
Enabling Scalable Sequential Synthesis
and Formal Verification in an Industrial Flow
Eleonora Testa

Synopsys, US
Dewmini Marakkalage

EPFL, Switzerland
Michael Quayle

Synopsys, US

Sudipta Kundu
Synopsys, US

Abhishek Kumar
Synopsys, India

Diptanshu Ghosh
Synopsys, India

Giulia Meuli
Synopsys, Italy

Giovanni De Micheli
EPFL, Switzerland

Luca Amaru
Synopsys, US

ABSTRACT
This paper introduces the first industrial flow capable to
harness the full power of sequential logic synthesis accom-
panied by scalable sequential formal verification. Sequential
synthesis is a generalization of combinational logic synthe-
sis, exploiting the fact that not all combinations of flops
values are reachable. This opens the opportunity to improve
Power Performance Area (PPA) of digital circuits, at the cost
of solving tougher computational design problems in the
sequential world. As of today, industrial flows mainly focus
on combinational synthesis and equivalence checking, with
rare exceptions, e.g., clock gating or retiming, receiving ad
hoc support. In this work, we tightly orchestrate sequen-
tial synthesis and sequential verification, enabling them to
scale in an industrial Electronic Design Automation (EDA)
flow. First, we present innovations on the synthesis engines,
stemming from the concept of sequential sat-sweeping and
extending to new strong sequential simplifications. Second,
we alleviate the complexity of generic sequential equiva-
lence checking by making our verification models synthesis
aware. Finally, we show impressive PPA improvements on 10
commercial benchmarks post place and route, up to -3.6%/-
5.4% area/power improvement accompanied by successful
verifications, not attainable by other EDA flows.

KEYWORDS
Sequential synthesis, sequential formal verification, indus-
trial EDA

1 INTRODUCTION
Logic synthesis and formal verification form the backbone
of industrial Electronic Design Automation (EDA) flows. Se-
quential logic synthesis is a stronger notion than regular
(i.e., combinational) logic synthesis, which is not bound by
combinational equivalence and can harness the fact that not
all combinations of flop values are in fact reachable. While
sequential synthesis is widely known to be able to explore a

larger solution space, and generally provide better Power Per-
formance Area (PPA) in the implemented circuits [6, 7, 12, 13],
formally verifying sequential equivalence reveals to be a
much tougher task than combinational equivalence check-
ing [8, 13, 21]. Providing proof of correctness of the imple-
mented circuits via formal verification tools, is virtually a
must for today’s commercial design flows. Indeed, combina-
tional equivalence checking is becoming increasingly scal-
able, andmodern EDA tools provide strong solutions [1], also
supporting some specific instances of sequential problems,
e.g., clock-gating synthesis. Consequently, combinational
logic synthesis is the most popular, and often only, flavor
of synthesis deployed in commercial design flows. However,
this means that some PPA opportunities may be missed in
today’s chips design, which is becoming increasingly expen-
sive in the sub-10nm context where every mW and unit of
area matter [2].
In this paper we enable for the first time true sequential

logic synthesis in an industrial EDA flow, without compro-
mising on the support of an automated and scalable formal
verification solution. First, we enhance our logic synthesis
flow to natively harness the sequential reachability nature of
logic circuits. We improve on top of the most scalable sequen-
tial synthesis methods [13] and we extend our optimizations
to unlock more PPA opportunities. Our method is scalable
and can efficiently be applied to large designs within mod-
ern industrial EDA flows. Second, we describe an industrial
verification flow which is synthesis-aware, combining the
high capacity of combinational equivalence checking, for
general logic, with the proving power of sequential verifica-
tion methods, targeted for regions of logic where sequential
optimization happened. The proposed verification flow is
enhanced to make best use of hints and guidance provided
by synthesis, in order to improve the convergence and run-
time of both sequential and combinational verification tasks.
Finally, we present experimental results showing important
PPA improvements over 10 commercial benchmarks, up to

