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Abstract—Adiabatic quantum-flux parametron (AQFP) is an
energy-efficient superconducting technology. Before physical
design can be performed, AQFP technology mapping involves
not only mapping logic into supported gate types but also
legalizing the circuit to fulfill the technology-imposed constraints
on path balancing and fanout branching by inserting buffer and
splitter cells. These cells account for a significant amount of the
circuit’s area, delay, as well as for increasing energy consumption.
In this article, we 1) identify that the AQFP legalization
problem is a scheduling problem; 2) propose linear-time depth-
optimal scheduling and irredundant buffer insertion algorithms;
3) present heuristic optimization algorithms to further reduce
buffer count; and 4) suggest an unsupervised design space
exploration approach for AQFP technology mapping, mixing,
and interleaving logic optimization and technology legalization.
Experimental results show that our design space exploration,
utilizing the proposed technology legalization and optimization
flow, achieves 44% improvement on the energy–delay product
compared to the state of the art.

Index Terms—Adiabatic quantum-flux parametron (AQFP),
logic synthesis, superconducting electronics, technology mapping.

I. INTRODUCTION

H IGH-PERFORMANCE computing of data centers and
computing clusters contributes to a noticeable percentage

of the world’s energy consumption, demanding more energy-
efficient computation paradigms. The adiabatic quantum-flux
parametron (AQFP) is an emerging superconducting tech-
nology shown to achieve promising energy efficiency [1]
and has attracted increasing attention in the past decade.
While the technology is rapidly evolving [2], [3], [4], [5],
[6] and larger-scale systems are being developed [7], [8],
design automation for AQFP is also an extensively researched
topic [9], [10], [11].

One major challenge in AQFP design automation is the
legalization of the logic circuit to fulfill two unconventional
technology constraints, path balancing and fanout branching,
before physical design. Due to its gate-level clocking property,
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AQFP gates require all input signals to arrive at the same
time, thus buffers have to be inserted on shorter data paths to
balance with the longer paths. Moreover, splitters are needed
at the output of AQFP gates driving multiple signals, and
these splitters are also clocked. Thus, logic circuits generated
by technology-independent logic synthesis must be legalized
for the AQFP technology by inserting buffers and splitters
(B/Ss). Legalization of AQFP circuits is essential to unlock its
potential of pipelined computation while maintaining correct
functionality.

In a legalized AQFP circuit, B/Ss often contribute to over
50% of the Josephson junction (JJ) count, which is the
commonly used cost metric related to area as well as energy
consumption. Thus, optimized algorithms for AQFP legaliza-
tion are in need to reduce the overhead and increase scalability
of AQFP circuits. In this article, we summarize a scalable
and flexible framework for AQFP technology legalization and
optimization, based on two previous papers [12], [13]. First,
we show that the AQFP B/S insertion problem is a scheduling
problem by formalizing an irredundant B/S insertion algo-
rithm, which is optimal subject to a given schedule. Then,
we propose depth-optimal scheduling algorithms, forming
the basis for obtaining an initial legalized circuit. We then
present two orthogonal heuristic optimization algorithms to
further optimize the B/S count. Our AQFP legalization and
optimization flow consists of obtaining two depth-optimal
schedules, iteratively optimizing them separately, and then
choosing the better one. Furthermore, we present an unsuper-
vised design space exploration approach that interleaves logic
synthesis and technology legalization. Finally, we discuss how
logic as well as technology constraints can be verified after
AQFP synthesis.

Our experiments demonstrate promising results in three
possible scenarios of application.

1) When a runtime-efficient synthesis flow is of concern,
it is better to separate logic synthesis and AQFP legal-
ization. For the latter, we present a heuristic legalization
and optimization flow which obtains similar, near-
optimal quality as the state-of-the-art (SoTA) integer
linear programming (ILP)-based algorithm within very
little runtime.

2) When dealing with larger-scale designs, scalability is
important. Our approach is flexible in runtime bud-
get as the optimization part can be skipped and our
scheduling-based legalization is fast and scalable. We
demonstrate legalization results on benchmarks 10× to
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Fig. 1. AQFP-legalized full adder circuit.

100× larger than what any other related works could
handle.

3) When circuits are small enough or the runtime budget is
sufficient, logic restructuring and technology legalization
can be interleaved to achieve better results. We pro-
pose an AQFP technology mapping approach combining
existing logic optimization techniques with our legal-
ization flow for design space exploration. Experimental
results show a significant 44% improvement in the
energy–delay product (EDP) compared to the best-
known AQFP synthesis results.

II. PRELIMINARIES

A. Adiabatic Quantum-Flux Parametron

AQFP is a superconducting electronics technology. In
an AQFP circuit, JJs, instead of transistors, are the active
components. By operating in the superconductive region, AQFP
circuits achieve zero static energy dissipation [14]; by operating
in the adiabatic mode, AQFP circuits achieve very small
dynamic energy consumption [1]. The basic circuit components
in AQFP are the buffer cell and the branch cell. A majority-3
logic gate can be constructed by combining three buffer cells
with a 3-to-1 branch cell, from which other logic gates, such as
the AND gate and the OR gate, can be built with constant cells
(biased buffer cells). Input negation of logic gates is realized
using a negative mutual inductance and is of no extra cost [2].
The commonly used cost metric of AQFP circuits is the JJ
count. A buffer costs 2 JJs, a branch cell is of no JJ cost, and
a logic gate based on majority-3 costs 6 JJs [2].

Logic gates in an AQFP circuit need to be activated and
deactivated periodically by an excitation current [3]. In other
words, every gate in an AQFP circuit is clocked, and all
input signals have to arrive at the same clock cycle. To
ensure this, shorter data paths need to be delayed by clocked
buffers. Moreover, the output signal of AQFP logic gates
cannot be directly branched to feed into multiple fanouts.
Instead, splitters are placed at the output of multifanout gates
to amplify the output current. A splitter cell is composed of a
buffer cell and a 1-to-n branch cell (usually, 2 ≤ n ≤ 4) and
is also clocked. As the cost of splitters comes mostly from
the buffer cells, in the remainder of this article, we do not
distinguish buffers from splitters and we will model them with
the same abstraction. Also, in all figures, we use circles to
represent MAJ gates and squares to represent buffers/splitters.
To illustrate the AQFP technology constraints, Fig. 1 shows
a full adder as a legalized AQFP circuit. Splitters (S squares)
are inserted to drive multiple gates and buffers (B squares) are
used to balance paths at the inputs of all gates and over all
outputs.

B. Terminology

A (logic) network is a directed acyclic graph defined by
a pair (V, E) of a set V of nodes and a set E of directed
edges. The node set V = I ∪ O ∪ G is disjointly composed
of a set I of primary inputs (PIs), a set O of primary outputs
(POs), and a set G of (logic) gates chosen from a library. In
this article, we assume that an AQFP-compatible gate library
(e.g., composed of AND2, OR2, and MAJ3 with optional input
negation) is used. Each PI has in-degree 0 and unbounded out-
degree, whereas each PO has in-degree 1 and out-degree 0.
The out-degree of each gate is unbounded and the in-degree
is a fixed number depending on the type of the gate. For any
gate g ∈ G, the fanins of g, denoted as FI(g), is the set of
gates and PIs connected to g on an incoming edge. Similarly,
the fanouts of a gate (or a PI) g, denoted as FO(g), is the set
of gates and POs connected to g on an outgoing edge.

A mapped network N′ is a network whose node set V ′ is
extended with a set B of buffers. A buffer is a node with in-
degree 1. In a mapped network, the definition of the fanouts of
a gate is modified by ignoring any intermediate buffers, i.e., a
path from a gate g to one of its fanouts go ∈ FO(g) ⊂ (G∪O)

may include any number of buffers in B, but never another
gate. The definition of fanins is modified similarly. The fanout
tree of a gate (or a PI) n, denoted by FOT(n), is the set of
buffers between n and any gate or PO in FO(n).

