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ABSTRACT

We address the problem of minimizing the area of circuits mapped

to a technology library, with or without delay constraints. While

traditional methods optimize first a technology-independent rep-

resentation and then perform technology mapping to a library,

this paper explores the potential for further optimizations through

technology-dependent algorithms. We propose an optimization

engine for mapped circuits that relies on a database of mapped

sub-networks for efficient resynthesis. Experimental results on the

EPFL benchmarks after area-oriented optimization and mapping

show that the proposed method leads to average area improvements

of 5.47% without degrading the delay.
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1 INTRODUCTION

Dennard scaling of transistors motivated area-minimization of dig-

ital circuits for over fifty years, resulting in higher performance

and reduced power consumption [13]. While the demand for bet-

ter performance continues to grow, financial and physical limita-

tions hinder delivering higher performance by transistor scaling

alone [12]. As a result, further improvements in computing power

requires higher optimization effort at the design level [15].

State-of-the-art logic synthesis tools optimize technology inde-

pendent representations and map them to a technology library [24,
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14]. In this case, reducing the number of gates in the technology-

independent representation is considered an effective heuristic for

reducing area after mapping [30, 7]. However, high-effort optimiza-

tion of the technology-independent representation does not always

correlate with the quality of a mapped circuit [21].

Technology-aware logic synthesis has recently gained momentum

as a way to improve the quality of mapped circuits [3, 1, 6, 32]. This

approach aims to integrate technology-dependent information into

logic optimization, thereby improving the quality of the mapped

circuits. In line with this approach, this paper presents a technology-

aware logic synthesis algorithm for area-oriented optimization,

with or without delay constraints.

The algorithms discussed in this paper are implemented in the

first open-source engine for optimizing circuits mapped with a li-

brary of standard cells. Our approach takes a mapped netlist and re-

places circuit sub-portions with high-quality mapped sub-networks

stored in a database. We rely on the dependency theory [39, 34] to

identify optimization opportunities not available to the technology

mapper, as they involve non-local restructuring of the netlist. Fur-

thermore, we leverage the don’t cares during resynthesis to increase

the optimization quality.

Experiments on the EPFL and IWLS benchmarks confirm that

aggressive area optimization of the technology-independent repre-

sentation does not maximize area reductions after mapping. This

justifies the need for area optimization of mapped networks. We

apply our technology-aware resubstitution algorithm to mapped

designs after area-oriented technology-independent optimization

and mapping. On the EPFL benchmarks, our method achieves an

additional 5.47% average area reduction without delay degradation.

2 BACKGROUND

Given a Boolean function 𝑓 : B𝑛 → B
𝑚 , and a technology library

𝐿, we consider the problem of synthesizing a network of gates from

𝐿 that implements 𝑓 while minimizing circuit area, with optional
timing constraints. This problem is addressed by logic synthesis.

2.1 The Two-Steps Approach to Logic Synthesis

State-of-the-art logic synthesis follows a two-step approach [7].

First, the functional specifications are represented as a simple circuit

named subject graph, which is optimized for area and/or delay. A

commonly used subject graph is the and-inverter graph (AIG), where

each node is a two-input and-gate and complemented edges denote

signal negation. Subsequently, the subject graph is covered with
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Figure 1: Representation of a mapped network as the cover

of a subject graph with gates from a standard cell library. In

the figure, each cell is characterized by its functionality, area

information, and pin-to-pin propagation delays.

cells from a technology library during technology mapping. This

process is represented in Figure 1.

To obtain amapped circuit optimized according to a cost function,

AIG optimizationmust be guided by heuristic criteria estimating the

correlation betweenAIG optimization steps and improvements after

mapping. A common assumption for area-oriented optimization is

that reducing the number of nodes in the subject graph correlates

with reduced area after mapping [30, 7]. This assumption relies

on a property named structural bias: the structure of the mapped

netlist strongly depends on the subject graph [8].

While structural bias is inevitable during technology mapping, it

is important to mitigate it in order to improve the quality of mapped

networks [8]. Since AIG optimization is agnostic of the properties

of the gates in the library that are only available during mapping,

resynthesis after mapping, as described in this paper, helps unlock

optimization opportunities that cannot be obtained at the AIG level.