E. Testa, D. Marakkalage, M. Quayle, S. Kundu, A. Kumar, D. Ghosh, G. Meuli, G. De Micheli and L. Amaru

-3.6%/-5.4% area/power improvement and -2.0%/-1.9% on av-
erage post Place & Route (P&R), accompanied by successful
verification for each synthesized circuit. Such improvements
have not been reachable by traditional EDA flows.
The paper is organized as follows: Section 2 presents rel-

evant background. Section 3 proposes our novel sequential
logic synthesis algorithms and industrial flow, while Sec-
tion 4 details the novel verification approach. Section 5 shows
experimental results for 10 commercial benchmarks and Sec-
tion 6 concludes this work.

2 BACKGROUND
Here we provide some background on sequential logic syn-
thesis and verification.

2.1 Sequential Boolean Network
A Boolean network is a Directed Acyclic Graph (DAG) where
nodes correspond to logic gates and directed edges are the
wires connecting them. The sources of the graph are the
Primary Inputs (PIs), while the sinks are the Primary Out-
puts (POs). The fanin of a node 𝑛 is the set of input nodes
driving the node, while its fanout is the set of nodes driven
by 𝑛. The Transitive FanOut (TFO) of a node is defined as the
cone of a node 𝑛 with nodes reachable from 𝑛 towards to the
network POs. If the Boolean network is sequential, the mem-
ory elements are 𝐷 flip-flops with initial states. All registers
in a Boolean network are technology-independent, have one
input 𝐷 and one output𝑄 , and are assumed to have the same
effective clock. A Boolean network composed of only AND
and inverters is called an And-Inverter Graph (AIG, [16]). In-
verters are usually represented as attributes on the edges
(complemented edges). Structural hashing of AIGs (strashed
AIG) ensures that, for each pair of nodes, all constants are
propagated and there is at most one AND node having them
as fanins (up to permutation).

2.2 Sequential Synthesis
Sequential logic synthesis is a stronger notion of logic syn-
thesis. While in regular (i.e., combinational) logic synthesis,
optimizations need to preserve combinational equivalence,
in sequential synthesis we can make use of the fact that not
all combinations of registers’ values are in fact reachable.
While multiple works have focused on sequential synthesis
in the past years [6, 7, 9, 12, 13], our work extend sequen-
tial logic synthesis to be fully integrated within an indus-
trial flow, with automated verification support. We review
here one sequential technique, known as Sequential SAT-
sWeeping (SSW, [13]), which is part of the new proposed
flow.

To introduce SSW, we first briefly describe combinational
SAT-sweeping [17]. This is a technique for detecting and

merging nodes that are equivalent - also up to complementa-
tion - in a combinational Boolean network. When merging a
node 𝑛 into𝑚, the fanouts of 𝑛 are transferred to𝑚, and node
𝑛 and its Maximum Fanout Free Cone (MFFC [14]) can be re-
moved from the logic network. This results in logic optimiza-
tion (e.g., reduction in the number of nodes). Merging is often
applied to a set of nodes that are proved to be equivalent.
Usually, one node of the class is denoted as the representative
of an equivalence class, and all other nodes of the class are
merged onto the representative. In the case of SAT-sweeping,
the equivalence is proven using simulation and Boolean Sat-
isfiability (SAT). In the sequential scenario, two sequentially
equivalent nodes are such that they compute the same value,
up to complementation, in all states reachable from the initial
state. It follows that combinational equivalent nodes are also
sequentially equivalent, but the contrary does not hold. An
efficient implementation of SSW (based on strashed AIGs) is
the one presented in [13]. The computation of sequentially
equivalent classes is obtained using induction and it is re-
ferred to as signal correspondence [5, 18, 21]. We refer the
reader to [13] for more details on the implementation.

