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Abstract—Approximate computing is an effective computing
paradigm to reduce area, delay, and power for error-tolerant ap-
plications. Average error is a widely-used metric for approximate
circuits, measuring the average deviation between the outputs of
exact and approximate circuits. This paper proposes VACSEM,
a formal method to verify average errors in approximate circuits
using simulation-enhanced model counting. VACSEM leverages
circuit structure information and logic simulation to speed up
verification. Experimental results show that VACSEM is on
average 35× faster than the state-of-the-art method.

Index Terms—formal verification, approximate computing,
average error, simulation, model counting

I. INTRODUCTION

Approximate computing [1], [2] is a popular low-power
design paradigm for error-tolerant applications, such as image
processing, machine learning, and data mining. It trades off
accuracy to reduce circuit area, delay, and power. When
working with approximate circuits, error metrics are essential
to evaluate the degree of approximation.

One widely-used error metric is the average error, which
calculates the average deviation between the outputs of exact
and approximate circuits. For instance, error rate (ER) mea-
sures the percentage of input patterns with erroneous output
patterns. ER is useful for evaluating the accuracy of classifiers,
control circuits, etc. Mean error distance (MED) quantifies
the average absolute difference between the outputs of exact
and approximate circuits. It is typically applied to assess the
accuracy of arithmetic circuits like adders and multipliers.

Despite the wide usage of average errors, formally verifying
them remains challenging due to the need to compute exact
values for all possible input patterns of a circuit. While
exhaustive logic simulation is a straightforward method for
verification, it is impractical for larger circuits with exponen-
tially growing number of input patterns. To address this, recent
techniques rely on decision diagrams (DDs) [3]–[6]. DD-based
methods typically involve creating an approximation miter
to represent the deviation between exact and approximate
circuits, converting this miter into DDs, and then calculating
the average error based on these DDs. For example, in [3],
Venkatesan et al. introduced a single-output approximation
miter, where the single output signal indicates whether the
deviation exceeds a given threshold. This miter is then trans-
formed into a binary decision diagram (BDD) to compute the
probability of the error exceeding the threshold. By varying
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the threshold and constructing a series of BDDs, they derive
the cumulative distribution function of the deviation, and
consequently, the average error. In [4], Wu and Qian proposed
a multiple-output approximation miter, where the n outputs di-
rectly represent an n-bit deviation in binary number. This miter
is converted into a multiple-root BDD, and the signal probabil-
ity of each output is calculated, with the results accumulated
to obtain the average error. In [5], Mrazek improved existing
BDD-based methods and proposed efficient techniques for
formally verifying MED. In [6], Froehlich et al. applied
algebraic decision diagrams (ADDs) for error verification.
They suggest determining the remainder of an approximate
circuit through symbolic computer algebra, constructing an
ADD to represent the remainder, and computing the average
error with an ADD traversal algorithm. Although DD-based
methods sometimes can handle larger circuits than exhaustive
simulation, they still suffer from limited scalability [3]–[6].

An alternative approach to verifying average errors is
through model counting, also known as #SAT [7]. Given a
Boolean formula f , model counting computes the number of
variable assignments making f TRUE. State-of-the-art (SOTA)
model counters, such as [8]–[11], are designed for general
applications and lack specific optimization for circuit verifi-
cation. They operate on the conjunctive normal form (CNF)
representation [12] of Boolean functions and do not take
advantage of circuit structure to enhance their efficiency. To
overcome this limitation, we integrate circuit simulation into
the model counter and present VACSEM, a formal approach
for verifying average errors in approximate circuits using
simulation-enhanced model counting. Our main contributions
are summarized as follows:

• We leverage the circuit structure information as prior
knowledge for the #SAT solver and design an efficient
logic simulation-based #SAT solver.

• We analyze and identify scenarios where logic simulation
is faster than traditional #SAT solvers. Based on this
analysis, we design a dynamic controller that determines
when to activate logic simulation in our #SAT solver.

• Experimental results demonstrate that VACSEM is 35×
faster than the SOTA method and dramatically enhances
scalability. It enables rapid verification of 128-bit adders
within a second and 16-bit multipliers in minutes.

The VACSEM code is open-source and available at https://
github.com/changmg/VACSEM.