2.2 Boolean Networks Terminology

Let us consider a Boolean network. If there is a path from a node 𝑥𝑖
to a node 𝑥 , then 𝑥𝑖 is in the transitive fanin (TFI) of 𝑥 . The primary
inputs (PIs) are nodeswithout fanins in the network and the primary

outputs (POs) are nodes without fanouts in the network.

The maximum fanout free cone (MFFC) of node 𝑥 is the subset of
nodes in the TFI of 𝑥 such that every path from a node in the subset

to the POs passes through 𝑥 . The MFFC of a node contains the

portion of the circuit used exclusively to compute the functionality

of 𝑥 . When removing a node, its MFFC can also be removed.

A structural cut C of a Boolean network is a pair (𝑥 , L), where 𝑥
is a node, called root, and L is a set of nodes, called leaves, such that

1) every path from any primary input (PI) to node 𝑥 passes through
at least one leaf and 2) for each leaf 𝑣 ∈ L, there is at least one path
from a PI to 𝑥 passing through 𝑣 and not through any other leaf.
Given a cut C = (𝑥,L), the paths connecting the leaves to the

root identify a sub-network synthesizing a Boolean function named

cut functionality. If all the leaves are PIs of a 𝑛-inputs network,

the cut functionality is the global function of the node. A 𝑝-bit
simulation signature for a node 𝑥 is a Boolean vector approximating
the global function of node 𝑥 obtained by simulating the network
with a set of 𝑝 bit-level simulation patterns assigned at the PIs [29].

2.3 Peephole Optimization

Peephole optimization is an optimization strategy that involves im-

proving structural sub-portions of the target network, named win-

dows, by minimizing a local cost function [28, 19]. When optimizing

a Boolean network for area, peephole optimization consists in resyn-

thesizing the function of a node using a set of candidate nodes [26].

The transformation is accepted if the resynthesis sub-circuit makes

redundant a larger area sub-circuit, which can thus be removed.

We focus on three well established peephole optimization strate-

gies, briefly discussed in the following. While these transformations

are commonly applied to the subject graph, this paper extends their

use to mapped netlists.

Cut-based rewriting [25, 22] is an optimization strategy which

involves enumerating a set of structural cut for each node of the

network. Next, the functionality of the cut is extracted, and the

minimum size circuit is synthesized and used to replace the sub-

circuit currently present in the netlist if it has a smaller area. This

method is made scalable by precomputing optimum sub-circuits

for small Boolean functions and storing them in a database.

In window-based resubstitution, a window is a sub-network that

is structurally built around the target node. The nodes in a window

that are not in the MFFC are named divisors [28]. Each window

is exhaustively simulated, resulting in the local function of each

divisor. Next, heuristics attempt resynthesizing the function of the

target node with a circuit whose area is smaller than the MFFC.

In simulation-guided resubstitution, rather than using exhaustive

window simulation, the nodes’ functions in the window are rep-

resented using simulation signatures. This approach has the key

advantage of using global functional information. However, the

signatures are approximations of the global functions. Their use

requires equivalence checking in the end to verify the correctness

of each transformation [20, 40].

2.4 Resynthesis and Dependency Cuts

Most state-of-the-art resubstitution engines use on-the-fly decompo-

sition heuristics, simultaneously identifying useful divisors and

adding them to the resynthesis sub-network. In contrast to on-the-

fly decomposition, alternative approaches divide the process into

two phases: divisor selection and synthesis [40, 11].

During the divisor selection phase, the goal is to identify a subset

of nodes C = (𝑥,L) that is not (necessarily) a structural cut in
the current topology but has the potential to become one. Named

dependency cut, this subset exists if there is a function ℎ :B | L | →
{0, 1, ∗} such that 𝑥 = ℎ(L). The synthesis phase then generates a
sub-network implementing this function.

Given a Boolean function 𝑥 : B𝑛 ↦→ {0, 1, ∗}, its set of pairs of
functions to be distinguished (SPFD) is a mathematical construct Υ𝑥 :
B
𝑛×B𝑛→B encoding the Boolean function’s ability to distinguish

the points of its input space into onset and offset [39, 34, 17].

