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ABSTRACT
Hardware Trojan (HT) poses a critical security threat to inte-

grated circuits, which can change circuit functionality or leak sen-

sitive data. HTs are typically activated under low-probability con-

ditions by exploiting “rare signals” in logic circuits. In this paper,

we propose RareLS, rarity-reducing logic synthesis for mitigating

HT threats. Specifically, RareLS reduces the number of rare signals

through rarity-oriented technology-independent optimization and

technology mapping. Experimental results show that RareLS re-

duces rare signals by 63.4% on average, with a small overhead of

4.0% in area, 1.9% in delay, and 6.2% in power. Moreover, RareLS

complicates HT insertion for attackers by reducing HT trigger logic

by 92.94%, and aids defenders in detecting HTs by shortening the

test length by more than 80.83%.
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1 INTRODUCTION
Hardware Trojan (HT ) emerges as a crucial security concern

in modern integrated circuits [1, 2]. This malicious circuit modifi-

cation aims to change circuit functionality, leak sensitive data, or

cause a denial of service [3]. Fig. 1 depicts a typical HT in a logic cir-

cuit, consisting of trigger logic and payload logic [4, 5]. The trigger
logic monitors signals in the original circuit, activating a trigger-

ing signal under certain conditions. Upon activation, the payload

disrupts normal circuit operations, potentially causing incorrect

circuit outputs or even failure.

HTs are usually designed to be stealthy to evade detection, em-

ploying a triggering mechanism activated with a low probabil-

ity [6, 7]. Fig. 1 showcases such a mechanism through a combina-

tional trigger logic using a multiple-input AND gate. Here, each

input of the trigger logic is a rare signal with signal probability

close to 0 or 1, where the signal probability is defined as the prob-

abilities of a signal being logic one. Specifically, two inputs with

signal probabilities of 0.01 are directly connected to the AND gate,

while another input with a signal probability of 0.99 is first negated

to obtain a near-0 signal probability before entering the AND gate.

This design ensures that the AND gate’s output, the triggering

signal, has a very low signal probability, making the HT hard to

detect.
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Figure 1: Schematic of a hardware trojan in a logic circuit.

The landscape of HT-related strategies encompasses both attack-

ers’ techniques and defenders’ countermeasures. In what follows,

we will review some literature closely related to our work.

From attackers’ perspective, researchers focus on designing

stealthy HTs, typically triggered under low-probability conditions.

Wang et al. [8] exploited low-probability don’t care states to activate
HTs. Zhang and Xu [9] aimed to minimize the probability of the

trigger condition, thus enhancing the stealthiness of HTs. Haider

et al. [10] introduced an XOR-LFSR HT, a counter-based HT acti-

vated under low-probability conditions. Jain et al. [11] presented
a HT in an advanced encryption standard core, using sequential

trigger logic with a low probability. Cruz et al. [12] developed a

framework for automated insertion of HTs into gate netlists. Their

method identifies rare signals in gate netlists, which are subse-

quently utilized to construct low-probability trigger conditions.

Given that low-probability conditions in logic circuits are often

associated with rare signals, reducing rare signals can significantly

reduce the number of potential HT triggers, thereby complicating

HT insertion.

From defenders’ perspective, extensive research is dedicated

to HT detection and prevention. For HT detection, a prominent

approach is based on logic testing, which primarily focuses on

rare signals in logic circuits. Chakraborty et al. [13] introduced
the MERO method, which generates test patterns through multi-

ple excitations of rare signals. Saha et al. [14] combined genetic

algorithms with satisfiability (SAT ) solving, and developed an auto-
matic test pattern generation (ATPG) technique utilizing rare signals.
Lyu and Mishra [15] proposed TARMAC, an ATPG algorithm based

on maximal clique sampling, again leveraging rare signals. Shi et
al. [16] analyzed the correlation between circuit inputs and rare sig-

nals, and applied the genetic algorithm to generate test patterns for

HT detection. Pan and Mishra [17] utilized the controllability and

observability analysis and signal rarity to improve the efficiency

of HT detection, and developed a reinforcement learning-based
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HT detection framework. For HT prevention, many design-for-
trust (DFTrust) techniques are proposed to reduce rare signals in

logic circuits. Salmani et al. [18] suggested inserting dummy scan

flip-flops to eliminate rare signals, albeit with a significant area

overhead. Samimi et al. [19] used logic encryption to reduce rare

signals exploitable by attackers. However, this encryption-based

technique induces large hardware overhead in area (31.57%) and

delay (56.17%). Recently, Jayasena et al. [20] showed a positive cor-

relation between the number of rare signals and the circuit area.

They simply applied traditional area-oriented logic synthesis to

reduce area, thereby reducing the number of rare signals. However,

their method does not directly target the reduction of rare signals,

thus not fully exploiting the potential of logic synthesis. In contrast,

this paper proposes a novel logic synthesis method tailored for rare

signal reduction, which significantly reduces rare signals compared

to the approach in [20].

The above discussions illustrate the pivotal role of rare signals

in both attacking and defending strategies for HTs. Reducing rare

signals limits the possible space for creating HT triggers, thus com-

plicating HT insertion for attackers and simplifying HT detection

for defenders. This motivates us to propose RareLS, rarity-reducing

logic synthesis for mitigating HT threats. Our main contributions

are as follows:

• RareLS explores a new perspective in DFTrust using novel

rarity-reducing logic synthesis techniques. Orthogonal to ex-

isting DFTrust methods, RareLS can be concurrently applied

in conjunction with them.

• We develop a rarity-reducing And-Inverter Graph (AIG) syn-
thesis technique based on rarity-reducing resubstitution.

• We devise a rarity-reducing technology mapping method

that “hides” rare signals within complex gates in standard

cell library.

