13% 30% 31% 26% 17%
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TABLE VII: Design space exploration for 4-LUT-networks.

design aABC aNEW dABC dNEW tABC tNEW

div 4339 4267 2148 2125 23.00 179.00
log2 9552 9472 153 212 364.00 640.00
mul 7156 7066 129 241 16.00 633.00
sin 1761 1673 78 120 29.00 504.00
sqrt 5244 4658 2009 2027 36.00 159.00
square 5232 4624 122 242 45.00 83.00
arbiter 4181 4020 31 31 20.00 122.00
cavlc 246 235 7 11 10.00 23.00
ctrl 45 42 4 10 3.00 4.00
i2c 379 338 8 10 7.00 29.00
int2float 67 66 7 7 2.00 4.00
memctrl 11962 10344 61 52 643.00 633.00
router 51 58 10 11 4.00 2.00
voter 2339 1950 18 30 49.00 325.00

−11.15% −14.61%

C. High Effort Optimization of 4-LUT Networks

This experiment demonstrates the design-space exploration
capabilities of our algorithm on the EPFL combinational
circuits. As a baseline, we pre-process the benchmarks with
ABC [12] to obtain small area k-LUT networks. First, we run
the ABC script resyn2rs. Next, we apply SAT sweeping
(fraig) to eliminate combinationally equivalent nodes. The
networks are then mapped into 4-LUTs using an area-focused
LUT mapper with structural choices (dch; if -a -K 4).
We do not report the hypothenuse due to the high runtime
needed to map this design using choices. The next section
will discuss its optimization in the context of the EPFL
competition. We compare two design-space exploration flows.
The first flow iteratively runs lutpack and satlut. If no
improvement is observed, we attempt logic restructuring with
mfs and, subsequently, mfs2. If state-of-the-art resubstitution
improves the area, the iterative lutpack and satlut pro-
cess restarts. All algorithms are configured to focus solely on
area optimization. A runtime limit of 10 minutes is imposed to
terminate the flow if necessary. The second flow replaces mfs
with our engine for single-node resubstitution and substitutes
mfs2 with our decomposition-based resubstitution. The higher
runtime in Table VII is due to a longer optimization time
before reaching convergence.

D. EPFL Best Results

The EPFL combinational benchmark suite comprises 23
combinational circuits used to benchmark logic optimization
tools. The challenge is to derive 6-LUT network of the smallest
size for each of these benchmarks. Notably, applying algo-
rithms such as lutpack, satlut, mfs, or mfs2 to these
circuits does not yield any improvement. Further reducing the
number of LUTs of these circuits proves the novelty of an
optimization engine.

Table VIII shows the result of applying two optimization
strategies to the best results, available in 2023. In both cases,
we use the P2-policy for support selection. In the first case, we
run the resubstitution algorithm a single time, only considering
dependency cuts of size 6. This single pass already identifies
optimization opportunities. In the second case, we iteratively
apply our heuristic with an initial maximum support size
K=6. If optimization fails, we increase K to 8 and attempt

resynthesis into 6-LUTs. Upon success, we revert K to 6
and proceed. Optimization continues until convergence, also
leveraging other state-of-the-art engines such as mfs [1],
lutpack [13], and satlut [31]. Table VIII shows that this
flow improved the best-known results for 11 out of 23 test
cases from the competition. The large number of improved
test cases confirms that our algorithm can identify optimization
opportunities that cannot be found by previous methods.

TABLE VIII: Best area results for the EPFL benchmarks [32].

OLD BEST IG-RESUB×1 FLOW∞
Design 6-LUTs Depth 6-LUTs Depth 6-LUTs Depth

div 3090 1100 3090 1100 3085 1102
hyp 36836 4384 36829 4547 36491 4633
log2 6076 243 6067 250 6012 257
mul 4330 178 4324 209 4314 208
sin 1053 86 1052 87 1023 110
sqrt 2983 1382 2980 1443 2966 1185
square 2959 170 2958 188 2935 200
i2c 177 9 177 9 176 9
memctrl 1708 14 1706 14 1694 14
priority 93 30 93 30 92 30
voter 1180 28 1179 30 1175 29

Of particular interest are the results for the hypothenuse
and the priority test cases, the largest and the small-
est benchmark in the suite, respectively. The optimization
achieved for the hypothenuse proves the scalability of
the method, while the optimization found for the priority
shows that the transformations found by our engine are dif-
ferent to those found by previous approaches.