A schedule of a network is a function S : V → Z≥0 that
assigns a non-negative integer S(n) to each node n ∈ V , called
the level of n. The depth of a network N = (V = I∪O∪G, E)

with a schedule S is defined as d(N) = maxo∈O S(o). If the
schedule is omitted, then the depth of a network is the length
of the longest path from any PI to any PO.

C. Problem Formulation

To fulfill the needs in the AQFP technology for fanout-
branching and path-balancing, we define the following
properties subject to the splitting capacities si = 1, sg = 1,
and sb ≥ 1 of PIs, gates, and buffers, respectively.

Definition 1: Given a mapped network N′ = (V ′ = I ∪O∪
G ∪ B, E′).

1) N′ is path-balanced if there exists a schedule S of N′
such that

∀n1, n2 ∈ V ′ : (n1, n2) ∈ E′ ⇒ S(n1) = S(n2)− 1 (1)

∀i ∈ I : S(i) = 0, and (2)

∀o ∈ O : S(o) = d
(
N′

)
. (3)

2) N′ is properly branched if every PI has an out-degree
no larger than si = 1, every gate has an out-degree no
larger than sg = 1, and every buffer has an out-degree
no larger than sb.

3) N′ is legal if it is both path-balanced and properly
branched.

In an AQFP design automation flow, the logic synthesis
stage after RTL synthesis and before physical design converts
an input specification netlist [represented as, e.g., an AND-
inverter graph (AIG) or a majority-inverter graph (MIG)] into
a legal mapped network whose gates are all AQFP-compatible.
The problem to be solved is formulated as follows.
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Problem 1 (AQFP Technology Mapping): Given a network
N = (V = I ∪ O ∪ G, E) with unconstrained gate types in G,
find a mapped network N′ = (V ′ = I ∪ O ∪ G′ ∪ B, E′) such
that:

1) N and N′ are logically equivalent;
2) all gates in G′ are of an AQFP-compatible type (i.e.,

AND2, OR2, or MAJ3 with optional input negation);
3) N′ is legal (i.e., path-balanced and properly branched).
Problem 1 may be solved as one problem, or it may be

divided into two problems to be solved independently.
Problem 2 (Majority-Based Logic Restructuring): Given a

network N = (V = I∪O∪G, E) with unconstrained gate types
in G, find a network N∗ = (V∗ = I ∪ O ∪ G∗, E∗), such that:

1) N and N∗ are logically equivalent;
2) all gates in G∗ are of an AQFP-compatible type (i.e.,

AND2, OR2, or MAJ3 with optional input negation).
Problem 3 (AQFP Technology Legalization): Given a

network N∗ = (V∗ = I∪O∪G∗, E∗) and the value of sb, find
a mapped network N′ = (V ′ = I ∪O ∪G′ ∪ B, E′), such that:

1) N′ is legal (i.e., path-balanced and properly branched);
2) G′ = G∗, and for all gates g ∈ G∗, FO(g) and FI(g)

remain the same in N′ as in N∗.
Moreover, for all of the three problems, in addition to

finding a network fulfilling the requirements, we also optimize
for some common metrics. For the main problem to solve,
Problem 1, common optimization objectives are minimizing
JJ count (#JJs = 6 · |G′| + 2 · |B|) and minimizing JJ depth
d(N′).

Problem 2 is equivalent to mapping into and optimizing
an MIG [15], which is a logic network where all gates
are MAJ3 and edges may contain inverters, because AND2
and OR2 gates are equivalent to MAJ3 with a constant (0
and 1, respectively) input. Graph mapping [16] and MIG
optimization [15], [17], [18] are well-researched problems
with existing algorithms to use. These algorithms usually
optimize for MIG size (|G∗|) or depth (d(N∗)).

In this article, we focus on solving Problem 3. Because G′ =
G∗, this problem is often referred to as the AQFP buffer (and
splitter) insertion problem. Minimizing JJ count in Problem 1
is equivalent to minimizing |B| in Problem 3.

III. RELATED WORKS

In this section, we introduce existing works solving the
three problems formulated in Section II-C. Section III-A corre-
sponds to Problem 2, Section III-B corresponds to Problem 3,
and Section III-C corresponds to Problem 1.

A. Majority-Inverter Graph Optimization

MIG was proposed as an alternative technology-independent
logic representation with an advantage in depth optimization
especially in arithmetic circuits [15]. Due to the special prop-
erties of some emerging technologies including AQFP, MIG
also becomes a good logic synthesis data structure for these
technologies [19]. Various logic synthesis and optimization
algorithms have been proposed and tailored for MIGs. To
convert an AIG into an MIG, the simplest way is to translate
each AND2 gate into an MAJ3 gate with a constant 0 input.

Alternatively, a versatile graph mapping algorithm can also
map from AIGs (or other types of networks) to MIGs while
optimizing for depth and/or size in the process [16]. Prominent
examples of tailored MIG optimization algorithms include
algebraic rewriting, which applies special Boolean algebraic
rules to reduce MIG depth [15], and resubstitution, which
resynthesizes a small part of the network using majority gates
to reduce MIG size [18], [20].

B. Buffer and Splitter Insertion and Optimization

(Rapid) single-flux quantum (RSFQ or SFQ) [21], a sibling
superconducting technology, shares similar path-balancing and
fanout-branching constraints as AQFP and also requires buffer
and splitter insertion [22], [23]. However, a key difference
between the two technologies makes the problem computation-
ally distinct for them: SFQ splitters are not clocked and thus
not considered in path balancing, allowing fanout branching
and path balancing to be handled separately, unlike AQFP,
where clocked splitters require joint consideration of these
constraints.

The earliest AQFP design automation tools legalized the
circuit by inserting splitters at the output of multifanout gates,
followed by buffers on imbalanced paths [9]. This naive
approach guaranteed correct AQFP operation, but left out
possible optimizations and often resulted in excessive B/Ss.
Thus, a local optimization technique called retiming [10] or
buffer merging [24] was proposed. This technique involves
moving buffers across multifanin gates ([24, Fig. 8]) or
multifanout splitters (in [10, Fig. 5]), reducing buffer counts by
sharing buffers or delaying splitting. This idea was elaborated
in [25] as a B/S insertion algorithm with the notion of virtual
splitters.

Subsequent improvements in B/S optimization involved
more complex algorithms. A quadratic-complexity algorithm
focused on single-wire optimization, which is locally optimal
subject to a complex cost function, was proposed in [26].
In [27], a schedule for the mapped network was first solved
as an ILP problem, then a cubic-complexity locally optimal
splitter-tree insertion algorithm was applied.

Exact methods solving for the global size-optimal B/S
insertion were also researched. In [12], the B/S optimization
problem was first formulated as a scheduling problem, and
then encoded and solved as an optimization modulo lin-
ear integer arithmetic problem. The global minimum B/S
insertion results were obtained for some small benchmarks.
An ILP encoding was proposed in [28] which led to some
improvement in efficiency, and optimal results for some more
benchmarks were reported. Though size-optimality is still
intractable, depth-optimal B/S insertion has been shown to be
solvable in linear time [13].

C. AQFP Logic Synthesis

Existing AQFP logic synthesis flows can be categorized
into two approaches: solving Problems 2 and 3 separately,
or considering Problems 2 and 3 together. The earliest
works took the first approach to adapt available CMOS-
based design automation tools for AQFP [9], [10]. Problem 2
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was addressed by AND-based technology-independent logic
synthesis followed by technology mapping into an AQFP-
compatible library, and Problem 3 was solved separately in an
additional buffer insertion stage before physical design. Later,
to better leverage the intrinsic MAJ function in AQFP circuits,
MAJ-based logic synthesis was adopted [19], [24]. At this
time, Problem 3 was still solved separately using the naive
insertion approach introduced in Section III-B.