• Experimental results show that RareLS reduces rare signals

by an average of 63.4%, with a small overhead of 4.0% in area,

1.9% in delay, and 6.2% in power. Although not eliminating

all rare signals, RareLS complicates HT insertion by reducing

HT trigger logic by 92.94%, and facilitates HT detection by

reducing the test length by more than 80.83%.

The RareLS code is open-source and available at https://github.com/

changmg/RareLS.

The rest of the paper is organized as follows. Section 2 introduces

preliminaries. Section 3 details the RareLS methodology. Section 4

shows experimental results. Finally, Section 5 concludes the paper

and discusses future works.

2 PRELIMINARIES
2.1 Threat Model

The lifecycle of modern supply chains typically includes design,

fabrication, testing, and deployment phases [3]. In our threat model,

we assume that attackers may be present during the design or

fabrication stages, while the testing and deployment stages are

trusted. Attackers are assumed to have the ability to insert HTs by

changing the gate netlist. This threat model is consistent with those

adopted in existing DFTrust methods [18–20]. Possible attacking

scenarios under this model are as follows:

• In the design stage, a rogue employee of an IC design com-

pany may gain access to the gate netlist format of a design

and insert HTs into it.

• In the design stage, a malicious computer-aided design tool

could automatically integrate HTs into the gate netlist.

• In the fabrication stage, an untrustworthy foundry may in-

sert HTs by changing the gate netlist.

The inserted HTs are assumed to be stealthy and can remain hidden

during traditional functional validation and testing. A typical way

of inserting such HTs involves combining several rare signals to

serve as the HT trigger.

2.2 Logic Circuit and Rare Signal
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Figure 2: An AIG with each node denoting an AND gate. Solid edges
indicate direct connections, and dashed edges denote signal nega-
tions. The blue value associated with each node denotes the signal
probability of that node. If the rarity threshold is 0.3, then 𝑛1 and 𝑛5

are rare signals.

A logic circuit can be modeled as a directed acyclic graph with

nodes and edges. In such circuits, each node produces a signal,

and throughout this paper, the terms “signal” and “node” are used

interchangeably. A primary input (PI ) is a node without incoming

edges, and a primary output (PO) is a node without outgoing edges.

Nodes that are neither PI nor PO are internal nodes. A gate netlist is
a special logic circuit, consisting of nodes representing logic gates

interconnected by edges.

An AND-Inverter Graph (AIG) [21] is an abstract representation

of a logic circuit, extensively used in modern logic synthesis meth-

ods [22, 23]. Each internal node in an AIG denotes an AND gate,

and each edge can be optionally marked to represent signal nega-

tions. An example AIG is shown in Fig. 2, where nodes 𝑛1 ∼ 𝑛5
denote AND gates, solid edges indicate direct connections without

negations, and dashed edges indicate signal negations. In an AIG,

a cut of a node 𝑛 is defined as a set of nodes, called leaves, such
that any path from a PI to node 𝑛 passes at least one leaf [24]. For

example, in Fig. 2, 𝑛3’s cuts include {𝑛2, 𝑖5} and {𝑖3, 𝑖4, 𝑖5}.
Signal probability is the probability of a signal being in a “high”

(logic one) state. For example, in Fig. 2, each node is associated with

a signal probability, denoted by the blue value. In a gate netlist or

an AIG, a rare signal is defined as a signal whose signal probability

is either below a threshold 𝛿 or above 1 − 𝛿 . We call 𝛿 the rarity
threshold. In Fig. 2, if 𝛿 = 0.3, then 𝑛1 and 𝑛5 are rare signals.

https://github.com/changmg/RareLS
https://github.com/changmg/RareLS
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3 RARELS METHODOLOGY
This section details the RareLS methodology. We first overview

RareLS and then delve into the two key techniques: rarity-reducing

technology mapping and rarity-reducing AIG synthesis.

3.1 Overview
RareLS aims to reduce rare signals in a combinational gate netlist,

thus effectively mitigating HT threats. The overall flow of RareLS

is depicted in Fig. 3. It begins with an initial gate netlist GNETinit
and a user-defined rarity threshold 𝛿 . Then, RareLS proceeds with

the three steps:

Gate 
netlist 

𝐺𝑁𝐸𝑇𝑖𝑛𝑖𝑡

1.Convert
2. AIG 

synthesis

Reduce rare 
signals in AIG

Reduce rare signals 
in gate netlist

3. Map

 𝐴𝐼𝐺𝑖𝑛𝑖𝑡  𝐴𝐼𝐺𝑜𝑝𝑡

Gate 
netlist 

𝐺𝑁𝐸𝑇𝑓𝑖𝑛𝑎𝑙

Rarity 
threshold 𝛿

Figure 3: Overall flow of RareLS.

1. Conversion: ConvertGNETinit into anAIG, denoted asAIGinit
1
.

2. Rarity-reducing AIG synthesis: Reduce rare signals inAIGinit
using a novel rarity-oriented resubstitution technique, thereby

facilitating the rare signal reduction in the final gate netlist.

The optimized AIG is denoted as AIGopt.

3. Rarity-reducing technology mapping: Map AIGopt into the

final gate netlist GNETfinal using a technology mapping

method tailored for reducing rare signals.

We should emphasize that RareLS cannot guarantee the complete

elimination of all rare signals, but it can significantly reduce the

number of rare signals in the final gate netlist. Utilizing RareLS can

complicate HT insertion and facilitate testing-based HT detection,

which is demonstrated in our experimental part.

The following subsections will introduce the detailed steps. Since

Step 2 relies on an important concept proposed in Step 3, we will

first introduce Step 3 and then Step 2.

3.2 Step 3: Rarity-Reducing Technology
Mapping

This subsection describes how to map AIGopt into the final gate

netlist GNETfinal, with a focus on reducing rare signals. In what

follows, we will first propose the concept of “hiding” rare signals
and then present our rarity-reducing technology mapping method

based on the concept.