2.3 Sequential Equivalence Checking
Sequential Equivalence Checking (SEC, [4, 19, 21]) techniques
are used to formally check RTL-to-RTL sequential transfor-
mations. They are designed to compare two RTL designs
and verify that they are equivalent on a cycle-by-cycle basis.
The design before sequential optimization is the specifica-
tion (or spec) and the design after sequential optimization
is the implementation (or impl). This is in contrast to (tra-
ditional) Combinational Equivalence Checking (CEC, [10, 11,
15]) techniques that instead are usually involved to formally
verify netlists synthesized using only combinational tech-
niques [15]. SEC techniques have limited use in modern
industrial EDA as compared to CEC techniques, as they have
scalability issues due to state-space explosion problems in-
herent to model checking algorithms [8].

SEC is a specialized form of model checking algorithm and
uses verification engines such as induction, interpolation,
binary decision diagrams and property-directed reachabil-
ity [4, 10, 19, 21]. For a given SEC verification, there are
three possible outcomes: (i) All assertions are proved, mean-
ing that the spec is sequentially equivalent to the impl. (ii)
Some assertions are inconclusive, meaning the problem is too
complex. This may be due to resource constraints (including
time limits) or other fundamental limitations of formal algo-
rithms. (iii) Some assertions failed, meaning that “bad logic”
has been created by synthesis. In this case, a counterexample
(CEX) is produced to help determining the root cause.

Enabling Scalable Sequential Synthesis and Formal Verification in an Industrial Flow

(a) (b)

Figure 1: Example of complemented merges. The origi-
nal network (a), is optimized into (b): One register and
one NOR gate are added to allow merging of registers
with opposite input pins but same initial state.

3 SCALABLE SEQUENTIAL SYNTHESIS
In this section, we first discuss our enhancements to state-of-
the-art sequential logic synthesis. Then, we present improve-
ments to deal with complex registers of practical industrial
designs and, we conclude with the overall proposed flow
with focus on scalability.

3.1 Enhanced Sequential Synthesis
We implemented our novel version of SSW and sequential
synthesis optimization within an industrial framework. The
core of our SSW algorithm is implemented based on [13]
(e.g., uses AIG as underlying data structure and SAT to find
merging opportunities). We present next further enhance-
ments.

3.1.1 Extended Merging Opportunities. We enhanced state-
of-the-art SSW to find more merging using two approaches:
(1) Complemented merges and pin swapping: First, we mod-
ified our sweeping algorithm to merge registers with in-
versions, even when the registers’ initial states are not in
the opposite state. We call this optimization “complemented
merges”. Consider as an example the circuit in Figure 1(a).
The two pairs of registers have the same clock and same
initial value but opposite D signal. Default SSW algorithms
will thus not be able to find any merging opportunities. Our
algorithm is instead enhanced to perform such merging, at
cost of adding one register and one NOR gate. The idea is
depicted in Figure 1(b). Each pair of equivalent registers (i.e.,
{r0,r1} and {r2,r3}) can be merged by adding a total of two
NOR gates and one register {r4}. Costing is needed to accept

only advantageous merging (resulting in area optimization).
Note also that only one extra register is needed if the re-
set is shared among different registers, thus decreasing the
effective registers overhead. Moreover, we implemented a
symmetric pin swapping technique. Such technique swaps
symmetric pins of nodes to rewrite the logic. This helps us
escaping local minima when running multiple iterations of
sequential synthesis.
(2) Speculation of initial states: For our sequential synthesis
every register is required to have an associated initial state.
Our assumption is that if a register has an asynchronous or
synchronous preset, its initial value will be 1 and the initial
value will be 0 for registers with clear signals. Historically,
in industrial synthesis, unresettable registers can be set to
the initial value providing the best PPA. Finding the ideal
initial state beforehand (i.e., the initial state that gives the
largest improvement) is a non-trivial theoretical problem.
In our flow, we propose the following heuristic approach:
all the non-resettable flip-flops are first assigned the same
initial state 0. Note that instead initial states for resettable
flip-flops are determined by their reset signals and cannot be
modified. Then, a first pass of SSW is performed. From the
results of this optimization, we determine all the registers
which are unchanged. A register is unchanged if its TFO is
not being changed by the optimization, i.e., no logic in its
TFO cone is merged to any other logic, or wired as constant.
A second pass of the optimization is then run (on the output
network of the first pass) by flipping the initial state of these
unchanged registers. We consider this as the final optimized
network. Note that the initial state that we consider during
verification should be consistent with that of synthesis.