Although solving the two problems separately is easier,
it is hard to predict the impact of legalization in the logic
restructuring stage. The smallest MIG in size may not be still
the smallest after legalization. Thus, Marakkalage et al. [29]
proposed to consider the two problems together and optimize
directly for the final cost function. A database of optimal
AQFP subcircuits is used in restructuring, and legalization is
done during the process. This algorithm was used in a flow
consisting of graph mapping, AQFP resynthesis, and post-
synthesis buffer optimization [11].

The latest work on AQFP synthesis, presenting currently
the best results, took the first approach (separating the two
problems) and used Bayesian optimization to find the best
MIG restructuring script with respect to the actual AQFP cost
after legalization [30].

IV. BUFFER AND SPLITTER INSERTION

In this section, we will explain how Problem 3 shall be
efficiently approached. First, in Section IV-A, we identify
that the AQFP legalization (buffer and splitter insertion)
problem is a scheduling problem because once a schedule
is given, the minimal-size mapped network can be derived
in linear time using an irredundant buffer insertion algorithm
Algorithm 1. Then, in Section IV-B, depth-optimal scheduling
algorithms are proposed based on the well-known as-soon-as-
possible (ASAP) and as-late-as-possible (ALAP) scheduling
algorithms. These algorithms provide different starting points
for the heuristic optimization algorithms that will be presented
in Section V.

A. Irredundant Buffer Insertion

Claim 1: The AQFP legalization problem (Problem 3) is a
scheduling problem on the unmapped network.

To elaborate on the above claim, we will first introduce the
notion of irredundant mapped network. Then, we will present
Algorithm 1 to show how buffers can be inserted irredundantly
given a schedule of the unmapped network.

Definition 2: A mapped network is said to be irredundant
if the following two conditions hold.

1) There is no dangling buffer, i.e., every buffer has at least
one outgoing edge.

2) There does not exist any pair of buffers whose incoming
edges are connected from the same splitter and both of
them have out-degrees smaller than sb.

Otherwise, the network is redundant.
Notice that the local retiming optimization used

in [10] and [25], which pushes buffers from the outputs
of a splitter to its input, is subsumed by the definition of
irredundant networks. In other words, if a mapped network

Algorithm 1: Irredundant Buffer Insertion
Input: An unmapped network N∗ = (V∗ = I ∪O∪G∗, E∗) and

a schedule S for N∗
Output: Legalized mapped network N′

1 N′ ← N∗
2 foreach n ∈ I ∪ G∗ do
3 lmax ← maxno∈FO(n) S(no)

4 A ← {no ∈ FO(n) : S(no) = lmax}
5 for l = lmax − 1 downto S(n)+ 1 do
6 Create �(|A|/sb)� buffers at level l in N′
7 B ← the set of newly-created buffers
8 for i = 1 to |A| do
9 Remove n from A[i]’s fanins in N′

10 Add B[� i
sb
�] as A[i]’s fanin in N′

11 A ← B ∪ {no ∈ FO(n) : S(no) = l}
12 assert |A| = 1
13 Add n as A[1]’s fanin in N′
14 return N′

Fig. 2. Example subnetwork to illustrate Algorithm 1 (sb = 2).

is irredundant, no optimization can be made with the local
retiming technique. This is because local retiming looks for
splitters whose fanouts are all buffers and the sum of the fanout
counts of these buffers does not exceed the splitting capacity
sb, which violates the second condition in Definition 2.

For each PI or gate n, Algorithm 1 iterates over all levels l
between n its fanouts. Initially, the set A contains the fanouts
(gates and POs, if any) of n at the highest level lmax. At
each level l, enough buffers (|B| = �[|A|/sb]�) are inserted,
where |A| is the number of nodes at level l + 1. Then, n is
removed from the fanins of the ith element in A, and the
�[i/sb]�th buffer in B is added instead. Finally, A is updated as
the newly created buffers and the fanouts at the current level.
Fig. 2 illustrates an example iteration (of the out-most loop)
of Algorithm 1, where sb = 2 is assumed.

Algorithm 1 runs in linear time with respect to∑
n∈I∪G∗ |FO(n)| ≤ |E∗|. It also verifies whether it is possible

to build a properly branched network with the given sched-
ule S . In line 12, the assertion makes sure that the gate or
PI n has only one outgoing edge. If this assertion does not
hold, then it is impossible to construct a legal mapped network
with S and we say that S is an illegal schedule. Otherwise,
the constructed mapped network is properly branched if the
given schedule is legal. It is also path-balanced as each node is
connected to a node at exactly one level lower. Moreover, the
constructed mapped network is irredundant because in each
fanout tree, only the minimum number of buffers is inserted
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Algorithm 2: Depth-Optimal Single-Node Scheduling
Input: A node n and a partial schedule S
Output: Level S(n) assigned to node n

1 lprev ← maxno∈FO(n) S(no)

2 edges ← 0
3 foreach no ∈ FO(n) in a descending order of l← S(no) do

4 splitters ← �(edges/[s
(lprev−l)
b ])�

5 edges ← splitters +1
6 lprev ← l
7 while edges �= 1 do
8 edges ← �(edges/sb)�
9 lprev ← lprev − 1

10 S(n) ← lprev − 1
11 return S(n)

at each level l and only at most one of them has fanout count
smaller than sb. An irredundant network is size-optimal with
respect to the given schedule because no buffer can be removed
while keeping the network legal.

In conclusion, a legal schedule on the unmapped network
determines an irredundant and legal mapped network, there-
fore Problem 3 is equivalent to finding a legal schedule whose
corresponding irredundant mapped network is minimal.

B. Depth-Optimal Scheduling

In this and the next section, we present algorithms to
obtain a legal schedule on an unmapped network, such that
an irredundant legal mapped network can be derived using
Algorithm 1. These algorithms are intended to serve as quick
initial scheduling methods that will be further optimized later
on Section V.

As discussed in Section II-C, common cost metrics to be
considered for AQFP circuits are network size and depth.
Unlike in many other technologies where circuit area and delay
are often inversely related in a Pareto curve and engineers must
trade one for the other, we observe that in the AQFP buffer
insertion problem, the size of an irredundant mapped network
correlates to the depth of the provided schedule. Intuitively, in
Problem 3, the unmapped network and any mapped network
have roughly the same number of paths and similar logic
sharing (slight differences may only exist in how fanouts are
split), and the size of a mapped network is the sum of all path
lengths, which is the network depth, minus the sizes of the
shared cones. In other words, a larger network depth results in
longer (balanced) paths and thus larger network size. Hence,
we present scheduling algorithms that also optimize for depth
besides being fast (having a linear time complexity) and giving
legal results.

Given a partial schedule S where some nodes, including n
but excluding all fanouts of n, have not been assigned a level,
Algorithm 2 computes the value to be assigned to S(n), such
that the fanout tree of n has the minimum-possible height.
This algorithm follows a similar strategy as compared to
Algorithm 1. Variable edges corresponds to |A| in Algorithm 1,
counting the number of nodes (thus edges) needed to be
connected at each level; variable splitters corresponds to |B|
in Algorithm 1, computing the number of splitters (buffers)

Fig. 3. Example subnetwork to illustrate Algorithm 2 (sb = 2).

needed at each level. The foreach-loop (lines 3–6) iterates
over the fanouts of n in descending order of their levels, and
variable lprev keeps the level of the previous iteration. If the
level does not change from the previous to the current iteration,
variable splitters is equal to edges because lprev = l and
sb

0 = 1 (line 4). As a result, edges is simply increased by 1
in this iteration, counting the fanout itself (line 5). Otherwise,
when a fanout at a lower level is encountered, we compute
the minimum number of buffers needed at level l to drive
edges nodes at level lprev as follows. A complete binary tree of
height h has at most 2h leaves. Similarly, a splitter tree rooted
at level l can split into at most sb

h fanouts at level l + h. To
drive edges fanouts at level lprev, at least �[edges/(s

(lprev−l)
b )]�

splitter trees rooted at level l are needed (line 4). Moreover,
at most one of them is not full, i.e., they are irredundant. In
line 5, this value, plus one for the fanout itself, is used to
update variable edges. Finally, after all fanouts of n have been
processed, the algorithm finds the highest level where edges
is one to schedule n (lines 7–10).