3.2.1 Hiding Rare Signals. Consider the AIG shown in Fig. 4(a),

with a rarity threshold 𝛿 = 0.3. Assuming uniform input distribu-

tion, the signal probability of each node is calculated and displayed

in blue. Nodes 𝑛1 and 𝑛2, each exhibiting a signal probability of

0.25, are identified as rare signals and marked in red. Using a tradi-

tional area-oriented technology mapping method with a Nangate

45nm library [25], the resulting gate netlist is shown in Fig. 4(b).

This netlist includes two AND-OR-21 (AO21) gates and a NAND

gate, with an area of 3.99𝜇𝑚2
. Notably, the rare signal 𝑛1 is hidden

1
RareLS works on AIGs, since AIG-based modern logic synthesis has shown significant

advantages in reducing hardware cost, particularly for CMOS technologies [22, 23].
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(a) An AIG. Each node denotes an AND gate. Solid edges indicate direct

connections, while dashed edges denote signal negations.
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hiding technology mapping, where
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.

Figure 4: Comparative mapping of an AIG into gate netlists using
traditional and rarity-reducing technologymappingmethods. Signal
probabilities are shown in blue, with rare signals marked in red
under a rarity threshold of 𝛿 = 0.3.

within the left AO21 gate after mapping. However, the rare signal

𝑛2 remains visible as the NAND gate’s output.

Using an alternative way of mapping, rare signals 𝑛1 and 𝑛2 can

be simultaneously hidden. As depicted in Fig. 4(c), these signals

are hidden within the AO21 and AND-OR-Inverter-21 (AOI21) gates,
making them undetectable at the gate netlist level. While this netlist

has a larger area of 4.24𝜇𝑚2
, it successfully hides the rare signals

within complex gates like AO21 and AOI21. This adds an additional

layer of complexity for accessing rare signals, increasing the diffi-

culty for attackers to detect these signals in the gate netlist. Hiding

rare signals compels attackers to perform more intensive analysis

to uncover the rare signals. Moreover, our strategy of hiding rare

signals can work in parallel to existing DFTrust methods, such as

those in [18, 19], which provides a new perspective of DFTrust.

3.2.2 Rarity-Reducing Technology Mapping Based on Hiding Rare
Signals. Our proposed method enhances the generic technology

mapping algorithm [24], shown in Algorithm 1, to prioritize rare

signal reduction. We will first describe the generic algorithm and

then detail our enhancement.
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Algorithm 1: Generic technology mapping.

Input: AIG, standard cell library L, and optimization metric Metr.
Output: Gate netlist GNET

1 foreach node 𝑛 ∈ AIG in topological order do
2 𝑛.bestcut← ∅, 𝑛.bestscore← +∞;

// Evaluate the score for each cut of node 𝑛

3 foreach cut𝐶 of node 𝑛 do
4 𝐹𝐶 ← logic function represented by𝐶 ;

5 if there exists a gate 𝑔 ∈ L implementing 𝐹𝐶 then
6 𝐶.score← ComputeScore(AIG,𝐶,𝑔,Metr) ;
7 if 𝐶.score < 𝑛.bestscore then
8 𝑛.bestcut← 𝐶 , 𝑛.bestscore← 𝐶.score;
9 Build GNET from AIG using the best cuts of nodes;

10 return GNET

The generic technology mapping algorithm transforms an AIG

into a gate netlistGNET using a standard cell libraryL, guided by an
optimization metric Metr. Traditional metrics prioritize area, delay,

or power, but do not consider signal rarity. Algorithm 1 processes

each AIG node 𝑛 in topological order (Line 1). For each node 𝑛, it

initializes 𝑛’s best cut and score (Line 2), and then enumerates 𝑛’s

cuts (Line 3). For each cut 𝐶 of node 𝑛, the algorithm determines

the logic function 𝐹𝐶 represented by 𝐶 (Line 4). If a gate in L can

implement 𝐹𝐶 (Line 5), then the algorithm computes a score for 𝐶

based on the selected metricMetr (Line 6). If the score is smaller (i.e.,
leading to a lower cost) than the current best score, then 𝑛’s best

cut and score are updated (Lines 7-8). After evaluating all nodes, a

gate netlist GNET is constructed using the best cuts (Line 9) and

then returned.

For traditional area-oriented technology mapping, a common

score is the effective area [26], calculated as𝐶.scoreArea = [Area(𝑔)+∑
𝑖 (Leaf𝑖 .bestscoreArea)

]
/NumFanouts(𝑛). In this formula,Area(𝑔)

is gate 𝑔’s area, Leaf𝑖 is the 𝑖-th leaf of the cut𝐶 , Leaf𝑖 .bestscoreArea
is the best effective area at that leaf, and NumFanouts(𝑛) is the
count of 𝑛’s fanouts. The effective area of a cut provides a good

estimation of the area contribution of the cut to the resulting gate

netlist.

We enhance Algorithm 1 to reduce rare signals in the final gate

netlist by hiding rare signals, while ensuring a good quality in area,

delay, or power. To hide rare signals during technology mapping,

we focus on the rare cut in an AIG, defined as a cut containing at

least one rare signal. For example, in Fig. 4(a), node 𝑜2 has a rare cut

{𝑛2, 𝑖1, 𝑖5}. During technology mapping, selecting a rare cut as the

best cut for node 𝑛 will result in the rare signal in the cut exposed

in the final gate netlist. For example, in Fig. 4(a), if 𝑜2’s best cut is

determined to be the rare cut {𝑛2, 𝑖1, 𝑖5}, 𝑜2 is then mapped into

an AO21 gate with 𝑛2, 𝑖1, and 𝑖5 as inputs, as depicted in Fig. 4(b).