The rest of the paper is organized as follows. Section II
introduces the preliminaries. Section III outlines our motiva-
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tion and key idea. Section IV details the VACSEM method-
ology. Section V presents the experimental results. Finally,
Section VI concludes the paper and discusses future work.

II. PRELIMINARIES

This section introduces the preliminaries to VACSEM.

A. Average Errors
This paper focuses on formally verifying average errors

under a uniform distribution. Let y⃗ : BI → BO and y⃗′ :
BI → BO be the multiple-output Boolean functions of an
exact and an approximate circuit, respectively. The average
error quantifies the average deviation between y⃗ and y⃗′:

Average error =
1

2I

∑
x⃗∈BI

F (y⃗(x⃗), y⃗′(x⃗)), (1)

where x⃗ denotes the input vector, and F (y⃗, y⃗′) is referred to
as the deviation function.

For example, ER is the probability of an input pattern
producing a wrong output for the approximate circuit. Its
deviation function is

FER(y⃗, y⃗′) =

{
0, if y⃗ = y⃗′,

1, if y⃗ ̸= y⃗′.
(2)

Hence, ER can be computed as ER = #SAT(FER)
2I

, where
#SAT(FER) denotes the number of input patterns on x⃗ that
make FER TRUE, and I is the number of inputs. Thus,
computing ER involves solving a #SAT problem, #SAT(FER).

Another example is MED, measuring the average absolute
error between the outputs of the exact and approximate
circuits. Its deviation function represents the absolute error
as FMED(y⃗, y⃗′) = |int(y⃗)− int(y⃗′)|, where the function int(v⃗)
returns the integer encoded by the binary vector v⃗. Since
both y⃗ and y⃗′ have O bits, FMED can be represented with O
bits, denoted as f1, f2, . . . , fO. This paper considers a typical
binary encoding of FMED:

FMED =

O∑
j=1

2j−1 · fj . (3)

By Eq. (1), MED can be viewed as the expectation of
the deviation function FMED, and hence, can be computed as
follows [4], [13]:

MED = E[FMED] = E

[
O∑

j=1

2j−1 · fj

]

=

O∑
j=1

(
2j−1 · E[fj ]

)
=

O∑
j=1

(
2j−1 · 1

2I
· #SAT(fj)

)
,

(4)

where #SAT(fj) denotes the number of input patterns on x⃗
that make fj TRUE, and I is the number of inputs. Thus,
the computation of MED breaks down into solving O #SAT
problems, i.e., #SAT(f1), . . . , #SAT(fO).

Apart from ER and MED, verifying other average error
metrics can also be converted into #SAT problems similarly.

B. Approximation Miter
The approximation miter is a fundamental circuit used in

average error verification. This paper adopts the approximation
miter proposed in [4], depicted in Fig. 1, which implements the
deviation function F (y⃗(x⃗), y⃗′(x⃗)) in Eq. (1). The miter takes
the inputs x⃗ of both the exact and approximate circuits as its
inputs. It produces m ≥ 1 outputs, i.e., f1, f2, . . . , fm, encod-
ing the deviation function F . For instance, an approximation
miter for ER consists of a single output f1, representing the

deviation FER defined in Eq. (2). In contrast, an approximation
miter for MED has m = O outputs encoding the deviation
FMED in Eq. (3). The approximation miter will be converted
into DDs or CNF formulae for average error verification.

Exact
circuit Deviation 

function 
( , )

= { ,… , }

Approximate 
circuit

={ , … , }

= { ,… , }

…

Fig. 1. Approximation miter for average error verification [4].

C. Model Counting and Conjunctive Normal Form
Given a Boolean function f , model counting (also called

#SAT) computes the number of variable assignments making
f TRUE. The Boolean function f is typically represented in
CNF [7]. A CNF formula is a logical “AND” of one or more
clauses, where each clause is a logical “OR” of one or more
literals. A literal can be either the positive or negative form of
a variable. To make a CNF formula TRUE, each clause must
be TRUE. When a clause contains only a single literal, that
literal must be set to TRUE to satisfy the clause. Such a clause
is called a unit clause, and the literal in a unit clause is called
a unit literal. The process of assigning all unit literals TRUE
is called unit propagation.

III. MOTIVATING EXAMPLE AND KEY IDEA

This section presents the motivation for VACSEM through
a simple example and outlines our key idea.