Fig. 3 shows an example to illustrate Algorithm 2. The node
n to be scheduled has four fanouts, assigned, respectively, to
levels 8 (n1, n2, n3) and 7 (n4) in the partial schedule. The
splitting capacity is sb = 2. In Fig. 3, edges(v,l) indicates
the value of variable edges in Algorithm 2 when node nv at
level S(nv) = l is considered in the foreach-loop (lines 3–6).
First, edges(1,8) = 1, edges(2,8) = 2, and edges(3,8) = 3 are
computed, essentially counting the number of fanouts at level
l = 8. When node n4 at a lower level, l = 7, is encountered,
the number of buffers needed at level 7 to drive all nodes
at the previously considered level lprev = 8 is computed by
�3/28−7� = 2. The loop ends with lprev = 7 and edges = 3.
Finally, in the while-loop (lines 7–9), edges is updated two
times before it reaches value 1, resulting in lprev = 5. Thus,
node n is scheduled at S(n) = 4.

With the following lemma, we show that the computation in
line 4 of Algorithm 2 has the equivalent effect in Algorithm 1
on |A| as lprev − l iterations of line 6.

Lemma 1: Let b be a positive integer and A =
a0, a1, . . . , an be a sequence of n+ 1 positive integers related
by ai+1 = �(ai/b)�, 0 ≤ i < n. Then, an = �(a0/bn)�.

Proof: We first prove that for any positive integers a and b,
�(�(a/b)�/b)� = �(a/b2)�. Let x = �(a/b)�, by definition, we
have

a

b
≤ x⇒ a

b2
≤ x

b
⇒ a

b2
≤ x

b
.
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Suppose, for the sake of contradiction, that �(a/b2)� <

�(x/b)�, then there must exist an integer y such that (a/b2) ≤
y < (x/b). Multiplying by b and using the definitions, we have

a

b
≤ b · y < x = a

b
≤ b · y = b · y < x

which leads to an absurd statement of x < x. Thus, by
contradiction, �(a/b2)� = �(x/b)� = �(�(a/b)�/b)� and the
statement is proved by induction on i.

Next, we prove the legality and optimality of Algorithm 2
with the following lemma.

Lemma 2: Given a legal partial schedule S , Algorithm 2
assigns the largest value to S(n) such that S is still legal.

Proof: Let the value returned by Algorithm 2 be ln and
assume, for the sake of contradiction, a schedule S ′, where
S ′(no) = S(no) ∀no ∈ FO(n) and S ′(n) = l′n > ln. Let
lm = minno∈FO(n) S(no). If l′n ≥ lm, S ′ is obviously illegal.
Assume l′n < lm. Let e be the value of variable edges when
the foreach-loop in Algorithm 2 (lines 3–6) ends. The while-
loop in Algorithm 2 has lm − ln − 1 iterations, so the value
of variable edges before the last iteration is, by Lemma 1,
�e/s(lm−ln−2)

b � > 1.
Now, consider an execution of Algorithm 1 using S ′, in par-

ticular, the iteration of the outer loop processing the considered
node n, we have |A| = e after line 11 in Algorithm 1 in the
iteration l = lm− l′n. The loop (lines 5–11 in Algorithm 1) has
lm− l′n−1 more iterations before it ends, in which line 11 can
be replaced by “A← B” because there are no more fanouts. By
the end of the loop, |A| = �e/s

(lm−l′n−1)

b � ≥ �e/s(lm−ln−2)
b � > 1.

Thus, we conclude that S ′ is illegal, and ln is indeed the largest
possible value for S(n).

By corollary, if all fanouts of a node n are scheduled at the
largest level, then the level of n obtained by Algorithm 2 is
also the largest. Formally written as follows.

Corollary 1: Given a legal schedule S and a node n, let
S(n) be the level of n computed by Algorithm 2. If there
does not exist a legal schedule S ′ such that maxo∈O S ′(o) =
maxo∈O S(o) and ∃no ∈ FO(n),S ′(no) > S(no), then there
does not exist a legal schedule S ′ such that maxo∈O S ′(o) =
maxo∈O S(o) and S ′(n) > S(n).

Algorithm 2 requires that a node is only scheduled after all
of its fanouts have been scheduled. In other words, a reversed
topological order is required. Thus, it is suitable to use an
ALAP scheduling scheme, which first schedules all POs of a
network to an upper bound λ, and then schedules the remaining
nodes to the largest-possible level (“ALAP”) in a reversed
topological order. We present Algorithm 3 for this purpose. It
first computes a sufficiently large upper bound λ on the depth
of the mapped network for ALAP scheduling, assuming each
node would need a balanced splitter tree to drive the maximum
fanout in the network. POs are first scheduled at λ. Then, each
node is scheduled using Algorithm 2 in a reversed topological
order. Finally, to obtain a schedule independent of the value of
λ, post-scheduling correction is applied: PIs are moved to level
0 to fulfill (2), and the levels of all other nodes are reduced
by the smallest PI level before correction. This algorithm has
a linear time complexity with respect to the network size.

Algorithm 3: Depth-Optimal ALAP Scheduling
Input: An unmapped network N∗ = (V∗ = I ∪ O ∪ G∗, E∗)
Output: A schedule S for N∗

1 λ← d(N∗) · (1+maxn∈V∗� log(|FO(n)|)
log(sb)

�)
2 foreach o ∈ O do
3 Sλ(o)← λ
4 foreach n ∈ I ∪ G∗ in a reversed topological order do
5 Sλ(n) ← schedule_node(n, Sλ) // alg. 2
6 lmin ← mini∈I Sλ(i)
7 foreach i ∈ I do
8 S(i) ← 0
9 foreach n ∈ O ∪ G∗ do

10 S(n) ← Sλ(n)− lmin
11 return S

We have shown with Corollary 1 that the depth-optimal
scheduling problem has optimal substructure when nodes are
scheduled in a reversed topological order. Now, we can prove
that Algorithm 3 achieves optimal depth.

Theorem 1: Given an unmapped network N∗, let the sched-
ule for N∗ returned by Algorithm 3 be S . The irredundant
mapped network N′, obtained by running Algorithm 1 with
N∗ and S as inputs, is legal and its depth d(N′) is minimal.

Proof: At line 6 of Algorithm 3, the depth of schedule Sλ

is maxo∈O Sλ(o) = λ by definition. After the correction in
lines 6–10, the maximum level becomes λ − lmin, which is
also the resulting depth d(N′). Thus, minimizing depth d(N′)
is equivalent to maximizing the lowest PI level lmin during
scheduling because λ is a constant.

In Algorithm 3, levels of POs are maximized to λ. By
Corollary 1, each node is scheduled at the largest level because
all of its fanouts are scheduled before it and they are also
scheduled at their largest possible levels. By induction, levels
of all nodes are maximized and thus depth is minimized. The
legality of S is similarly proved by Lemma 2.

In conclusion, Algorithm 3 guarantees to find a legal
schedule for an unmapped network. Followed by Algorithm 1,
a legal mapped network is obtained in linear time. By
Theorem 1, such mapped network is depth-optimal.