Consequently, the rare signal 𝑛2 remains visible after mapping.

Based on this observation, we propose a rarity-oriented scoring

mechanism that penalizes rare cuts during the cut evaluation pro-

cess (Algorithm 1 Lines 3–8). This scoring mechanism is integrated

into the computing score step of Algorithm 1 (Line 6). To reduce

rare signals while achieving good area, the rarity-oriented score

for a cut 𝐶 of node 𝑛 is defined as:

𝐶.scoreRarity =

{
𝐶.scoreArea + Penalty, if 𝐶 is a rare cut

𝐶.scoreArea, otherwise,
(1)

where Penalty is an extremely large constant (set as 10
7
in our im-

plementation). With Eq. (1), if 𝐶 is a rare cut, its score is extremely

high due to the penalty, which deters its selection as 𝑛’s best cut

and prohibits the rare signal within𝐶 being exposed in GNET. Con-
versely, if 𝐶 is a non-rare cut, then 𝐶’s score equals 𝐶.scorearea,
promoting the cut for the area optimization. Consequently, if 𝑛

has some non-rare cuts, then the non-rare cut with the smallest

𝐶.scorearea is determined as 𝑛’s best cut. For example, in Fig. 4(a),

after evaluating all 𝑜2’s cuts, the best non-rare cut is {𝑖1, 𝑛3}, result-
ing in a mapping with an OR gate shown in Fig. 4(c). This scoring

mechanism reduces rare signals while achieving a good circuit area.

The penalty-based approach like Eq. (1) can be similarly applied to

enhance delay-oriented mapping and power-oriented mapping.

3.3 Step 2: Rarity-Reducing AIG Synthesis
This subsection presents rarity-reducing AIG synthesis. We first

propose a theoretical foundation for the AIG synthesis process, and

then detail our rarity-reducing resubstitution technique.

3.3.1 Theoretical Foundation for Rarity-Reducing AIG Synthesis. In
the previous subsection, we introduce rarity-reducing technology

mapping, which hides rare signals within complex logic gates in

the final gate netlist. This raises a pivotal question: which signals
can be hidden and which cannot. To address this, we propose a

sufficient condition that serves as a guideline for rarity-reducing

AIG synthesis.

Theorem 1. Assume that the standard cell library includes a NOT
gate, as well as 3-input AOI21, OAI21, NAND3, and NOR3 gates2. An
internal rare signal 𝑛 in an AIG, which is neither a PI nor a PO, can
be hidden using one of the 3-input gates if it follows the following
two conditions: 1) All fanins and fanouts of 𝑛 are non-rare signals. 2)
For each fanout of 𝑛, denoted as 𝑣 , 𝑛 is the only rare signal among 𝑣 ’s
fanins.

Proof. Let 𝑝 and 𝑞 be the fanins of the non-PI signal 𝑛. Signal

𝑛 can be hidden within a gate during mapping provided that, for

any 𝑛’s fanout signal 𝑣 , there exists a 3-input gate in the standard

cell library that implements 𝑣 with inputs {𝑚, 𝑝, 𝑞}, where 𝑚 is

another fanin of 𝑣 besides 𝑛. Note that the library with the specified

gates suffices to implement any 3-input function that may arise

in an AIG. Thus, to complete the proof, it suffices to show that

the exposed signals 𝑣,𝑚, 𝑝, 𝑞 are all non-rare. This holds because

criterion 1) ensures 𝑣, 𝑝, 𝑞 are non-rare, and criterion 2) ensures𝑚

is non-rare. □

We define an inherently rare signal as a rare signal that does

not satisfy the conditions of Theorem 1. For example, in the left-

hand AIG of Fig. 5, if the rarity threshold is 0.3, then 𝑛4 is a rare

signal with a signal probability of 0.125. Meanwhile, 𝑛4 is also an

inherent rare signal, since it has a rare fanin signal 𝑛1, violating

condition 1) of Theorem 1. Note that the number of inherently rare

signals is an upper bound for the number of rare signals present

in the final gate netlist after applying rarity-reducing technology

mapping. Based on this, we propose a rarity-reducing resubstitution

2
Gate functions: AOI21, 𝑓AOI21 (𝑎,𝑏, 𝑐 ) = 𝑎𝑏 + 𝑐 ; OAI21, 𝑓OAI21 (𝑎,𝑏, 𝑐 ) = (𝑎 + 𝑏 )𝑐 ;
NAND3, 𝑓NAND3 (𝑎,𝑏, 𝑐 ) = 𝑎𝑏𝑐 ; NOR3, 𝑓NOR3 (𝑎,𝑏, 𝑐 ) = 𝑎 + 𝑏 + 𝑐 . Modern cell li-

braries usually have these large cells to achieve better power, performance, and area.
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technique, which focuses on reducing inherently rare signals in an

AIG.
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Figure 5: Example of AIG resubstitution [27]. Signal probabilities
are shown in blue, with rare signals marked in red under a rarity
threshold of 𝛿 = 0.3.

3.3.2 Rarity-Reducing Resubstitution. Resubstitution [22, 27] is a

powerful technique to simplify a logic circuit in conventional logic

synthesis. The AIG resubstitution re-expresses a signal using a set

of other signals (also called divisors) in the AIG. For example, in the

left-hand AIG of Fig. 5, the signal 𝑜2 has the function 𝑜2 = 𝑛5 = 𝑖1𝑛4.

This function can be re-expressed using signals 𝑛2 and 𝑛3 with a

new function 𝑜′
2
= 𝑛6 = 𝑛2 · 𝑛3 = 𝑛2 + 𝑛3. After re-expressing 𝑜2

with 𝑜′
2
, the circuit functionality does not change, because 𝑜2 and

𝑜′
2
are functional equivalent

3
. We can also remove the inherent rare

signal 𝑛4 after the resubstitution. The resulting AIG is depicted

on the right side of Fig. 5. This example shows that resubstitution

can reduce rarity in an AIG. Next, we will introduce a systematic

resubstitution approach to reduce the number of inherent rare

signals.