Consider an approximation miter with 11 primary inputs
(PIs), {i0, i1,. . ., i10}, and 1 primary output (PO), n20, shown
in Fig. 2(a). Consider the solving of two problems, #SAT(n14)
and #SAT(n19), using traditional Davis-Putnam-Logemann-
Loveland-based (DPLL) method [7] and circuit simulation.

(a) Example approximation miter.

01

10
(b) Sub-circuit for simulation.

Fig. 2. Example of simulation-based #SAT solving.
The corresponding circuit of #SAT(n14), Ckt1, has 3 AND

gates, making it friendly for unit propagation with the DPLL
method. For instance, if we assume i0=0, then from n14=1,
we can deduct n13 = 1, which then propagates to other
variables, i.e., i1 = i2 = i3 = i4 =n11 =n12 =1. This process
significantly reduces the number of variables to be decided,
speeding up the computation of #SAT(n14) with only two
decisions: i0 =0 and i0 =1. However, when simulating Ckt1
to obtain #SAT(n14), we need to enumerate all 25 patterns of
supporting PIs, simulate 4 gates, and count how many patterns
lead to n14=1. In this case, DPLL method is more efficient.

The corresponding circuit of #SAT(n19), Ckt2, has 5 XOR
gates, making it less suitable for unit propagation. A SOTA
DPLL-based #SAT solver like GANAK [9] makes 9 decisions
to solve #SAT(n19). However, with circuit simulation, we can
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Fig. 3. VACSEM framework.

perform bitwise-XOR operations on 64-bit integers that store
all 26 possible patterns on the 6 supporting PIs. This allows us
to simulate all the input patterns in parallel, requiring only 5
XOR operations on 64-bit integers, which is much faster than
the DPLL method.

From these observations, our key idea is integrating simula-
tion into DPLL-based #SAT solver. Given that logic simulation
and DPLL method have their strengths in different scenarios,
we design a dynamic controller to determine when to apply
simulation and when to apply DPLL method on the fly.

IV. VACSEM METHODOLOGY

This section elaborates VACSEM. As shown in Fig. 3,
VACSEM consists of two phases: 1) circuit-aware construction
of #SAT problems and 2) simulation-enhanced #SAT solving.
They are described in Sections IV-A and IV-B, respectively.

A. Phase 1: Circuit-Aware Construction of #SAT Problems
Phase 1 converts the task of verifying average errors into

#SAT problems represented in CNF, meanwhile retaining the
circuit’s topology for subsequent circuit simulation.

The conversion process is depicted on the left of Fig. 3. Ini-
tially, we construct an approximation miter, identical to the one
shown in Fig. 1, to measure the deviation between the outputs
of the exact and approximate circuits. The miter has m outputs,
f1, f2, . . . , fm, encoding the deviation as F =

∑m
j=1 2

j−1fj .
Then, we split the approximation miter into m sub-miters, each
containing a single output fj (1≤ j≤ m). Next, we perform
logic synthesis on each sub-miter to reduce its size, which
contributes to reducing the number of variables and clauses in
the corresponding CNF formula. Afterward, each synthesized
sub-miter is converted into a CNF formula, ready to be solved
by our simulation-enhanced #SAT solver.

To convert a sub-miter to a CNF formula, we traverse
each gate in the sub-miter in a topological order. For each
gate nk, we employ its consistency function [7] to generate
a set of clauses Ck. The clause sets for all gates are then
combined using the logical AND operation, along with a
unit clause containing the output variable. This results in the
corresponding CNF formula for the sub-miter, as demonstrated
in the example below.
Example 1. For the miter in Fig. 2(a), Table I provides the
clause set for each gate, ordered topologically. These clause
sets in Table I are combined using the logical AND operation
along with the unit clause, (v20), to create the CNF formula
f =

(∧20
k=11 Ck

)
∧ v20.

This conversion ensures a clear one-to-one mapping be-
tween each node in the miter and each variable in the CNF
formula. For instance, in Example 1, gate n14 corresponds to
variable v14, and PI i0 corresponds to variable v0.

TABLE I. CONVERSION FROM THE MITER IN FIG. 2(A) TO CNF FORMULA.