C. Alternative Depth-Optimal Scheduling

The methods presented in the previous section give a
depth-optimal mapped network, but size optimality is not
guaranteed. Indeed, the AQFP size optimization problem
is likely a difficult one without an algorithm that is both
optimal and has polynomial time complexity. Thus, we pro-
pose to use depth-optimal networks as starting points and
further optimize for size with heuristic algorithms presented
in Section V. As heuristics are often biased by the starting
point, we present in this section an alternative depth-
optimal scheduling method based on ASAP instead of ALAP
scheduling.

An ASAP scheduling scheme schedules each node, in a
topological order, to the lowest-possible level according to
the schedule of its fanins. To do so, we define a mobility
function μ : V∗ → Z≥0 representing the maximum negative
displacement that can be made to a node [from SALAP(n) to
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Algorithm 4: Depth-Optimal ASAP Scheduling
Input: An unmapped network N∗ = (V∗ = I ∪O∪G∗, E∗) and

its ALAP schedule SALAP
Output: ASAP schedule SASAP for N∗

1 foreach i ∈ I do
2 μ(i)← 0
3 foreach n ∈ G∗ do
4 μ(n)←∞
5 SASAP ← SALAP
6 foreach n ∈ G∗ in a topological order do
7 SASAP(n) ← SASAP(n)− μ(n)
8 foreach no ∈ FO(n) do
9 T(no) ← 0

10 lprev ← maxno∈FO(n) SASAP(no)

11 edges ← 0
12 foreach l = S(no) : no ∈ FO(n) in descending order do
13 mobility ← 0
14 for lprev − l iterations do
15 if edges = 1 then
16 mobility ← mobility +1

17 edges ← � edges
sb
�

18 foreach n′o ∈ FO(n) : S(n′o) > l do
19 T(n′o)← T(n′o)+ mobility
20 edges ← edges +1
21 lprev ← l
22 mobility ← 0
23 for l = SASAP(n) upto lprev − 2 do
24 if edges = 1 then
25 mobility ← mobility +1

26 edges ← � edges
sb
�

27 foreach no ∈ FO(n) do
28 μ(no)← min(μ(no), T(no)+ mobility)
29 return SASAP

SASAP = SALAP(n)− μ(n)] while keeping the schedule legal
and depth-optimal. Algorithm 4 computes (a lower bound on)
the mobility of each node and uses these values to obtain an
ASAP schedule using a given ALAP schedule.

Mobility is initialized to infinite for gates and to 0 for
PIs (lines 1–4). For each node n in topological order, first,
n is scheduled to a lower level based on its ALAP schedule
and mobility (line 7). Then, the mobilities of its fanouts are
updated using a similar computation as in Algorithm 2. A
map T stores the temporary mobilities of the fanouts of n,
initialized to zero (lines 8 and 9). The foreach-loop in lines
12–21 is similar to lines 3–6 in Algorithm 2, except that the
computation of variable splitters in Algorithm 2 is rewritten
as a loop (lines 14–17) to compute the local mobility (variable
mobility), which is the number of buffers needed to balance
the splitter tree from level lprev to l, and is added to the
temporary mobilities T of all the processed fanouts (lines
18 and 19). Again, the for-loop in lines 23–26 is similar to
lines 7–9 in Algorithm 2, where the local mobility is also
similarly computed. Finally, μ is updated for each fanout,
but to guarantee a legal schedule, it is only updated if the
computed temporary mobility is smaller (lines 27 and 28). In
other words, from the perspective of no, the minimum mobility
among the values computed via its different fanins as n will
be taken.

V. BUFFER AND SPLITTER OPTIMIZATION

The scheduling-based legalization approach presented in the
previous section allows us to find one (or two) legal mapped
network that is (are) depth-optimal. In some scenarios, this
may already be good enough, but it is still possible to further
optimize the obtained mapped network to reduce its size. In
this section, given a mapped network, we attempt to find
a better schedule to minimize |B|. Two orthogonal heuristic
algorithms are proposed in Sections V-A and V-B, and then
combined as a portfolio flow in Section V-C.

A. Chunked Movement

The chunked movement technique attempts to move groups
of nodes up or down to reduce the total number of buffers.
Moving a gate g up (down) by l levels means that S(g) is
increased (resp., decreased) by l while the levels of the other
gates remain the same. During the process, we always ensure
that the network is legal and buffers are inserted irredundantly
using Algorithm 1. A movement is legal if the network remains
legal after the movement. For example, if a gate g has a fanout
go at level S(go) = S(g) + 1, then moving g up alone is
not legal. Similarly, if a gate g has more than one fanout,
then moving any of its fanouts down to level S(g) + 1 is
not legal because there must be a splitter occupying the only
outgoing edge of g at S(g) + 1. We observe that sometimes
it is impossible to legally move a single gate, or that moving
it alone does not reduce the total buffer count. However,
rearranging some neighboring gates together might eventually
lead to further reduction. Thus, we propose to identify groups
of connected gates and move them together as chunks, defined
as follows.

A gate g and one of its fanouts go ∈ FO(g) are said to be
close if either one of the following conditions holds.

1) |FO(g)| = 1 and S(go) = S(g)+ 1.
2) |FO(g)| > 1 and S(go) = S(g)+ 2.

If a gate g and its fanout go are not close, then there is
flexibility at the output of g and the input of go. A chunk is
a set C of closely connected gates. Seen as a group together,
it has multiple incoming and outgoing edges, called the input
interfaces (IIs) and output interfaces (OIs), respectively. An
interface is an ordered pair (gc, ge) of a gate in the chunk
gc ∈ C and an external gate ge /∈ C, and either ge ∈ FI(gc)

(for an II) or ge ∈ FO(gc) (for an OI).
Algorithm 5 illustrates how a chunk is identified. Starting

from an initial gate g0, a chunk is formed by exploring its
fanins and fanouts and adding gates into the chunk if they are
close (line 8), or recording an II or OI otherwise (line 11).
When a new gate is added to the chunk, its fanins and fanouts
are also explored (line 9). The queue Q stores the edges to be
checked next.

By definition, a chunk has flexibilities at all of its interfaces.
Moreover, the set of all chunks in a mapped network forms
a partitioning of all gates. Fig. 4 shows an example chunk.
Starting from the initial gate g0, closely connected gates
g1, g2, g3, g4 are added into the chunk in the respective order.
The gate g1, for example, cannot be moved up nor down
legally without moving other gates at the same time. Also,
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Algorithm 5: Chunk Construction
Input: An initial gate g0
Output: A chunk C and its interfaces T

1 C ← {g0}
2 Q ← {(g0, g) : g ∈ FI(g0) ∪ FO(g0)}
3 T ← ∅
4 while Q �= ∅ do
5 (gc, ge) ← pop(Q)
6 if ge ∈ C then continue
7 if gc and ge are close then
8 C ← C ∪ ge
9 Q ← Q ∪ {(ge, g) : g ∈ FI(ge) ∪ FO(ge)}

10 else
11 T ← T ∪ {(gc, ge)}
12 return C, T

Fig. 4. Example subnetwork showing a chunk (in gray).

although the gate g0 can be legally moved down, moving it
alone would only incur more buffers. However, if the entire
chunk is moved down together by one level, one buffer is
saved, which is analyzed as follows.

To see how many levels a chunk can be moved, a slack is
computed at each interface. For an II (gc, ge)

slack(gc, ge) =
{S(gc)− S(ge)− 1 ,if |FO(ge)| = 1
S(gc)− S(ge)− 2, otherwise.

(4)

For an OI, gc and ge are exchanged in (4). When trying to
move a chunk down, the maximum number of levels we can
move is the minimum slack at all IIs; when moving a chunk
up, it is the minimum slack at all OIs.