We first introduce a generic resubstitution algorithm, as shown

in Algorithm 2, and then discuss how to customize it for rarity

reduction. Algorithm 2 simplifies an initial AIG based on an opti-

mization metric Metr. In traditional logic synthesis, typical metrics

can be AIG size for area optimization and AIG depth for delay opti-

mization. The algorithm iteratively traverses each node in the AIG

(Line 1). For each node, it collects a candidate divisor set 𝑆 (Line 2).

For each divisor set 𝑠 ⊆ 𝑆 (Line 3), it first tries to resubstitute 𝑛

using 𝑠 (Line 4). If we can build a new function in terms of signals

in 𝑠 to re-express 𝑛’s function, then the resubstitution is feasible

(Line 5). The term gain refers to the difference in metrics of the

circuit before and after the resubstitution (Line 6). Algorithms 2

accepts a resubstitution if it results in a positive gain (Lines 7–8).

After traversing each node and attempting to resubstitute each

node once, the optimized AIG is returned (Line 10).

To customize resubstitution for rarity reduction, in this work,

we use rarity as the optimization metric (Metr in Algorithm 2). In

concrete, for each candidate resubsitution, we define its gain (in

Algorithm 2 Line 6) as the number of reduced inherently rare signals

after applying the resubsitution. In this way, the resubstitution

process directly reduces the inherent rare signals, which further

aids the rarity-reducing technology mapping by increasing the

opportunities for hiding rare signals according to Theorem 1.

3𝑜2 = 𝑖1𝑛4 = 𝑖1 (𝑛1 + 𝑖4 ) , and 𝑜 ′
2
= 𝑛2 + 𝑛3 = 𝑖1𝑛1 + 𝑖1𝑖4 = 𝑖1 (𝑛1 + 𝑖4 ) .

Algorithm 2: Generic AIG resubstitution algorithm.

Input: Initial AIG and optimization metric Metr
Output: Optimized AIGopt

1 foreach node 𝑛 in AIG do
2 𝑆 ← collect candidate divisor sets for 𝑛;

3 foreach divisor set 𝑠⊆𝑆 do
4 Try to resubstitute node 𝑛 using 𝑠 ;

5 if the resubstitution is feasible then
6 gain← resubstitution gain based on Metr;
7 if gain > 0 then
8 Apply the resubstitution;

9 break;

10 return AIGopt;

To efficiently estimate the signal probabilities and evaluate the

node rarity during AIG resubstitution, we propose an on-the-fly

logic simulation strategy. Initially, we generate random simulation

patterns on the PIs. Then, we perform the resubsitution process in

a topological order (i.e., Algorithm 2 Line 1 traverses each node 𝑛

topologically). For each node 𝑛, before applying any resubstitution,

its simulation pattern can be easily updated based on its fanins’

simulation pattern, given that the fanins’ simulation patterns have

been processed before 𝑛’s. According to 𝑛’s simulation patterns, we

can estimate its signal probability and determine whether it is a rare

signal or not. If a resubstitution is applied to 𝑛 (i.e., Algorithm 2

Line 8 is executed), then 𝑛’s simulation pattern will be further

updated based on the divisors’ simulation patterns, and 𝑛’s signal

probability and rarity will be recalculated accrodingly. In this way,

the simulation complexity is linear to the AIG size, making our

rarity-reducing resubsitution efficient.

Furthermore, modern logic synthesis flows usually integrate

resubstitution with other simplification techniques, such as bal-

ancing, rewriting, and refactoring, to reduce more area, delay, and

power [22]. Referring to this, our rarity-reducing AIG synthesis

flow also synergizes the rarity-reducing resubstitution with these

simplification techniques to reduce rare signals while optimizing

for area, delay, or power. Moreover, we find that iteratively exe-

cuting our rarity-reducing AIG synthesis flow for several rounds

usually leads to fewer inherent rare signals than a single execution.

In our implementation, we apply the rarity-reducing AIG synthesis

flow three times, based on the observation that the reduction of

inherent rare signals typically plateau after three iterations.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup

RareLS, developed in C++, is tested on a single-core AMD7945HX

processor with 64GB RAM. Within RareLS, we use the generic re-

substitution framework proposed in [28] as the basis to implement

our rarity-reducing AIG synthesis. We modify the area-oriented

technology mapping method, amap, from a leading logic synthe-

sis system, abc [29], to implement our rarity-reducing technology

mapping approach. The Nangate 45nm open-cell library [25] is

applied for technology mapping. Circuit area, delay, and power are

measured by Synopsys Design Compiler [30], with power measure-

ment conducted at 100MHz under a uniform input distribution. The
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Table 1: Rare signal reduction versus hardware cost overhead caused by RareLS. Rarity threshold 𝛿 = 0.1, which is a common choice in [14, 15, 18–
20]. A negative hardware cost overhead means that RareLS can further reduce area, delay, or power. Bold entries indicate a reduction in area,
delay, power, or rare signals. The input gate netlists are pre-processed using the rare signal reduction technique proposed in [20].