VII. CONCLUSION

This paper presents a resubstitution algorithm for combina-
tional LUT networks, which has two novel features:

1) An ability to control the runtime of the divisor selection
during resubstitution.

2) A decomposition strategy for synthesizing LUTs into
networks of smaller LUTs.

The resubstitution engine, which integrates these heuristics,
unlocks new optimization opportunities compared to state-of-
the-art engines. Notably, our heuristics improves 11 of the
best results in the EPFL competition. Since every network
representation can be interpreted as a network of LUTs, the
results of this paper can be extended to other representations
in logic synthesis. Future works will discuss the benefits of the
restructuring capabilities of our method to other network repre-
sentations, including networks mapped into standard cells [33].
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FPGA EDA. Springer, 2024, pp. 135–164.

[3] N. Grover and M. Soni, “Reduction of power consumption in fpgas-
an overview,” International Journal of Information Engineering and
Electronic Business, vol. 4, no. 5, p. 50, 2012.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3525617

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 202X 14

[4] V. Manohararajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for area
minimization in lut-based fpga technology mapping,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 25,
no. 11, pp. 2331–2340, 2006.

[5] G. D. Micheli, Synthesis and optimization of digital circuits. McGraw-
Hill Higher Education, 1994.

[6] S.-Y. Lee and G. De Micheli, “Heuristic logic resynthesis algorithms at
the core of peephole optimization,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2023.

[7] A. M. R. Brayton and A. Mishchenko, “Scalable logic synthesis using
a simple circuit structure,” in Proc. IWLS, vol. 6, 2006, pp. 15–22.

[8] R. K. Brayton, “The decomposition and factorization of boolean expres-
sions,” ISCAS-82, pp. 49–54, 1982.

[9] S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De Micheli,
“A simulation-guided paradigm for logic synthesis and verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 8, pp. 2573–2586, 2021.

[10] J. S. Zhang, S. Sinha, A. Mishchenko, R. K. Brayton, and
M. Chrzanowska-Jeske, “Simulation and satisfiability in logic synthesis,”
computing, vol. 7, p. 14, 2005.

[11] J.-H. R. Jiang and R. K. Brayton, “Functional dependency for veri-
fication reduction,” in Computer Aided Verification: 16th International
Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004. Proceedings
16. Springer, 2004, pp. 268–280.

[12] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Computer Aided Verification: 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings
22. Springer, 2010, pp. 24–40.

[13] A. Mishchenko, R. Brayton, and S. Chatterjee, “Boolean factoring
and decomposition of logic networks,” in International Conference of
Computer-Aided Design (ICCAD). IEEE, 2008, pp. 38–44.

[14] L. Józwiak, “Information relationships and measures: an analysis appa-
ratus for efficient information system synthesis,” in EUROMICRO 97.
Proceedings of the 23rd EUROMICRO Conference: New Frontiers of
Information Technology (Cat. No. 97TB100167). IEEE, 1997, pp. 13–
23.

[15] Y.-S. Yang, S. Sinha, A. Veneris, and R. K. Brayton, “Automating logic
rectification by approximate spfds,” in 2007 Asia and South Pacific
Design Automation Conference. IEEE, 2007, pp. 402–407.

[16] S. Sinha, SPFDs: A new approach to flexibility in logic synthesis.
University of California, Berkeley, 2002.

[17] S. Yamashita, H. Sawada, and A. Nagoya, “A new method to express
functional permissibilities for lut based fpgas and its applications,” in
Proceedings of International Conference on Computer Aided Design.
IEEE, 1996, pp. 254–261.

[18] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney, “The
transduction method-design of logic networks based on permissible
functions,” IEEE Transactions on Computers, vol. 38, no. 10, pp. 1404–
1424, 1989.

[19] A. Costamagna, A. Mishchenko, S. Chatterjee, and G. De Micheli, “An
enhanced resubstitution algorithm for area-oriented logic optimization,”
2024, accepted at the International Symposium On Circuits And Systems
(ISCAS).