We further classify IIs as relevant or not. An II (gc, ge) is
said to be a relevant II (RII) if

∀go ∈ FO(ge), go /∈ C : S(go) > S(gc). (5)

For example, in Fig. 4, (g0, g5) is not an RII because g5 has
another fanout at a higher level than S(g0), so when g0 is
moved, no buffer is added or eliminated at this interface.

We decide to move a chunk up or down on whether there
are more OIs or RIIs. If a chunk has x OIs and y RIIs, moving
the chunk up by l levels eliminates l ·(x−y) buffers (if x > y),
and moving the chunk down eliminates l · (y − x) buffers (if
y > x). In Fig. 4, there are three RIIs and two OIs, and the
minimum slack at all IIs is 1, thus moving the chunk down
by 1 level reduces 1 buffer.

Overall, the chunked movement algorithm iteratively con-
structs a chunk using Algorithm 5 for each node that is not yet
in a chunk and tries to move the chunk up or down, applying
the movement only when it is legal and beneficial.

(a) (b)

Fig. 5. Example subnetwork for retiming (sb = 3). (a) Before retiming.
(b) After moving b1.

B. Retiming

The optimization of B/Ss in an AQFP circuit is reminiscent
of the register minimization problem called retiming. Minimum
register retiming is the problem of relocating the registers of a
circuit in order to minimize their number while preserving the
functionality. Retiming is formulated as a linear problem dual
to the minimum-cost flow problem for which many polynomial
algorithms exist [31].

In this section, we propose the AQFP B/S retiming algo-
rithm, which minimizes B/Ss in an AQFP network, similar
to how registers are minimized in minimum register retiming.
Previous work applied a retiming-like optimization to AQFP
logic [10], [25]. However, their approach does not perform
global retiming but moves buffers locally from the output
of splitters to the input. This optimization is subsumed by
Algorithm 1 in the definition of irredundant mapped networks.

Minimizing the number of buffers can be seen as maximiz-
ing sharing of buffers on multiple paths. Without accounting
for fanout-branching, e.g., assuming that buffers have an
infinite splitting capability, the minimum number of buffers
is achievable in polynomial time using a minimum register
retiming algorithm considering each buffer as a register.
Retiming preserves the path-balancing constraint since each
path traverses the same number of registers before and after
retiming. As mentioned in Section III-B, previous works suc-
cessfully applied this idea to the RSFQ technology family [22],
but when the fanout-branching constraint in AQFP comes into
consideration, splitter relocation is conditional on respecting
the splitting capacity. Hence, retiming is only a heuristic for
AQFP B/S optimization instead of an optimal algorithm.

Fig. 5(a) shows an example mapped subnetwork under
retiming, where sb = 3 is assumed. This subnetwork is redun-
dant because b1 and b2 have out-degree 2 < sb (Definition 2).
Indeed, a mapped network can become redundant temporarily
during retiming. Not all buffers can be retimed at the same
time, and this example shows two such cases. First, b0
cannot be retimed because its movement would increase
the fanout count of n to 2, violating the fanout constraint
of gates (sg = 1). Second, only one of the splitters b1
and b2 can be selected for retiming since the movement of
both of them would increase the fanout count of b0 to 4,
violating the fanout constraint of buffers (sb = 3). Also,
fanouts of splitters in the same fanout tree originating from
the same gate are exchangeable, and such exchanges may
affect possible retiming optimizations. For example, instead of
FO(b1) = {f0, f1}, FO(b2) = {f2, f3} in Fig. 5(a), FO(b1) =
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Algorithm 6: B/S Retiming

Input: Mapped network N′
Output: Optimized mapped network N′

1 while improvement do
2 select_retimeable_buffers(N′)
3 set up retiming direction to forward
4 maximum_flow(N′)
5 get_minimum_cut(N′)
6 N′ ← move_retimed_buffers(N′)
7 while improvement do
8 select_retimeable_buffers(N′)
9 set up retiming direction to backwards

10 maximum_flow(N′)
11 get_minimum_cut(N′)
12 N′ ← move_retimed_buffers(N′)
13 N′ ← reconstruct_fanout_trees(N′)
14 return N′

{f0, f2}, FO(b2) = {f1, f3} is also possible and may unlock
more retiming on b1 and b2. Fig. 5(b) shows the fanout tree
after the relocation of splitter b1 to its transitive fanout cone
(not shown).

The B/S retiming algorithm is shown in Algorithm 6,
which takes a legal mapped network as input and outputs
an optimized mapped network. The retiming problem is
formulated as a binary maximum-flow problem similar to [32],
which separates flow computation into forward and backward
directions. The algorithm performs two optimization loops in
both directions until no more improvements can be made. A
loop starts by selecting buffers to be retimed (lines 2 and 8),
which are buffers that can be relocated without exceeding the
splitting capacity of its fanin node. In the case of mutually
exclusive selections (i.e., two splitters cannot be retimed at
the same time), one is picked randomly. Each selected buffer
is a source and a sink of a unitary flow. Next, the algorithm
proceeds by selecting the retiming direction (lines 3 and 9),
computing the binary maximum flow using the augmenting
path algorithm (lines 4 and 10), getting the minimum cut
(lines 5 and 11) and moving the selected buffers to the new
position if there is a reduction (lines 6 and 12). Since retiming
movements may create redundant fanout trees, the algorithm
terminates by reconstructing each fanout tree irredundantly
using Algorithm 1 (line 13).

An example of a forward retiming iteration is depicted in
Fig. 6. Fig. 6(a) shows the initial subnetwork, where sb = 3.
The algorithm selects the buffers in orange to perform retim-
ing. Fig. 6(b) shows the optimized subnetwork after retiming.
Two new buffers are inserted (in green). The number of buffers
is reduced from 6 to 5 while maintaining the same path
lengths.

C. Buffer and Splitter Optimization Flow

Algorithm 7 describes our optimization flow. It combines
chunked movement and retiming to achieve better results than
the individual algorithms. Additionally, we use a deterministic
randomization function to select a different topological order
and to rearrange the fanout of nodes in the network. This helps
explore different local optima heuristic retiming may fall into

(a)

(b)

Fig. 6. Example of forward retiming (sb = 3). (a) Initial subnetwork.
(b) Optimized subnetwork.

Algorithm 7: Buffer and Splitter Optimization

Input: Mapped network N′init
Output: Optimized mapped network N′opt

1 N′tmp ← bs_retiming(N′init) // alg. 6
2 repeat
3 N′opt ← N′tmp
4 N′tmp ← chunked_movement(N′opt) // alg. 5
5 N′tmp ← bs_retiming(N′tmp) // alg. 6
6 N′tmp ← randomize(N′tmp)

7 until |N′tmp| ≥ |N′opt|
8 return N′opt

by randomizing the tie-breaking mechanism in the algorithm.
Specifically, the order of processing different fanouts of a gate
sometimes leads to different retiming results due to the first-
come–first-serve nature of filling a splitter’s s_b fanout slots.
This can be considered as local heuristic choices made by
the algorithm, whose goodness can only be evaluated after
the global optimization is done and is hard to predict during the
optimization process. Empirically, adding such randomization
in the optimization flow enhances the optimization quality of
some benchmarks, providing a few percent further reductions
on the buffer count on average.