Name

Input gate netlist (pre-processed by [20]) Final rarity-reduced gate netlist after RareLS Final gate netlist vs initial one

#Gate Area/𝜇𝑚2
Delay/𝑛𝑠 Power/𝜇𝑊 #Rare Area/𝜇𝑚2

Delay/𝑛𝑠 Power/𝜇𝑊 #Rare Time/s

Area

overhead

Delay

overhead

Power

overhead

Rare

reduction

c499 216 253.2 0.7 2.2E+02 56 239.4 0.7 2.8E+02 32 3 -5.5% -5.6% 26.2% 42.9%
c880 173 182.2 1.1 7.3E+01 17 187.3 1.2 7.5E+01 9 1 2.8% 3.5% 3.1% 47.1%
c1908 157 173.2 1.1 1.7E+02 21 173.2 1.1 1.7E+02 9 1 0.0% -7.0% 1.1% 57.1%
c2670 300 317.1 1.1 2.1E+02 18 328.2 1.0 2.2E+02 11 2 3.5% -13.3% 3.3% 38.9%
c3540 464 490.0 1.8 3.4E+02 84 511.3 1.8 3.7E+02 32 4 4.3% 0.6% 7.8% 61.9%
c5315 637 724.6 1.2 4.5E+02 20 726.7 1.1 4.7E+02 10 4 0.3% -5.1% 4.6% 50.0%
c6288 1862 1497.0 4.5 1.3E+03 28 1523.1 4.5 1.3E+03 0 10 1.7% -0.9% 0.8% 100.0%
c7552 778 841.9 2.8 6.8E+02 54 869.3 2.8 7.1E+02 19 6 3.3% -2.8% 4.0% 64.8%

sin 2955 3200.5 8.8 4.3E+03 746 3879.9 11.9 5.5E+03 260 389 21.2% 35.1% 29.1% 65.1%
max 1682 1662.5 19.2 2.2E+03 15 1672.1 20.3 2.0E+03 2 8 0.6% 5.7% -10.9% 86.7%

square 11508 11139.8 10.7 5.8E+03 1086 11566.7 10.8 6.2E+03 26 81 3.8% 1.3% 7.8% 97.6%
mult64 13639 14581.6 12.9 2.0E+04 24 14775.8 12.2 2.0E+04 1 172 1.3% -5.3% -1.5% 95.8%

log2 15127 17524.3 20.0 2.8E+04 2884 20816.6 21.9 3.2E+04 2077 1377 18.8% 9.4% 13.1% 28.0%
div 11611 12728.1 222.2 1.4E+04 307 12828.4 249.0 1.5E+04 236 79 0.8% 12.1% 2.8% 23.1%
hyp 125953 135549.3 1916.8 5.3E+05 7452 138889.2 1920.0 5.4E+05 557 823 2.5% 0.2% 1.5% 92.5%

Average 197 4.0% 1.9% 6.2% 63.4%

rarity of signals is evaluated using Monte Carlo simulation with

2
20

input patterns under a uniform input distribution.

The input gate netlists of RareLS are shown in Table 1, where

the first 5 columns show each gate netlist’s name, gate count, area,

delay, and power. These input gate netlists are derived from the

ISCAS85 [31] and EPFL [32] benchmark suites. For each bench-

mark, we pre-process it by reducing its rare signals using the area

optimization technique proposed in [20], since [20] shows a posi-

tive correlation between the number of rare signals and the circuit

area. Specifically, we apply abc’s compress2rs for area-oriented logic
synthesis command 3 times, followed by amap for area-oriented

technology mapping. The pre-processed gate netlists are then fed

into RareLS for further rare signal reduction.

4.2 Rare Signal Reduction versus Hardware
Cost Overhead

This experiment shows the tradeoff between rare signal reduc-

tion and hardware cost overhead achieved by RareLS. Unless other-

wise noted, the rarity threshold 𝛿 is set to 0.1. Actually, the selection

of 𝛿 depends on the specific application and the required security

level. We choose 𝛿 = 0.1, since it is a common choice of rarity

threshold in previous works [14, 15, 18–20]. The number of rare

signals for the initial gate netlists is shown in the 6th column of

Table 1. Note that Table 1 does not report three EPFL benchmarks,

add128, barshift, and sqrt, since there are no rare signals in their

input gate netlists after pre-processing when 𝛿 = 0.1.

We run RareLS on the input gate netlists, whose rare signals

have already been reduced by the approach in [20]. Table 1 shows

that after performing RareLS, the number of rare signals is further

reduced by 63.4% on average, with an average overhead of 4.0% in

area, 1.9% in delay, and 6.2% in power. The increase in hardware cost

is because, during rarity-reducing AIG synthesis, RareLS needs to

add some nodes to reduce rare signals, and during rarity-reducing

mapping, using large logic gates to hide rare signals usually in-

creases the hardware cost. Notably, RareLS dramatically reduces

rare signals across all benchmarks, completely or nearly eliminat-

ing them in circuits like c6288, max, and mult64. Although RareLS

cannot eliminate all rare signals, it can increase the difficulty of in-

serting HTs into the circuits (as shown in Section 4.4), and facilitate

the testing-based detection of HTs (as shown in Section 4.5).

It is interesting that on many benchmarks, Table 1 also reports

negative hardware cost overhead achieved by RareLS. This means

that RareLS can further reduce area, delay, or power. For example,

RareLS can further reduce area for c499, delay for circuits like c499,
c1908, and c2670, and power for max and mult64. A possible reason

is that RareLS adds some nodes into the circuit to reduce rarity,

which changes the circuit structure and provides new opportunities

for optimizing area, delay, and power. However, relatively large

overhead in area and power are observed in circuits like sin and

log2. A possible reason is that these circuits have a large proportion

of inherent rare signals in their AIGs, which requires the AIG

synthesis process to add more nodes to eliminate them, causing a

large overhead. As for runtime, RareLS exhibits an average runtime

of 197 seconds. Notably, RareLS can process the hyp benchmark

with 125953 gates in 823 seconds. The major runtime overhead lies

in logic simulation with 2
20

input patterns for computing the signal

rarity.