The SPFD of a function 𝑥 is the set of minterm pairs for which the

function has different values, i.e., Υ𝑥 = {(𝑀1, 𝑀2) s.t. 𝑥𝑀1
≠ 𝑥𝑀2

}.
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In the rest of the paper, we will refer to the node’s SPFD as its

functional information. A set of nodes L is a dependency cut for

target node 𝑥 , C = (𝑥,L), if the functional information of the target
node is contained in that of the nodes belonging to L [16, 39, 11]:

Υ𝑥 ⊆
⋃

𝑦∈L

Υ𝑦 . (1)

Recent work [11] has identified an SPFD manipulation technique

allowing for solving Eq. 1 with simulation signatures whose di-

mension is up to 212. This technique provides a way to identify

how many minterm pairs of the SPFD remain after removing the

minterm pairs present in the SPFD of the divisor 𝑦: |Υ𝑥\Υ𝑦 |. How-
ever, the authors did not exploit the full potential of the method

since they relied on decomposition for resynthesis [11]. Further-

more, their dependency cut selection is stochastic in nature, which is

often regarded as undesirable for EDA development, and we address

this issue by proposing a deterministic version of their algorithm.

In this paper we observe that the true potential of dependency

cut selection lies in combining the best features of resubstitution

and database-powered rewriting. This observation has been the

key motivation of our research.

2.5 Post Mapping Optimization: Previous Works

One of the first approaches for optimizing networks after tech-

nology mapping was proposed by Benini et al. [4]. This method

extracts windows of two or three cells and remaps them at the same

time using generalized matching. While the method can leverage

Boolean don’t cares and even Boolean relations, it only performs

structural cell substitutions without resynthesis.

Kravets et al. devised an engine for resubstitution after tech-

nology mapping [18]. Their method is window-based, and can be

formulated as a dependency cut-selection problem followed by

resynthesis. However, their method uses gate decomposition from

the library, while we rely on database rewriting, enhancing scalabil-

ity and reducing computation. Additionally, our engine combines

window-based resubstitution with structural cut enumeration and

signature-based cut selection, increasing the variety of rewiring

opportunities. Furthermore, our synthesis strategy also exploits

don’t cares during database look-up to reduce area.

More recently, Amarú et al. developed advanced filtering tech-

niques to increase the scalability of Boolean methods [2]. They

propose a resubstitution algorithm, capable of inferring complex

gates during resynthesis. The authors mention that this method

can be used for optimizing mapped netlists. Their algorithm is a

window-based resubstitution which uses precomputed gate struc-

tures, which are often single gates from a technology library. Our

method, on the other hand, is more general than this approach in

that our resynthesis sub-networks are not limited to single-gate

netlists. The use of different support selection strategies gives our

method additional restructuring capabilities.

3 POST-MAPPING RESYNTHESIS

In this section, we introduce novel contributions enabling scalable

post-mapping design space exploration. The algorithms we devel-

oped rely on the observation that dependency cuts enable combining

the global restructuring capabilities of resubstitution with database

rewriting. Given a technology library, a database can be generated

using the proposed method. Overall, the contribution of this paper

is to extend technology-dependent optimization with engineering

solutions that were previously used for technology-independent

representations. By combining them in the proposed optimization

engine, we develop a novel optimizer for mapped netlists.

3.1 Database Generation

We begin by considering a simplified version of the area minimiza-

tion problem, when the function 𝑓 : B4 → B has one output and at

most four inputs. The number of inputs is chosen to ensure efficient

truth table manipulation while considering non-trivial structures,

like the one in Figure 2. Minimum node AIGs for four-input func-

tions can be easily computed, and mapping them to technology

leads to near-optimal mapped netlists.

The database we construct contains a mapped netlist for each

four-input function. We limit the size of the database taking func-

tional symmetries into account. In particular, two functions belong

to the same 𝑃-class if one function is equivalent to the other under
some input permutation [33]. Since permutations have zero cost

during technology mapping, we synthesize only the 3984 functions

representing all 𝑃-classes of four-input functions. The representa-
tive functions are those having the lexicographically smallest truth

tables among all the functions belonging to an 𝑃-class.