Gate Clause set for the gate

n11= i3∧i4 C11=(v3∨¬v11)∧(v4∨¬v11)∧(¬v3∨¬v4∨v11)
n12= i2∧n11 C12=(v2∨¬v12)∧(v11∨¬v12)∧(¬v2∨¬v11∨v12)
n13= i1∧n12 C13=(v1∨¬v13)∧(v12∨¬v13)∧(¬v1∨¬v12∨v13)
n14= i0∨n13 C14=(¬v0∨v14)∧(¬v13∨v14)∧(v0∨v13∨¬v14)

n15= i5⊕i6
C15=(¬v5∨¬v6∨¬v15)∧(v5∨v6∨¬v15)

∧(v5∨¬v6∨v15)∧(¬v5∨v6∨v15)
· · · C16 ∼ C19 are omitted here· · ·
n20=n14∧n19 C20=(v14∨¬v20)∧(v19∨¬v20)∧(¬v14∨¬v19∨v20)

Besides, there exists another one-to-one mapping between
each gate nk in the miter circuit and each clause set Ck in the
CNF formula, as shown in Table I. This mapping between
Ck and nk enables us to easily identify the specific sub-
circuit within the miter circuit that corresponds to a given
CNF formula. To achieve this, we analyze each clause in the
CNF formula, and determine its associated clause sets. By
collecting all clause sets associated with the CNF formula, we
can identify the corresponding gates, forming a sub-circuit of
the miter circuit.

Furthermore, we arrange the clause sets in the same order
as the topological order of gates. This organization inherently
preserves the circuit topology within the resulting CNF for-
mula. We will utilize the topology for logic simulation. Below
is an example of converting a miter circuit to a CNF formula
while maintaining the circuit topology.
Example 2. Consider the CNF formula g = (C15∧C16∧C17∧
C18)|(v6 = 0, v8 = 1, v17 = 0, v18 = 1). In this CNF formula,
v6, v8, v17, and v18 have been decided by the #SAT solver
as either 0 or 1. We analyze each clause in f , and collect
f ’s associated clause sets in the order that they appear in f ,
i.e., {C15, C16, C17, C18}. These clause sets correspond to gates
n15, n16, n17, and n18, which follow a topological order and
forms a sub-circuit Ckt3 shown in Fig. 2(b).

B. Phase 2: Simulation-Enhanced #SAT Solving
After converting a miter circuit into a #SAT problem in

CNF, Phase 2 utilizes circuit simulation to efficiently solve
the #SAT problem.

The overall flow of the proposed simulation-enhanced #SAT
solver is shown in Algorithm 1. It inputs a CNF formula
f , and outputs #SAT(f), i.e., the number of input patterns
making f TRUE. The key feature of the proposed #SAT
solver is that it integrates circuit simulation into the traditional
DPLL-based solver (Lines 1–2). The simulation controller
(Line 1) evaluates whether circuit simulation is more efficient
to solve #SAT(f) than the DPLL method by analyzing the
CNF formula f . If f ’s corresponding circuit is simulation-
friendly (e.g., Ckt2 in Fig. 2(a)), the simulation controller
returns ENABLE SIM, and the #SAT problem is solved by cir-
cuit simulation (Line 2). Otherwise, the simulation controller



returns DISABLE SIM, and the #SAT problem is solved by
the traditional DPLL method (Lines 3–14).

In what follows, we will elaborate SimulationController(f),
SolveBySimulation(f), and the DPLL method.

Algorithm 1: SIMSAT(f), simulation-enhanced #SAT solver1

Input: CNF formula f
Output: #SAT(f), #assignments making f TRUE
// If f is simulation-friendly, then simulate

1 if SimulationController(f ) = ENABLE SIM then
2 return SolveBySimulation(f )
// Otherwise, solve by traditional DPLL method

3 Decision variable l← DecideVariable(f);
4 for literal lit← {l,¬l} do
5 Simplified formula f |lit ← UnitPropagation(f, lit);
6 if f |lit ≡ 0 then #SAT(f |lit)← 0;
7 else if f |lit only contains a unit clause then
8 #SAT(f |lit)← 1;
9 else

10 #SAT(f |lit)← 1;
11 A set of mutually independent formulae

DF ← DecomposeFormulae(f |lit);
12 foreach formula di ∈ DF do
13 #SAT(f |lit)← #SAT(f |lit)× SIMSAT(di);
14 return #SAT(f |l) + #SAT(f |¬l)

B-1. Dynamic Simulation Controller
In Algorithm 1 Line 1, SimulationController(f) decides

when to employ simulation-based #SAT solving and when to
use DPLL method. An ideal controller returns ENABLE SIM
if the simulation-based method is faster than DPLL method,
and DISABLE SIM if it is slower. Given that designing a real-
time ideal controller is challenging, we instead develop an
efficient controller based on the following analysis.