VI. AQFP LOGIC SYNTHESIS TOOLBOX

As discussed in Section II-C, the AQFP technology mapping
problem (Problem 1) can be divided into two subproblems:
1) MIG restructuring (Problem 2) and 2) AQFP legalization
(Problem 3). Solving the two subproblems together, such as
the resynthesis algorithm in [29], leads to a high problem
complexity, thus has to rely on a precomputed database and
is only locally optimal. Hence, we propose to solve the two
subproblems untangled, but mixed and interleaved in multiple
iterations to enhance quality of result. It is essential for the
algorithms used to solve both subproblems to be efficient, such
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Algorithm 8: AQFP Technology Legalization Flow
(Solves Problem 3)

Input: MIG network N∗
Output: Mapped network N′

1 SALAP ← ALAP(N∗) // alg. 3
2 SASAP ← ASAP(N∗, SALAP) // alg. 4
3 N′ALAP ← insert_buffers(N∗, SALAP) // alg. 1
4 N′ASAP ← insert_buffers(N∗, SASAP) // alg. 1
5 N′ALAP ← optimize(N′ALAP) // alg. 7
6 N′ASAP ← optimize(N′ASAP) // alg. 7
7 if |N′ALAP| < |N′ASAP| then
8 return N′ALAP
9 else

10 return N′ASAP

that more iterations can be done in reasonable runtime and
achieve better quality.

In this section, we first present a scalable and efficient AQFP
technology legalization flow combining the proposed schedul-
ing, buffer insertion, and buffer optimization algorithms. Then,
we present an AQFP technology mapping solution combining
existing MIG optimization methods and the proposed AQFP
technology legalization flow with an on-the-fly design space
exploration methodology. Finally, we discuss how verification
is done throughout the process.

A. Technology Legalization Flow

In Section IV, we presented algorithms to obtain an initial
scheduling (Section IV-B) and to insert buffers irredundantly
(Section IV-A). In Section V, we presented optimization algo-
rithms to further reduce the buffer count of a mapped network.
Combining everything together, a technology legalization flow
is presented in Algorithm 8. Two initial scheduling, ALAP
and ASAP, are obtained with the depth-optimal scheduling
algorithms and result in two mapped networks by inserting
buffers irredundantly. Then, the two mapped networks are
optimized independently using the portfolio optimization flow.
Finally, the better one with a smaller size is adopted.

B. Design Space Exploration for AQFP Technology Mapping

Imagine a design space consisting of all legal and logically
equivalent mapped networks, the optimization problem of
AQFP technology mapping is to find the best one in the design
space in terms of a cost metric (usually, JJ count or depth).
Performing MIG restructuring and AQFP legalization can be
seen as moving along two orthogonal directions (or axes) in
the design space, exploring first different logically equivalent
MIGs without buffers, and then different mapped networks
corresponding to the same MIG. This approach confines the
degree of freedom of the exploration in order to be more
scalable and potentially explore a larger space within the
confined regions. However, if the two axes are only explored
once each, then still only a small subset of the entire space is
explored and the result may be far from the global optimal.
The major problem is that during MIG restructuring, buffers
are not inserted yet and the algorithm can only decide on the
best moves based on a truncated cost metric (usually, MIG size

Algorithm 9: AQFP Technology Mapping With Design
Space Exploration (Solves Problem 1)

Input: Unconstrained network N
Output: Optimized mapped network N′

1 N∗0 ← map_into_MIG(N) // [16]
2 N∗best ← copy(N∗0 )

3 best_cost ← ∞
4 for restart = 1 upto num_restarts do
5 N∗best_inner ← N∗0
6 N∗curr ← N∗0
7 best_cost_inner ← ∞
8 rnd ← new_random_engine()
9 timer ← start_timer()

10 for step = 1 upto max_steps do
11 N∗curr ← restructure_MIG_randomly(N∗curr, rnd)

// [15], [16], [18], [33], [34]
12 curr_cost ← evaluate(legalize(N∗curr)) // alg. 8
13 if curr_cost < best_cost_inner then
14 N∗best_inner ← N∗curr
15 best_cost_inner ← curr_cost
16 last_impr ← step
17 if step − last_impr ≥ max_no_impr then break if

elapsed_time(timer) ≥ timeout then break
18 if best_cost_inner < best_cost then
19 N∗best ← N∗best_inner
20 best_cost ← best_cost_inner
21 N′ ← legalize(N∗best) // alg. 8
22 return N′

or depth) which does not completely correlate to the actual
cost metric.

We propose a design space exploration approach, illustrated
in Algorithm 9, which performs multiple iterations of MIG
restructuring and legalizes the MIGs in every iteration to
compute the actual JJ cost, such that the exploration is
correctly guided. As formulated in Problem 1, the input is
an unconstrained network N, so we first map it into an MIG
network (line 1). In the rest of the algorithm, four copies of the
MIG are maintained: the initial MIG N∗0 , the overall best MIG
N∗best, the best MIG in the inner for-loop N∗best_inner, and the
current MIG N∗curr. The algorithm explores the design space
by starting num_restarts times from the initial point N∗0 (the
outer for-loop, lines 4–21), each time exploring MIGs along a
random trajectory (the inner for-loop, lines 10–18). For each
MIG, the second axis of different mapped networks is also
explored, and the cost is evaluated on the best mapped network
(line 12). The best-seen MIGs are book-marked on the current
trajectory (N∗best_inner, line 14) and on all trajectories (N∗best,
line 20). The inner loop is terminated when no improvement
is observed for max_no_impr steps consecutively (line 17),
or when the timeout limit is exceeded (line 18). These two
parameters set the effort level of each restart and are the major
factors determining the tradeoff between runtime and quality
of results.

The key ingredients of Algorithm 9 are the functions
map_into_MIG (line 1), restructure_MIG_randomly (line
11), and legalize (lines 12 and 22). In line 1, func-
tion map_into_MIG calls a graph mapping algorithm [16].
In the case where N is an AIG, it can also be trans-
formed directly into an MIG by converting each AND2
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into a MAJ3 with a constant 0 fanin. In line 11, function
restructure_MIG_randomly applies a randomly chosen MIG
restructuring script. In our experience, scripts that perform
well consist of a drastic restructuring step, such as mapping
into k-LUT network [33] and then remapping into MIG [16],
followed by some MIG optimization steps, such as resubsti-
tution [18], [20], algebraic rewriting [15], and balancing [34].
In line 12, the current MIG is legalized using the proposed
legalization flow Algorithm 8 to obtain a mapped network N′
for evaluation. Depending on the design objective, the function
evaluate may return the JJ count (#JJs = 6·|G′|+2·|B|), depth
(d(N′)), or (EDP = #JJs · d(N′)). Line 22 legalizes the best
MIG again also using Algorithm 8. If better runtime efficiency
is desired, lighter-effort legalization (e.g., by limiting the
number of optimization iterations in Algorithm 7) can be
used in line 12 for cost evaluation while keeping the final
legalization in line 22 the highest-affordable effort.

The advantages of this design space exploration approach
are twofold. First, compared to existing approaches, it explores
a larger design space, and the frontier of exploration also
stretches further. This is thanks to the hill-climbing strategy,
where we simply record the best-seen design on the trajectory
and keep moving forward when the cost gets worse instead of
rolling back. Moreover, the key enabling factor to explore on
the orthogonal axis (different mapped networks from the same
MIG) is that the legalization runtime is fast enough, which
motivates the focus of this article on efficient heuristic buffer
optimization methods instead of unscalable exact algorithms.
The second advantage of Algorithm 9 is that the design
space exploration is done on the fly. That is, no heavy
data training, complicated decision making, or human expert
intuition is needed to guide the exploration, and the results
are not overfitted for a subset of benchmarks. The direction of
exploration is guided by the simplest strategy, randomness, and
the best transformation sequence is discovered on the fly. As
there is a factor of luck involved, the purpose of the outer loop
is to mitigate the possibility of a “bad” random seed leading
to unsatisfactory results and to increase the chance of meeting
at least one “good” random sequence in all restarts. Setting
the number of restarts higher would increase the chance of
obtaining an even better result, but such improvement saturates
at some point and the additional runtime is wasted in repeating
similar optimization sequences. Empirically, we have found
that setting num_restarts= 5 reaches a good balance between
runtime and quality.