3.2 Boolean Matching with Don’t Cares

Let C = (𝑥,L) be a dependency cut, and 𝑓 : B4 → {0, 1, ∗} be the
cut functionality, possibly specified with don’t cares. During resyn-

thesis, we want to identify the best sub-netlist synthesizing the

functionality, and the don’t cares offer a degree of freedom: various

assignments of them yield resynthesis candidates with different

area. Previous research investigated algorithms for Boolean match-

ing with don’t cares, that is the problem of performing database

look-up exploiting this flexibility [23, 38, 5]

The number of matches in the database grows exponentially

with the number of don’t cares. However, we empirically verify that,

for the strategies adopted in this work, there are on average two

don’t care minterms, corresponding to four completely specified

functions per cut. Due to the small number of don’t cares, enumer-

ating through all the compatible completely specified functions is

feasible. Hence, given the cut functionality, we access the database

by assigning don’t cares in all possible ways and identifying the

𝑃-representative for each function. Next, database look-up allows
us to obtain the pre-computed netlist in constant time.

3.3 Structural Network Exploration

We represent mapped networks as those where each node is as-

sociated with a gate identifier from the library. As a consequence,

structural cut enumeration algorithms can be extended to identify

structural cuts in a mapped network. Figure 2 shows an example of

structural cuts enumeration. Each node is a gate from the asap7 [10]

technology library, characterized by area and functionality.

For each enumerated cut, we extract the cut functionality and

compute its 𝑃 representative. Next, we use the representative truth

table to look up the precomputed structure stored in the database.
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Figure 2: Two structural cuts C1 = (𝑥,L1) and C1 = (𝑥,L2)
identified during network exploration and database-based

rewriting. The figure represents a portion of a larger design.

If the area of the stored network is smaller than the area of the

sub-circuit contained in the cut, we perform the substitution.

Figure 2 shows an example encountered while optimizing the

EPFL benchmarks, in which a sub-network of area 0.56𝜇𝑚2 can

be replaced with a sub-network of area 0.52𝜇𝑚2. Structural cut

enumeration is extremely fast, so that identifying optimizations

based on this transformation should be preferred due to its scalabil-

ity. However, computing structural cuts limits optimization to the

transitive fanin of the node, which is also explored by the mapper.

The proposed approach, however, is more general because it ex-

plores additional resynthesis opportunities arising due to non-local

transformations outside of the TFI cone.

3.4 Window Construction and Simulation

Figure 3: Example of a small window encountered while

optimizing the EPFL benchmarks.

Inspired by the recent work on simulation-guided resubstitu-

tion [19, 20], we build windows using the notion of reconvergence

driven cuts. Given a target node, we first identify a large structural

cut, corresponding to the blue nodes at the bottom of Figure 3. The

sub-circuit between this cut and the target node can be divided into

two parts: the MFFC nodes and the divisors in the node’s TFI.

The MFFC nodes are the nodes for which each path from their

output to a primary output passes through the target node. Upon

successful resubstitution, these nodes can be removed and their

area can be saved. The second group of nodes cannot be removed

after successful resubstitution because there are paths connecting

their fanout to the POs without passing through the target node,

i.e., they are used for synthesizing other nodes in the design. These

nodes are named divisors, and are nodes that can potentially be

used for resynthesizing the target node.

We enlarge the set of divisors by including some nodes outside of

the TFI of the target node, but with fanins in the divisor set. These

nodes are highlighted in yellow in Figure 3. The extended set of

divisors is used as input to the dependency cut selection algorithm.

A resulting dependency cut in Figure 3 is highlighted in green.

We associate each node 𝑥 in the window with two Boolean

functions. The local Boolean function 𝜑𝑛 : B𝑘 → {0, 1} is obtained
by exhaustively simulating the window for all possible window

input patterns. The global function 𝜓𝑛 : B
𝑛 → {0, 1, ?} is the

simulation signature, a partially specified Boolean function defined

over the primary inputs of the design. The value of the function

is unknown (?) for some circuit’s input patterns, but it contains

global information characterizing the node.

3.5 Deterministic Dependency Cut Selection

LetW = (𝑥,D,M) be a window, where 𝑥 is the target node, D

is the set of divisors, and M is the MFFC. Also, let 𝜙𝑥𝑖 be the
functional information of a node 𝑥𝑖 ∈ W. This function can be 𝜑𝑥𝑖
or𝜓𝑥𝑖 . Algorithm 1 describes the proposed deterministic algorithm

for identifying dependency cuts using functional information.