In simple terms, if f ’s corresponding circuit, denoted as
G, is dense (e.g., with significantly more gates than primary
inputs), DPLL method tends to slow down for several reasons:

• Complex variable dependencies reduce the effectiveness
of unit propagation, causing a slowdown.

• The complex structure of dense circuits leads to deep and
complex search trees with numerous branches. Working
with such a tree, the branch prediction on the CPU tends
to be inefficient, causing a slowdown.

• Finding a good variable order for DPLL solver is chal-
lenging in dense circuits, but a poor choice of order may
dramatically slow down the solver.

In constrast, the simulation-based #SAT solving exploits bit-
level parallelism and cache-friendly memory, and hence, it is
more efficient than DPLL method in dense circuits.

However, when the circuit density of G is small, the DPLL
method tends to be faster. Thus, circuit density is a good metric
to estimate whether simulation-based method is faster than
DPLL method. We propose the following simple-to-compute
but effective density metric:

density score = α× gate number of G
(PI number of G)2

, (5)

where α is a constant scaling factor. We choose α = 2
in our implementation, based on the experimental results.

1This algorithm is presented with recursion to make it easy to understand.
Our actual implementation is non-recursive, including advanced techniques
like clause learning, component caching, and variable ordering [9].

If density score > 1, then the gate number tends to be
much larger than the PI number, indicating that G is dense.
In this case, SimulationController(G) returns ENABLE SIM.
Otherwise, DISABLE SIM is returned.
B-2. #SAT Solving by Circuit Simulation

In Algorithm 1 Line 2, SolveBySimulation(f) computes
#SAT(f) by circuit simulation. We start by locating f ’s corre-
sponding circuit, denoted as G, using the method introduced
in Section IV-A. As discussed before, we can easily obtain the
topological order of gates in G. Then, the simulation process
consists of 3 steps: initializing patterns on G’s inputs, updating
patterns on G’s gates, and counting consistent patterns in G.

1) Initializing patterns on G’s inputs: Consider an
input node nk of G. For each input node nk in G, we
identify its corresponding variable vk in f . Note that vk may
have been decided by the DPLL process, such as during the
variable decision process in Algorithm 1 Line 3 (see Section
IV-B-3). Depending on whether vk has been decided, we
apply different initialization strategies. If vk has not been
decided, we enumerate node nk’s two possible values, 0 and
1. Otherwise, we set node nk’s value to the decided value.

Assuming that there are K input nodes in G whose corre-
sponding variables are not decided, there will be a total of
2K possible input patterns. For each input node, we use a
2K-bit simulation vector to represent its simulation patterns,
where the i-th bit indicates the 0/1 value of the input node
under the i-th input pattern. Besides, for input nodes whose
corresponding variables have been decided as b∈{0, 1}, their
simulation vectors consist of 2K bits, all set to b.
Example 3. In Example 2, we locate the corresponding sub-
circuit as Ckt3 (depicted in Fig. 2(b)) for the CNF formula
g = (C15∧C16∧C17∧C18)|(v6=0, v8=1, v17=0, v18=1). Ckt3
has 6 inputs, i5, i6, . . . , i10, corresponding to the variables
v5, v6, . . . , v10 in f , respectively. The variables v5, v7, v9, and
v10 have not been decided, resulting in 24=16 input patterns.
The 16-bit simulation vectors for these input nodes are P5,
P7, P9, and P10, respectively, in Table II. Besides, variables
v6 and v8 have been decided as 0 and 1, respectively, and their
simulation vectors are P6 and P8, respectively, in Table II.

TABLE II. SIMULATION VECTORS FOR NODES OF Ckt3 IN FIG. 2(B). THE
GATES MARKED WITH “CHECKING” ARE THE “CHECKING GATES”. THE
SHADED INPUT PATTERNS ARE “CONSISTENT PATTERNS”.