C. Verification

To ensure the correct functionality of the synthesized AQFP
circuit, two types of verification should be performed: logic
equivalence to the specification and legality with respect to
the AQFP technology constraints. These correspond to the first
and the third condition in Problem 1. The second condition,
i.e., only AQFP-compatible gates are used, is ensured auto-
matically by having used MIG as logic representation in the
restructuring step.

For logic equivalence, we apply the well-developed combi-
national equivalence checking algorithm [35] on the mapped

network N′ and the original network N. For legality verifica-
tion, we check if the mapped network is indeed path-balanced
and properly branched. First, a schedule S of the mapped
network is (re)computed by visiting all nodes in a topological
order and assigning

S(n) =
{

0, if n ∈ I
maxni∈FI(n) S(ni)+ 1, otherwise.

(6)

Then, we verify if N′ is path-balanced by traversing all nodes
again and testing (1)–(3). The “for all edges” in (1) is equiva-
lent to checking all fanins n1 of all gates n2. Finally, we verify
if N′ is properly branched by comparing the number of fanouts
of all PIs, gates, and buffers against the parameters si, sg,

and sb, respectively. With our data structure and constraint
formulation, the AQFP technology legality verification can be
done in linear time.

VII. EXPERIMENTAL RESULTS

All of the algorithms and flows presented in this article are
implemented in the open-source C++ logic synthesis library
mockturtle1 [36]. In this section, we present experimental
results of our methods solving Problem 3 alone Section VII-A
as well as solving the bigger Problem 1 Section VII-C. We also
demonstrate in Section VII-B the scalability of the proposed
B/S insertion algorithm using much bigger benchmarks. To be
consistent with previous works that we compare to, we use
sb = 4 for the splitting capacity of buffers. All results are ver-
ified with the verification methods described in Section VI-C
and published2 for third-party verification.

A. Technology Legalization and Buffer Optimization

First, we compare the performance of our B/S insertion and
optimization flow Algorithm 8 against the SoTA on solving
the same problem [27]. For the sake of completeness, we
list all of the benchmarks used in the first work on AQFP
B/S insertion [25] in Table I, but the totals are computed
only with the benchmarks presented in [27]. The number
of gates (|G∗|) and the depth (d(N∗)) of the initial MIGs,
as well as the number of buffers (|B|), the JJ count (#JJs),
and the depth (d(N′)) of the mapped networks are listed.
Moreover, the runtime (Time) used by our flow is presented.
Unfortunately, the runtime data was not presented in [27]. In
the last column, we list the known global optimum results
obtained by ILP solving [28] to have an idea of how far the
heuristics are from optimal. Some of the numbers are only an
upper bound because the ILP formulation could not be solved
within reasonable time, and some of the benchmarks are too
big for the ILP solver to return any partial result.

From Table I, we can see that the heuristic methods achieve
optimum for the smaller benchmarks and are fairly close to
optimum for most of the benchmarks. While our flow obtains
slightly worse results in average size than SoTA, the difference
is very small (0.96% in number of buffers and 0.5% in JJ
count). Thanks to the depth-optimal scheduling, we obtain
a better depth in one benchmark (c7552). Most importantly,

1https://github.com/lsils/mockturtle
2https://github.com/lsils/SCE-benchmarks
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TABLE I
TECHNOLOGY LEGALIZATION RESULTS COMPARING TO THE SOTA AND GLOBAL OPTIMUM

TABLE II
TECHNOLOGY LEGALIZATION RESULTS ON THE LARGEST EPFL BENCHMARKS

these results are obtained using short runtime. Thus, our flow
can be used in design space exploration, where legalization
is called extensively, such that large improvements can be
achieved Section VII-C.

It is also worth mentioning that, out of the 21 benchmarks,
the legalization and optimization result starting from an ASAP
scheduling is taken (i.e., better than the one from an ALAP
scheduling) in 16 benchmarks. We can see that ASAP may
provide better quality in more cases, but this is not definitive.
Thus, trying both starting points, as in Algorithm 8, helps
achieve better results when the runtime budget is sufficient.

B. Scalable AQFP Legalization

To demonstrate the scalability of our AQFP legalization
approach, we use the largest ten benchmarks in the EPFL
benchmark suite [37] for experiment, which are 10×–100× in
size compared to the benchmarks generally used in previous
works on AQFP logic synthesis. The MIGs are obtained
using delay-oriented graph mapping [16]. In Table II, we
compare our results obtained using a simple depth-optimal
legalization flow (Algorithm 3 followed by Algorithm 1,

column “D.-opt. legal.”) as well as depth-optimal legaliza-
tion with further optimization (Algorithm 8, column “D.-opt.
legal.+opt.”) against results of nondepth-optimal legalization
with optimization presented in [12] (column “Non.-d.-opt.
legal.+opt.”). A timeout limit of 300 s is enforced. From
this experiment, we can see that simple legalization with-
out optimization is very fast, so such a flow can still be
used in design space exploration even when benchmarks are
large. Comparing the mapped network depths, the proposed
depth-optimal scheduling reduces the depth by about 9% on
average.

C. Technology Mapping

With the proposed design space exploration approach
presented in Section VI-B, we present new best-known results
on the problem of AQFP technology mapping on the MCNC
benchmark suite [38]. In Table III, our results are com-
pared to SoTA [30]. Since [30] outperformed other previous
works [11], [19], [24], [29] on all benchmarks and on all
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TABLE III
BEST-KNOWN RESULTS ON AQFP TECHNOLOGY MAPPING

metrics,3 data from these works is omitted. We use the
same optimization objective as in [30], i.e., minimizing EDP.
The parameters used in Algorithm 9 are num_restarts = 5,
max_steps4 = 1000, max_no_impr = 50, and timeout =
100 s. With this parameter setting, for most benchmarks, the
loop-breaking condition is max_no_impr before the timeout
limit is exceeded. This is an intentional decision to make the
experiment more reproducible on different machines.

In addition to #JJs, d(N′), and EDP, the last two columns
in Table III list, respectively, the total runtime of Algorithm 9
(column “Time”) and the runtime for cost evaluation (line
12 in Algorithm 9, column “Eval.”) using Algorithm 8. The
runtime information of [30] is unfortunately not provided.

Our design space exploration achieves strictly better results
than [30] in #JJs and EDP on all benchmarks. In total, 36%
improvement in #JJs, 12% improvement in depth, and 44%
improvement in EDP are achieved within manageable runtime.

VIII. CONCLUSION

This article presents a full flow on the AQFP technol-
ogy mapping problem, focusing mainly on legalization and
optimization. We first establish that the AQFP legalization
problem is a scheduling problem and propose two depth-
optimal scheduling algorithms. Then, the obtained schedules
may be further optimized for size using the proposed chun-
ked movement and retiming techniques. As both irredundant
buffer insertion and depth-optimal scheduling have linear time
complexity, scalability is guaranteed. Finally, we combine our
legalization flow with MIG logic optimization and propose

3References [19] and [29] used different assumptions, i.e., primary inputs
do not need to be balanced, so the numbers presented in the papers are
different. As both works are open-sourced and flexible to taking different
assumptions, we reran the experiment with the same assumptions for a fair
comparison.

4All restarts end within 200 steps due to the two terminating conditions,
so this value is never really reached.

an unsupervised design space exploration for AQFP technol-
ogy mapping, which achieves massive improvement over the
SoTA. As AQFP legalization is performed after each MIG
optimization trial in design space exploration, one of the key
elements to its success is the efficient optimization heuristics
in the legalization flow. For the sake of completeness, we also
discuss verification methods for legalized AQFP circuits.
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