Algorithm 1: Deterministic dependency cut selection

Data: A windowW = (𝑥,D,M), functional information of
each node 𝜙𝑥𝑖 , maximum cut size 𝑘 , and maximum
number of attempts 𝑇

Result: A dependency cut C = (𝑥,L) with |L| ≤ 𝑘 if found
D̃ ← sort the divisors based on |Υ𝜙𝑥

\Υ𝜙𝑥𝑖
|;

𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ← 0;

for 𝑥𝑖 ∈ D̃ and 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠++≤ 𝑇 do

L ← 𝑥𝑖 ;

Υ← Υ𝜙𝑥
\Υ𝜙𝑥𝑖

;

while |L| ≤ 𝑘 do
𝑥∗ = argmin𝑥 𝑗 ∈D{|Υ\Υ𝑥 𝑗 |};

L ← L ∪ {𝑥∗};

Υ← Υ\Υ𝜙𝑥∗
;

if Υ = ∅ then
return C = (𝑥,L);

return cut does not exist;

At the beginning, we sort the divisors by the amount of informa-

tion they share with the target node [17, 34]. Next, we try building a

solution by forcing it to contain one of the first𝑇 divisors, where𝑇
is a parameter chosen by the user. The algorithm performs a greedy

set covering to find a set of divisors that contains the complete

functional information of the target node.

This approach is effective because the greedy set covering is

provably the best polynomial time approximation algorithm for set

cover [9]. Since a solution to set covering might not include the set

that covers most elements [35], this algorithm considers different

starting points. We empirically observed that this approach is effec-

tive for detecting dependency cuts. Furthermore, this algorithm is

deterministic, which is a desirable feature in the EDA applications.
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It is important to note that an enumeration-based exact solution

is computationally infeasible for industrial-scale designs, necessi-

tating the use of approximation algorithms, such as the one we

developed. However, in addition to the aforementioned computa-

tional advantages of limiting the support size to 4, this choice also

results in a small optimality gap between a solution to Eq. 1 found

with a greedy-like heuristic, and the exact one [37].

3.6 Functionality Extraction and Its Validation

Let C = (𝑥,L) be a dependency cut, 𝜙𝑥 the functional information
of the target node 𝑥 , and 𝜙𝑥𝑖 the functional information of a leaf
node 𝑥𝑖 ∈ L. The key implication of the dependency theorem,

expressed in Equation 1, is that, given a dependency cut there exist

a function ℎ : B | L | → B such that 𝜙𝑥 = ℎ({𝜙𝑥𝑖 }𝑥𝑖 ∈L). The truth
table of the function ℎ can be easily extracted by identifying the
value of 𝜙𝑥 for each pattern in {𝜙𝑥𝑖 }𝑥𝑖 ∈L . Not all the minterms

in B
| L | necessarily appear, and the missing patterns are the don’t

cares of the function ℎ. This function gives the specification for the
substitution candidate, synthesizable using a database look-up.

It is essential to note that a dependency cut obtained with 𝜙𝑥 =
𝜑𝑥 is guaranteed to be a dependency cut for the global function

of the nodes, but when 𝜙𝑥 = 𝜓𝑥 this is not guaranteed because

simulation signatures only contain partial information. In the latter

case, equivalence checking is needed to verify that a transformation

preserves the functional equivalence of the design, as shown below.

3.7 The Optimization Engine

Algorithm 2 illustrates our engine. The algorithm allows the user

to set a required time at the outputs 𝜏𝑅𝑚𝑎𝑥 , which is desirable when

preserving timing constraints is critical.

The algorithm samples 𝑃 input patterns of the design and extracts
the simulation signatures𝜓 for each node of the network. Next, the

network is explored one node at the time. For each node, we extract

a window having a maximum input size 𝐶𝑤 , and we exhaustively

simulate it to obtain the functional information 𝜑 . We then do

structural cut enumeration and try computing one dependency

cut. After extracting the functionalities of theses cuts, we match

them against the database. If any of these netlists induces an area

reduction, we perform the substitution.

If none of the previous approaches yields an area advantage,

it is still possible that using more global information will result

in a larger number of don’t cares, whose exploitation might yield

improvements. We therefore attempt to identify a dependency cut

using simulation signatures. However, if the cut is found and the

area is improved, we must verify the correctness of the transforma-

tion. We do so by performing SAT-based equivalence checking of

the target node with the resynthesis sub-network.