Circuit node 16-bit simulation vector

Input i5 P5 = 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Input i7 P7 = 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Input i9 P9 = 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Input i10 P10 = 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Input i6 P6 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Input i8 P8 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Gate n15 P15 = 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Gate n16 P16 = 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
Gate n17 (checking) P17 = 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
Gate n18 (checking) P18 = 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

2) Updating patterns on G’s internal nodes: After
initializing input nodes, we traverse each gate nk in G in
topological order, updating nk’s simulation vector based on
nk’s functionality and the simulation vectors of nk’s fanins.
For example, consider Ckt3 depicted in Fig. 2(b). We traverse
gates n15, n16, n17, and n18 in the topological order and up-
date their simulation vectors, shown as P15, P16, P17, and P18,



respectively, in Table II. For instance, P15 is updated using the
bitwise-XOR operation as P15=P5 BITWISE-XOR P6.

3) Counting consistent patterns in G: Now, we have
obtained simulation vectors of all nodes in G. However, it is
important to recognize that for a certain gate nk in G, its
corresponding variable in the CNF formula f , denoted as vk,
may have already been decided as 0 or 1 by the DPLL process.
In this case, some values in the simulation vector of nk may
contradict the decision made for vk. We refer to gates with
decided variables as checking gates. For instance, in Ckt3 of
Fig. 2(b), gate n17 has a simulation vector P17 = 0000 1111
1111 0000 (see Table II). This means n17 can be either 0 or
1 for different input patterns. Yet, its corresponding variable,
v17, has been decided as 0, indicating that n17 must be always
0 for all input patterns. Hence, n17 is a checking gate. Based
on a similar analysis, n18 is also a checking gate.

We define a consistent pattern as an input pattern in G,
under which each checking gate nk’s simulation value is
consistent with vk’s decision. For instance, the input pattern
i5i7i9i10i6i8 = 111101 is a consistent pattern in Ckt3. It is
because under this input pattern, all checking gates’ simulation
values, n17=0 and n18=1, are consistent with the decisions
v17 = 0 and v18 = 1 (see the rightmost shaded column in
Table II). Based on this definition, we have the following
obvious proposition for simulation-based #SAT solving:
Proposition 1. #SAT(f) equals the number of consistent pat-
terns in its corresponding circuit, G.
Example 4. In Ckt3 of Fig. 2(b), there are 4 consistent pat-
terns, i.e., i5i7i9i10i6i8 = {000001, 110001, 001101, 111101}
(shaded columns in Table II). Under these patterns, the
simulation values n17 = 0 and n18 = 1 are consistent with
the decisions v17=0 and v18=1. Thus, the result for Ckt3’s
problem, #SAT(g), where g=(C15∧C16∧C17∧C18)|(v6=0, v8=
1, v17=0, v18=1), is 4.
B-3. DPLL Method

In Algorithm 1 Lines 3–14, the traditional DPLL method
is applied. It selects a variable from f based on certain
heuristics. Then, it sequentially decides that l and ¬l are TRUE
(Line 4) and solves their respective sub-problems #SAT(f |l)
and #SAT(f |¬l) (Lines 5–13). For each literal lit, unit propa-
gation is applied to simplify f , leading to a simplified formula
f |lit (Line 5). Two trivial cases are considered for f |lit. The
first is when f |lit is always 0, resulting in #SAT(f |lit) = 0
(Line 6). The second is when f |lit only contains a unit clause
(e.g., f |lit = var1), in which #SAT(f |lit) = 1 (Lines 7–8).
If f |lit does not fall into the two cases, it is split into s
mutually independent formulae (i.e., DF = {d1, d2, . . . , ds}),
where no two formulae share the same variable (Line 11).
Details on formula decomposition can be found in [14]. For
example, in Fig. 2(a), the corresponding formulae of Ckt1
and Ckt2 are independent, since their supporting variables are
disjoint. Then, each formula can be solved independently, up-
dating #SAT(f |lit) by recursively computing Πs

i=1SIMSAT(di)
(Lines 12–13). Finally, #SAT(f) is obtained by summing up
#SAT(f |l) and #SAT(f |¬l) (Line 14).