[20] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[21] M. Van Otterlo and M. Wiering, “Reinforcement learning and
markov decision processes,” in Reinforcement learning: State-of-the-art.
Springer, 2012, pp. 3–42.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[23] V. V. Vazirani, Approximation algorithms. Springer, vol. 1.
[24] J. Rissanen, “Modeling by shortest data description,” Automatica,

vol. 14, no. 5, pp. 465–471, 1978. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/0005109878900055

[25] S. Rai et al, “Logic synthesis meets machine learning: Trading exactness
for generalization,” in 2021 Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2021, pp. 1026–1031.

[26] A. Oliveira and A. Sangiovanni-Vincentelli, “Learning complex boolean
functions: Algorithms and applications,” Advances in Neural Informa-
tion Processing Systems, vol. 6, 1993.

[27] J. Li and P. Gajane, “Curiosity-driven exploration in sparse-reward multi-
agent reinforcement learning,” arXiv preprint arXiv:2302.10825, 2023.

[28] D. Rengarajan, G. Vaidya, A. Sarvesh, D. Kalathil, and S. Shakkottai,
“Reinforcement learning with sparse rewards using guidance from
offline demonstration,” arXiv preprint arXiv:2202.04628, 2022.

[29] A. Feldmann and W. Whitt, “Fitting mixtures of exponentials to long-
tail distributions to analyze network performance models,” Performance
evaluation, vol. 31, no. 3-4, pp. 245–279, 1998.

[30] Bertacco and Damiani, “The disjunctive decomposition of logic func-
tions,” in 1997 Proceedings of IEEE International Conference on
Computer Aided Design (ICCAD). IEEE, 1997, pp. 78–82.

[31] B. Schmitt, A. Mishchenko, and R. Brayton, “SAT-based area recovery
in structural technology mapping,” in 2018 23rd Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2018, pp. 586–591.

[32] L. Amarú, P. E. Gaillardon, and G. De Micheli, “The EPFL combina-
tional benchmark suite,” in Proc. IWLS, 2015.

[33] L. Amarú, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, J. Olson,
R. Brayton, and G. De Micheli, “Improvements to boolean resynthesis,”
in 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2018, pp. 755–760.

Andrea Costamagna received the B.Sc. degree in
physical engineering from the Politecnico di Torino,
Turin, Italy, in 2018, the joint M.Sc. degree in
physics of complex systems from Politecnico di
Torino (Italy) and Université Paris-Saclay (France)
in 2020. Currently, he is working toward the Ph.D.
degree at the Integrated Systems Laboratory at
EPFL, Switzerland. His research interests include
logic synthesis and optimization.

Alessandro Tempia Calvino received a B.S. degree
in Computer Engineering from the Politecnico di
Torino, Turin, Italy, in 2017, and an M.S. degree
in Computer Engineering from the Politecnico di
Torino, in 2020, and Télécom Paris, Paris, France,
in 2021. He is currently pursuing a Ph.D. degree in
Computer Science with the Swiss Federal Institute
of Technology Lausanne, Lausanne, Switzerland in
the Integrated Systems Laboratory. His research in-
terests include design automation, logic synthesis,
and emerging technologies.

Alan Mishchenko received the M.S. degree from
the Moscow Institute of Physics and Technology,
Moscow, Russia, in 1993 and the Ph.D. degree from
the Glushkov Institute of Cybernetics, Kiev, Ukraine,
in 1997. In 2002, he joined the EECS Department,
University of California at Berkeley, Berkeley, CA,
USA, where he is currently a Full Researcher. His
current research interests include computationally
efficient logic synthesis, formal verification, and
machine learning.

Giovanni De Micheli is Professor and Director of
the Integrated Systems Laboratory at EPFL Lau-
sanne, Switzerland. He is a Fellow of ACM, AAAS
and IEEE, a member of the Academia Europaea
and an International Honorary member of the Amer-
ican Academy of Arts and Sciences. His current
research interests include several aspects of design
technologies for integrated circuits and systems,
such as synthesis for emerging technologies. He is
member of the Scientific Advisory Board of IMEC
and STMicroelectronics. Prof. De Micheli is the

recipient of the 2022 ESDA-IEEE/CEDA Phil Kaufman Award, the 2019
ACM/SIGDA Pioneering Achievement Award, and several other awards.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3525617

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