We prioritize window-based resubstitution and cut rewriting since

they are more scalable. To save the runtime of equivalence checking

when the proposed method uses simulation signatures, we perform

it only if other possibilities fail.

If equivalence checking is successful, we update the timing and

move on to the next node. Otherwise, we store the counter example

found by the SAT solver. When the number of derived counter

examples reaches the size of a machine word (e.g., 64 bits) we use

them to re-simulate the network and replace the oldest bits in

the signatures. This approach minimizes memory reallocation and

ensures computational efficiency.

Algorithm 2: Technology-Aware Resubstitution

Data: A mapped circuit with required time 𝜏𝑅𝑚𝑎𝑥
Result: A new mapped circuit optimized for area

B𝑃 ← Sample 𝑃 patterns at random from B
𝑛 ;

𝜓𝑃 ← Functional simulation of 𝐺 using B𝑃 ;

for 𝑥 ∈ 𝐺 do

Build a window of input size 𝐶𝑤 for node 𝑥 ;

𝜑 ←Exhaustive window simulation;

C𝑠 , 𝐴𝑠 ← Find the best structural cut;

C𝑑 , 𝐴𝑑 ← Find a Dependency cut 𝜑 in 𝑇 attempts;

if (𝐴(C𝑠 ) ≤ 𝐴(M) or 𝐴(C𝑑 ) ≤ 𝐴(M)) then
Resynthesize the best cut and substitute 𝑥 ;

else

C𝑑 , 𝐴𝑑 ← Find a candidate dependency cut;

if 𝐴𝑑 < 𝐴(M) and 𝜏𝐴𝑥𝑛𝑒𝑤 ≤ 𝜏𝑅𝑥 preserved then

𝑥𝑛𝑒𝑤 ←Resynthesize C𝑑 ;

if 𝑥𝑛𝑒𝑤 and 𝑥 are globally equivalent then
Substitute 𝑥 with 𝑥𝑛𝑒𝑤 ;

else

Save the counter-example in B𝑐𝑒𝑥 ;

if |B𝑐𝑒𝑥 | is equal to a word length then

𝜎64 ← Simulate 𝐺 using B𝑐𝑒𝑥 ;

Replace the oldest signatures;

B𝑐𝑒𝑥 ← ∅ ;

if successful resubstitution and 𝜏𝑅𝑚𝑎𝑥 < ∞ then

Update the arival times and the required times;

return the optimized circuit;

4 EXPERIMENTS

This section presents experimental results using the 7𝑛𝑚 standard

cell library asap7[10]. For technology mapping, we utilize the state-
of-the-art mapper emap [31] , implemented in Mockturtle [36].
Direct comparison with prior work is hindered by limitations

in reproducibility and outdated benchmarking standards, such as

reliance on proprietary code, closed-source libraries [4], resynthesis

engine evaluations solely on outdated cell libraries and focused on

delay-optimization under area constraints [18], and the lack of

standard cell mapping evaluations [2]. To address these issues, we

establish a solid baseline by implementing high-effort, technology-

independent optimization followed by area-oriented technology

mapping, ensuring robust and practical benchmarking.

4.1 Technology-Independent Assumptions

In this experiment, we investigate the correlation between node

count in the subject graph and the area after technology mapping.

We use an aggressive optimization flow running the following

area-oriented commands and scripts in ABC: rw, rs, rf, resyn2rs,
and compress2rs. These are common area-oriented optimization
algorithms: rw, which performs cut-based rewriting [25, 22]; rs,
which applies window-based resubstitution [28]; and rf, a variation
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Table 1: The worst-case analysis of the improvement of technology-aware resubstitution. The benchmarks are those with less

than 200K nodes from the EPFL and IWLS benchmark suites. The benchmarks are optimized with high-effort AIG optimization

before mapping. The best possible delay is used as the delay constraint.