V. EXPERIMENTAL RESULTS

This section presents the experimental results. We develop
VACSEM based on GANAK [9], a SOTA open-source #SAT

solver. Our experiments are conducted on a single core of
an AMD Ryzen9 7945HX processor with 64GB RAM. In
our implementation, we represent approximation miters using
AND-inverter graphs (AIGs), although we can also support
other circuit representations. We utilize ABC [15] for logic
synthesis on the approximation miters, specifically using the
compress2rs command to reduce the number of nodes in AIG.

Our experimental benchmarks, listed in Table III, consists of
20 exact circuits. These circuits serve as the basis for generat-
ing a series of approximate circuits using an approximate logic
synthesis method proposed in [16]. For each benchmark, we
randomly select 10 synthesized approximate circuits, resulting
in a total of 200 approximate circuits to be verified. We
will verify their average errors with three different methods2:
VACSEM, the original GANAK, and exhaustive enumeration,
as discussed in the following subsections.

TABLE III. EXPERIMENTAL BENCHMARKS.

Type Name #PI #PO #Node Name #PI #PO #Node

adders
&

multipliers

adder32 64 33 337 mult12 24 24 1213
adder64 128 65 695 mult14 28 28 1702
adder128 256 129 1403 mult15 30 30 1951
mult10 20 20 835 mult16 32 32 2429

EPFL
benchmarks

ctrl 7 26 141 barshift 135 128 2688
cavlc 10 11 1740 sin 24 25 7044
dec 8 256 694 priority 128 8 1524
int2float 11 7 585 router 60 30 198

BACS
benchmarks

binsqrd 16 18 1562 butterfly 32 34 226
absdiff 16 8 141 mac 12 8 145

A. Experiments on Adders and Multipliers
This experiment verifies ERs and MEDs for approximate

adders and multipliers (see benchmarks at the top of Table III).

TABLE IV. VERIFYING ERS OF ADDERS AND MULTIPLIERS WITH DIFFER-
ENT METHODS. THE RUNTIME LIMIT IS 14400S. BOLD ENTRIES DENOTE
VACSEM IS FASTER THAN GANAK AND ENUMERATION.

Circuit Geomean runtime/s Speedup
vs. GANAK

Speedup
vs. Enum.VACSEM GANAK Enum.

adder32 0.004 0.005 >14400 1.246 >3.7×106

adder64 0.022 0.025 >14400 1.127 >6.4×105

adder128 0.413 0.458 >14400 1.655 >1.1×104

mult10 0.012 0.113 0.017 9.546 1.445
mult12 0.255 53.864 0.342 210.8 1.339
mult14 3.311 >14400 8.246 >4349 2.490
mult15 16.18 >14400 39.487 >889.7 2.440
mult16 116.0 >14400 175.81 >124.2 1.516

GEOMEAN of speedup >35× >161×

1) Verification of ER: We use VACSEM, the original
GANAK, and the enumeration method to verify the ERs of
these circuits, which have ER values ranging from 3×10−6

to 0.2. Table IV shows the results. Columns 2-4 list the
geometric mean runtime over 10 approximate versions of each
benchmark using the three methods. Columns 5-6 show the
speedup of VACSEM compared to GANAK and enumeration,
respectively. VACSEM is always faster than both the DPLL-
based GANAK method and enumeration. This demonstrates
the effectiveness and advantage of VACSEM, which smartly
switches between the DPLL and simulation methods via its
dynamic controller. VACSEM can verify the adders within

2We do not use DD-based methods to verify average errors due to their
limited scalability. DD-based methods can only support circuits up to 32-bit
adders and 8-bit multipliers [3]–[6], impractical for most circuits in Table III.



a second and multipliers in minutes. In contrast, GANAK
cannot verify ERs of mult14, mult15, and mult16 within 14400
seconds, since these circuits are dense, i.e., their node num-
bers are significantly larger than their PI numbers. Besides,
enumeration is impractical for verifying the adders because
they have numerous input patterns. On average, VACSEM is
more than 35× faster than GANAK, and more than 161×
faster than the enumeration method.