Moreover, the hardware overhead of RareLS is significantly lower

than existing DFTrust techniques. For instance, for the ISCAS bench-

mark suite, the logic encryption-based approach proposed in [19]

reduces 83.17% rare signals on average, with an overhead of 31.57%

in area and 56.17% in delay. Notably, RareLS is compatible with

existing HT defense techniques like the ones in [13–15, 18–20]. For

example, we can first reduce the rare signals with RareLS, which

introduces small hardware overhead, and then apply other DFTrust

techniques to further eliminate the remaining rare signals.

4.3 Effects of Different Rarity Thresholds
This experiment shows the effects of different rarity thresholds,

𝛿 , on various performance metrics with several ISCAS circuits, i.e.,
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c1908, c2670, c5315, and c6288. The results are plotted in Fig. 6, which
demonstrates the area overhead, delay overhead, power overhead,

and rare signal reduction achieved by RareLS at thresholds of 𝛿=0.05,

0.10, 0.15, and 0.20.
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Figure 6: Area overhead, delay overhead, power overhead, and rare signal
reduction versus different rarity thresholds 𝛿 for various circuits.

The area and power overhead sub-figures reveal an increasing

trend in area and power as the 𝛿 increases. This is because larger 𝛿

corresponds to more rare signals, which require more redundant

logic to remove them and a larger number of complex gates to hide

them. However, the delay overhead trends vary. As 𝛿 increases,

the delay increases for c1908, while for other circuits, the delay

sometimes decreases as 𝛿 increases.

4.4 Case Study 1: Complicating HT Insertion
This experiment shows that RareLS can complicate HT insertion.

We test an automatic HT insertion framework proposed in [12] and

show that RareLS can make this framework less effective.

In [12], it is assumed that an attacker aims to insert a stealthy

HT that is hard to detect. To do this, the attacker usually constructs

a trigger logic by selecting several rare signals as trigger inputs.

Such trigger logic, termed potential trigger logic, is not necessarily
valid. A trigger logic is valid if the corresponding rare conditions

at the trigger inputs can happen simultaneously. Cruz et al. [12]
propose to create a valid trigger logic for HT insertion through the

two steps: 1) Randomly selecting rare signals to form a potential
trigger logic; 2) Checking the validity of the potential trigger logic

and determining valid trigger logic.

Utilizing this method, we investigate the number of valid 3-input

trigger logic (i.e., trigger logic using 3 rare signals as the trigger

inputs) in the initial gate netlists and the ones optimized by RareLS.

In this experiment, we assume each trigger logic consists of three

rare signals. This aims to precisely figuring out a complete set of

valid trigger logic in a gate netlist, to provide a reliable analysis.

The following observations and conclusions apply regardless of the

targeted number of trigger inputs.

Table 2 shows the numbers of potential trigger logic (#Potential)

and valid trigger logic (#Valid) in both the initial gate netlists of

several ISCAS benchmarks and the ones optimized by RareLS. We

can see that the number of valid trigger logic is significantly re-

duced by 92.94% on average after applying RareLS. This is because

RareLS reduces the number of rare signals (as shown in Table 1),

which directly reduces the number of potential trigger logic, lead-

ing to a reduction in valid trigger logic. The result on c499 offers an
interesting example: although only part of rare signals is removed

by RareLS, the resulting gate netlist has no valid trigger logic. In

other words, under our experimental settings, RareLS can prevent

all HTs with 3-input trigger logic, which are created by the method

in [12], on the benchmark c499.
Table 2: Comparison of the amounts of three-input valid trigger
logic in gate netlists with and w/o RareLS applied.

Name

Initial (pre-processed by [20]) RareLS-optimized #Valid

#Rare #Potential #Valid #Rare #Potential #Valid reduction

c499 56 27 720 56 32 4 960 0 100.00%

c880 17 680 657 9 84 76 88.43%

c1908 21 1 330 1 330 9 84 66 95.04%

c2670 18 816 816 11 165 165 79.78%

c3540 84 95 284 63 420 32 4 960 4 108 93.52%

c5315 20 1 140 866 10 120 77 91.11%

c6288 28 3 276 3 201 0 0 0 100.00%

c7552 54 24 804 21 495 19 969 944 95.61%

Average 92.94%

Although RareLS cannot prevent all HTs, the considerable re-

duction in rare signals achieved by RareLS means a significant

reduction of potential trigger logic. Note that the scalability of

existing logic testing-based HT detection techniques is typically

bounded by the number of potential trigger logic in circuits [13–15].

Since there is less room for HT insertion, RareLS can improve the

efficiency of these HT detection methods, as shown in Section 4.5.

4.5 Case Study 2: Facilitating Testing-Based HT
Detection

This experiment demonstrates the efficacy of RareLS in signifi-

cantly reducing the required test vector length for achieving com-

prehensive coverage during the logic testing phase, thereby facili-

tating the detection of HT through testing methodologies.

We utilize the TRIT-TC benchmark suite, which is a suite for

assessing rare signal-based HT insertion in TrustHub [33]. The

suite comprises four combinational and four sequential benchmarks

sourced from the ISCAS benchmark suite. Additionally, we expand

our evaluation to include other combinational circuits from the

ISCAS benchmark suite, as examined in prior experiments. We

transform sequential circuits into combinational equivalents using

the comb command in abc, wherein storage elements are eliminated

by treating their inputs and outputs as additional primary inputs

and primary outputs, respectively.

Given a target trigger input size and utilizing gate netlist either

optimized with RareLS or without, we generate up to 1 000 000

potential trigger logic by sampling combinations of rare signals.

Following a validation process outlined in Section 4.4, we collect

the first 1 000 valid trigger logic encountered. Note that the actual

number of trigger logic generated for a gate netlist may be fewer

than 1 000 due to the limited presence of rare signals or valid trigger

logic within the netlist. Subsequently, employing TARMAC [15], a

state-of-the-art test vector generation tool for HT detection, we
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Table 3: Test lengths to achieve full (100%) coverage of the valid trigger logic generated for gate netlists with and w/o RareLS applied.