Design 𝐴𝑖 [𝜇𝑚
2] 𝛿𝐴1𝑖 [%] 𝛿𝐴∞𝑖 [%] 𝐴𝑒 [𝜇𝑚

2] 𝛿𝐴1𝑒 [%] 𝛿𝐴∞𝑒 [%] 𝐷𝑒 [𝑝𝑠] 𝛿𝐷1
𝑒 [%] 𝛿𝐷∞𝑒 [%] 𝑡1𝑒 [𝑠] 𝑡∞𝑒 [𝑠]

div 3914.60 −14.35 −23.28 1296.90 −7.81 −9.30 60248.23 0.00 0.01 7.09 38.40
sqrt 1372.25 −12.44 −16.30 1171.15 −3.16 −5.22 78957.63 0.00 −1.21 4.09 50.83
arbiter 557.84 −13.87 −41.31 557.84 −12.01 −51.81 999.95 0.00 −39.57 1.59 17.38
mem_ctrl 2547.32 −7.87 −18.47 2063.01 −5.86 −12.79 1649.46 −5.82 −13.00 18.41 183.16
aes_core 1198.55 −4.18 −5.80 1106.60 −1.07 −1.81 434.52 −2.29 −2.05 11.41 165.45
ethernet 4411.85 −2.99 −4.35 3123.35 −0.96 −3.68 588.34 0.00 0.00 54.60 214.07
iwls05_i2c 66.32 −8.56 −12.26 49.96 −1.46 −2.00 288.07 0.00 0.00 0.19 0.58
RISC 4145.01 −8.10 −8.10 3172.54 −1.03 −1.03 1304.74 0.00 0.00 350.90 350.90
sasc 40.46 −1.29 −1.83 31.72 −1.07 −1.32 191.00 0.00 0.00 0.16 0.48
simple_spi 54.77 −4.78 −6.50 41.58 −0.53 −1.39 287.00 0.00 0.00 0.17 1.06
spi 205.45 −4.16 −9.05 167.59 −1.52 −2.08 489.49 0.00 0.00 0.43 3.66
systemcaes 611.55 −4.10 −5.75 530.89 −3.25 −3.62 784.00 0.00 0.00 1.23 11.28
systemcdes 172.17 −8.11 −13.69 142.22 −1.21 −2.38 530.29 0.00 0.00 0.39 2.22
tv80 512.39 −7.43 −12.29 356.38 −0.70 −1.48 907.86 0.00 0.00 1.03 6.84
usb_funct 887.05 −4.16 −7.41 702.45 −0.70 −0.98 722.00 −2.65 −2.65 1.64 12.45
usb_phy 28.82 −6.45 −10.58 23.97 −0.83 −1.42 179.06 −7.79 −8.51 0.15 0.61

−5.75% −10.21% −1.21% −2.81% −0.48% −1.81% 17.62 47.15

of rewriting that, for each node, computes a large structural cut

and seeks to replace the current AIG structure with a factored

form of the cut function [26]. Additionally, the flows resyn2rs
and compress2rs are widely accepted in the community, devised
through designer expertise and practical insights.

Before applying any optimization, the AIG is functionally re-

duced using command fraig [29]. This step ensures that no two
nodes in the AIG have the same functionality, thereby eliminating

trivial optimization opportunities and strengthening the baseline.

As soon as one heuristic successfully reduces the number of

AIG nodes, we map the AIG and plot the number of AIG nodes

and the area. We start with one-pass commands rw, rs, rf to slow
down convergence, which helps articulate the correlation between

technology-independent optimization and area after mapping. We

iterate this procedure as long as there are changes in the subject

graph.

Figure 4 shows the typical trends observed on the EPFL and

IWLS benchmarks. For most benchmarks, at least in the first few

optimization steps, we observe a good correlation between AIGmin-

imization and area reduction. For instance, in highly non-optimized

AIGs, such as mem_ctrl (top-left of Figure 4), the correlation be-
tween AIG minimization and area reduction is consistently strong,

without significant fluctuations. However, there are benchmarks

in which improvements in the AIG size can have an adverse effect,

resulting in increases of area after mapping by several percent.

4.2 Post-Mapping Area Optimization

Each part of Figure 4 contains four crosses, which show the result

of optimizing two versions of the subject graph (the initial AIG and

the AIG that could not be further optimized) using two types of

resynthesis (by a single traversal of the graph and by iteratively

traversing the graph until convergence).

Figure 4: Correlation the subject graph size and the area after

mapping, reflecting typical trends for the EPFL and IWLS

benchmarks. The crosses show the results of post-mapping

optimization, applied once and until convergence, for the

original AIG and the optimized AIG.