2) Verification of MED: Similarly, we use VACSEM,
original GANAK, and enumeration method to verify the
MEDs of the adders and multipliers, whose MED values rang-
ing from 0.25 to 1.6×1026. The results are shown in Table V,
with columns showing geomean runtime and speedup. While
VACSEM generally outperforms GANAK and enumeration,
we also notice that GANAK performs similarly to VACSEM
for the adders. Moreover, GANAK cannot verify the MEDs
of the dense circuits mult15 and mult16, and enumeration is
impractical on the adders with numerous input patterns. In
contrast, VACSEM can verify these adders within 0.1 second
and multipliers in minutes. On average, VACSEM is more
than 10× faster than GANAK, and more than 633× faster
than the enumeration method. Note that VACSEM’s speedup
over GANAK is smaller in MED verification compared to ER
verification. It is possibly due to the higher efficiency of the
DPLL method in solving #SAT problems for MED verification
than those for ER verification. Thus, the DPLL-based GANAK
is more competitive in MED verification, causing a smaller
speedup for VACSEM in this case.
TABLE V. VERIFYING MEDS OF ADDERS AND MULTIPLIERS WITH DIF-
FERENT METHODS. RUNTIME LIMIT IS 14400S. BOLD ENTRIES DENOTE
VACSEM IS FASTER THAN GANAK AND ENUMERATION.

Circuit Geomean runtime/s Speedup
vs. GANAK

Speedup
vs. Enum.VACSEM GANAK Enum.

adder32 0.007 0.007 >14400 1.009 >2.0×106

adder64 0.0289 0.0288 >14400 0.996 >5.0×105

adder128 0.098 0.097 >14400 0.989 >1.5×105

mult10 0.007 0.029 0.098 4.020 13.36
mult12 0.230 56.66 1.769 246.7 7.700
mult14 0.162 0.941 32.77 5.811 202.3
mult15 41.35 >14400 158.12 >348.2 3.824
mult16 361.7 >14400 810.88 >39.81 2.242

GEOMEAN of speedup >10× >633×

TABLE VI. VERIFYING ERS OF EPFL AND BACS CIRCUITS WITH DIF-
FERENT METHODS. N/A MEANS CANNOT BE SOLVED IN 14400S. BOLD
ENTRIES DENOTE VACSEM IS FASTER THAN GANAK.

Circuit VACSEM
geom. time/s

Speedup
vs. GANAK Circuit VACSEM

geom. time/s
Speedup

vs. GANAK

ctrl 0.002 0.887× barshift 0.945 1.281×
cavlc 0.008 3.600× sin 115.959 N/A
dec 0.002 0.917× priority 0.110 1.060×
int2float 0.004 2.069× router 0.029 1.114×
binsqrd 0.010 1246.914× butterfly 0.011 2.034×
absdiff 0.002 1.123× mac 0.002 2.113×

B. Experiments on Other Types of Circuits
In addition to adders and multipliers, to show VACSEM’s

wide applicability, we test other types of approximate circuits
from EPFL [17] and BACS [18] benchmarks (see Table III).

Table VI presents the ER verification results for these
circuits using different methods, showing VACSEM’s run-
time and the speedup achieved by VACSEM over GANAK.
Enumeration is not reported since it cannot verify some
large circuits within the time limit, 14400 seconds. Notably,

VACSEM shows significant speedup over GANAK for several
circuits, such as cavlc with a speedup of 3.6× and binsqrd
with an impressive speedup of 1246.914×. For the sin circuit,
GANAK exceeds the time limit (N/A), indicating that it cannot
verify the ER within 14400 seconds. Overall, these results
highlight VACSEM’s efficiency and effectiveness in verifying
the ERs of EPFL and BACS circuits.

VI. CONCLUSION AND FUTURE WORK
In this paper, we introduce VACSEM, a formal method

for verifying average errors of approximate circuits through
simulation-enhanced model counting. VACSEM seamlessly
integrates efficient circuit simulation into DPLL-based #SAT
solvers, resulting in a remarkable speedup, especially for dense
circuits. We also design a dynamic controller that adaptively
switches between circuit simulation and the DPLL method as
needed. Compared to state-of-the-art average error verification
methods, VACSEM significantly enhances scalability, enabling
rapid verification of 128-bit adders within a second and 16-
bit multipliers in minutes. In future work, we will expand
VACSEM’s capabilities to accommodate non-uniform input
distributions. Moreover, we will explore a more general paral-
lelization scheme using multi-core CPUs or GPUs to further
improve the performance.
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