Name #Input

Initial

(pre-processed by [20])
RareLS #Test

reduction

Name #Input

Initial

(pre-processed by [20])
RareLS #Test

reduction
#Rare #Test #Rare #Test #Rare #Test #Rare #Test

c880

10

17

15

9

1 93.33%

c6288

10

28

7

0

0 100.00%

11 8 1 87.50% 11 2 0 100.00%

12 19 1 94.74% 12 3 0 100.00%

c1908

10

21

1

9

0 100.00%

c7552

10

54

9 896

19

64 99.35%

11 1 0 100.00% 11 26 777 55 99.79%

12 1 0 100.00% 12 23 800 16 99.93%

c2670

10

18

1

11

1 0.00%

s13207

10

489

>393 216 (99.9%†)
296

93054 >76.34%

11 1 1 0.00% 11 >1 048 576 (99.7%†) 406 194 >61.26%

12 1 1 0.00% 12 >1 048 576 (99.9%†) 393 373 >62.39%

c3540

10

84

20 416

32

1 024 94.98%

s1423

10

42

8

8

0 100.00%

11 26 566 4 482 83.13% 11 11 0 100.00%

12 60 054 2 326 96.13% 12 38 0 100.00%

c5315

10

20

64

10

1 98.44%

s15850

10

449

>1 048 576 (99.7%†)
186

384 501 >63.33%

11 58 1 98.28% 11 >1 048 576 (99.7%†) 384 501 >64.70%

12 64 1 98.44% 12 >1 048 576 (99.1%†) 491 983 >53.08%

Average of all benchmarks >80.83%

†
Coverage achieved at the reported lower bound of test length.

figure out the test length to achieve a 100% coverage of the 1 000

collected valid trigger logic for each benchmark. For consistency,

we maintain a rarity threshold of 𝛿 = 0.1 in this experiment.

For each benchmark, we examine scenarios where the number of

trigger inputs (#Input) ranges from 10 to 12, in alignment with the

specifications of TRIT-TC. It is noteworthy that the target trigger

input size is upper-bounded by the count of rare signals present in

the netlist (#Rare). This occurs several times in netlists optimized by

RareLS, as the presence of rare signals within the netlist has been

substantially diminished. For instance, in the case of c880, RareLS
effectively decreased the count of rare signals to 9, resulting in a

saturated trigger input size of 9, irrespective of the specification.

Table 3 reports a significant reduction in test length (#Test)

required for full (100%) coverage of the generated trigger logic,

achieved by applying RareLS to optimize the gate netlists. Bench-

marks c499 and s35932 are omitted from the table as no valid trigger

logic exists before applying RareLS, indicating their inherent resis-

tance to HT insertion, thus obviating the need for applying RareLS.

In cases where TARMAC was unable to determine a minimum test

length to cover all generated trigger logic within the allocated time

budget (120 hours), lower bounds of the minimums are determined

and the coverages achieved at those lower bounds are reported.

Test length serves as a metric for the efforts involved in logic

testing-based HT detection [15], thus highlighting RareLS’s efficacy

in facilitating HT detection. Smaller test length facilitates easier

detection of HTs by the defender. Besides, generating shorter test

vectors requires less time. On average, the application of RareLS

resulted in a reduction in the required test length exceeding 80.83%.

Notably, improvements are observed across all evaluated bench-

marks except for c2670, where despite an almost 40% reduction

in the count of rare signals, the test length remained unchanged.

Moreover, the reduction in test length significantly accelerates the

generation of test vectors. Take the benchmark 7552 for example.

Without applying RareLS and with trigger inputs set to 10, 11, and

12, it takes 144.41 seconds, 376.20 seconds, and 337.33 seconds, re-

spectively, to generate the necessary length of test vectors (see

Table 3) for fully covering the valid trigger logic. In contrast, after

applying RareLS, the runtime decreases dramatically to 1.03 sec-

onds, 0.90 seconds, and 0.38 seconds respectively. This highlights

RareLS’s substantial impact on enhancing the efficiency of logic

testing-based HT detection.

Interestingly, although the gate netlist of c880 still contains 9

rare signals after optimization by RareLS, the rare conditions of

these signals can be activated by the same input pattern, enabling

full-coverage testing with just one test vector. In contrast, while also

containing some rare signals, the optimized gate netlists of c1908
and s1423 yield no valid trigger logic through sampling, resulting in

the complete elimination of the requirement of test vectors. These

observations underscore that not all rare signals in a circuit are

easily exploitable for triggering HT. On the one hand, those rare

signals whose rare conditions cannot be activated by the same

input pattern cannot contribute to a valid trigger logic, thus they

do not increase the circuit’s vulnerability to HT insertion. On the

other hand, a set of rare signals whose rare conditions can be

activated by the same test vector are ineffective as triggers for

stealthy HT, as they can be efficiently detected with extremely

short test lengths. These findings point to a promising avenue for

future research: instead of exclusively targeting the reduction of

rare signal counts, logic optimization algorithms could be tailored

to eliminate rare signals that could potentially serve as valid and

stealthy trigger logic. Such an approach would further enhance the

circuit’s resilience against HT insertion and streamline the process

of testing-based HT detection.

5 CONCLUSION AND FUTUREWORKS
In conclusion, RareLS, a rarity-reducing logic synthesis tech-

nique, defends against HTs from a new perspective. It automatically

reduces rare signals, making circuits more resistant to HT insertion

and more friendly to HT detection. Our experimental results show

that RareLS can dramatically reduce rare signals with a minor hard-

ware cost. It also significantly reduces the number of HT triggers

and shrinks the test length. In the future, we will improve RareLS

by considering sequential circuits and sequential triggers.
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