In the case of mem_ctrl, log2, system_caes, and sin, despite
the high-effort AIG optimization, the proposed algorithm can achieve

further area reduction. Furthermore, it is interesting to observe that

in log2 and sin, the best optimization result is not achieved with
the two-step process, but rather by directly optimizing the network

mapped using the unoptimized subject graph.
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4.3 Area Under Delay Constraints

This experiment shows a detailed analysis on the EPFL and IWLS

benchmarks using the subject graphs that are unoptimized and

highly optimized. High-effort optimization is achieved by iteratively

applying resyn2rs and compress2rs until the subject graph cannot
be reduced, and merging equivalent nodes using command fraig
before applying any script. After the high-effort optimization, we

map the network using area-oriented mapping and optimize the

network without allowing delay to increase. The reported runtimes

include also the time needed to run the SAT solver during signature-

based resubstitution, showing the scalability of the method.

Table 1 shows the following: 𝐴𝑖 is the mapping area using an

unoptimized AIG. 𝐴𝑒 is the mapping area using an optimized AIG.

𝐷𝑒 is the mapping delay using an optimized AIG. Indicating with𝑄
a quantity, that can be area 𝐴 or delay 𝐷 , 𝛿𝑄1

𝑖,𝑒 is the improvement

after one optimization round and 𝛿𝑄∞𝑖,𝑒 is the improvement after

iterative optimization. We use fixed simulation signatures of size 210,

and the windows are limited to at most 10 inputs and 256 divisors.

Table 1 reports the results for the EPFL and IWLS benchmarks.

We consider 39 designs whose subject graphs initially have less than

200K nodes due to the high runtime of the flow including both AIG

optimization and mapping. The average values at the bottom of

the tables are computed for all 39 benchmarks. Table 1 shows that

post-mapping optimization leads to noticeable reductions in area

while the worst-case delay is not increased.

4.4 Design Space Exploration

The last experiment performs design space exploration for mapped

circuits. Table 2 shows the results for selected EPFL benchmarks

while the average is for all of them. The subject graphs are opti-

mized using two iterations of the script "fraig; compress2rs;
resyn2rs". Next, the subject graph is mapped and optimized under
stringent delay constraints. In one case (column 𝛿𝐴∞), we iterate
optimization until convergence. In the other case (column 𝛿𝐴5×5),
after 5 iterations of technology-aware resubstitution, we unmap

the network, remove redundancies in the resulting AIG and balance

it [27], in order to move to a different region of the design space.

Finally, we remap it and restart area-oriented optimization. We

report the best encountered results where each benchmark also sat-

isfies the delay constraints. This experiment shows that our engine

effectively uses logic restructuring for mapped networks, which

directly benefits design space exploration.

5 CONCLUSION

Thiswork proposes a technology-aware area optimization formapped

networks, motivated by the reduced correlation between technology-

independent and technology-dependent optimization after a few

iterations of the former. The method is customized to work for stan-

dard cell designs. Experiments on the EPFL and IWLS benchmarks

show that applying our method after aggressive logic minimiza-

tion and area-oriented technology mapping further reduces area

by 2.81% on average and up to 51.81% for some test cases without

delay penalty. The method helps reduce area by 5.47% when used

as part of design space exploration. These encouraging results sug-

gest the importance of further investigating Boolean methods in

technology-aware optimization.

Table 2: Mapped design space exploration.

Design 𝐴[𝜇𝑚2] 𝛿𝐴∞[%] 𝛿𝐴5×5 [%] 𝑡∞[𝑠] 𝑡5×5𝑒 [𝑠]

bar 149.13 −0.04 −3.24 0.50 7.88
div 1302.07 −9.96 −15.54 91.97 75.89
sin 289.47 −0.24 −1.41 2.58 35.02
sqrt 1171.15 −3.99 −5.98 28.14 89.16
arbiter 557.84 −45.59 −55.49 11.74 19.71
cavlc 34.53 −0.96 −1.13 0.85 6.90
ctrl 5.90 −2.71 −3.90 0.29 4.92
i2c 59.23 −0.95 −1.08 0.62 6.09
mem_ctrl 2164.98 −13.96 −11.38 187.81 256.89
priority 27.66 −0.29 −2.75 0.30 5.34

−4.23% −5.47%
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