3.1.2 Mapping and Decomposition. Our sequential synthe-
sis algorithms are developed to work within an EDA flow,
and thus need to be able to work on already mapped net-
works. While the work in [13] is developed on strashed AIGs,
we enhanced our new SSW to work on general Boolean net-
works. In such networks, each internal node has an arbitrary
logic function associated with a library cell (logic gate), and
can support both mapped and unmapped nodes that may
arise from optimizations steps. To achieve such goal, we use a
shadow AIG (decomposed to run SSW) and a look-up table to
store the correspondence between the original (unoptimized)
mapped network and the AIG. When working on the shadow
AIG, merging is allowed only on nodes corresponding to root
nodes of the mapped network. The merging is performed on
the mapped network using the merging equivalences found
on the underlying AIG.

We further improve our mapped SSW by introducing a tar-
geted decomposition pre-processing step. Such pre-processing
performs a first analysis of the shadow AIG and finds poten-
tial merging opportunities within all nodes of the AIGs. That

E. Testa, D. Marakkalage, M. Quayle, S. Kundu, A. Kumar, D. Ghosh, G. Meuli, G. De Micheli and L. Amaru

(a)

(b)

Figure 2: Example of sequential synthesis with SODCs.

is, not only the root nodes of themapped nodes, but assuming
full decomposition into AND/INV. If the merging opportuni-
ties within a decomposed node are found to be advantageous,
the node is unmapped and actually decomposed before run-
ning SSW. This node will lose mapping information but will
result in more merging opportunities, not achievable other-
wise. Differently from decomposing the entire networks [13],
the costing of the pre-process step account for decomposi-
tion of only those nodes that add advantageous merging to
the optimization. Limit on the maximum fanin of nodes to
decompose and sharing opportunities are also evaluated to
guide the decomposition pre-step.

3.1.3 Sequential Synthesis with Observability Don’t Cares.
Finally, we further enhanced our flow to support additional
sequential optimizations, i.e., not limited to SSW. We imple-
mented new sequential synthesis algorithms based on the
recent method presented in [12]. The idea is to perform logic
synthesis optimizations under Sequential Observability Don’t
Cares (SODCs). In particular, we extended to run redundancy
removal and 1-resubstitution. Consider the example in Fig-
ure 2. Sequential synthesis with SODCs is able to find that
signal𝑤1 is stuck-at-0, thus allowing to remove part of the
logic. The method is based on induction, and is orthogo-
nal to SSW. Finding redundancy removal and resubstitution
opportunities are solved using SAT as proposed in [12].

All mentioned techniques are part of our novel sequential
synthesis flow. They allow further improvements w.r.t. state-
of-the-art SSW. Consider as an example a sequential version
of the i2c benchmark. After mapping and applying SSW until
saturation of results, the number of equiv. AND-2 nodes is

Figure 3: Example of complex flop decomposition for
the enable pin.

optimized to 2319. Our techniques instead further reduce
them to 1250.

3.2 Complex Registers
Besides above improvements, our novel sequential synthesis
flow also needs to deal with complex registers of industrial de-
signs.

3.2.1 Compatible Groups. The primary assumption for mod-
elling any sequential element in the Boolean network is that
they can only be in the form of a simple D-flip flop. This
means that they cannot have any other control pins (syn-
chronous or asynchronous) which can change the output
at Q. Also, they need to be controlled by the same effective
clock. However, industrial designs usually have registers
with different control pins (e.g., asynchronous preset/clear,
enable, QN, etc), different clocks and, can be clock-gated.
To integrate our sequential optimizations in such scenar-
ios, we create compatible groups of registers. A compatible
group is defined as a group of registers that have the same
(or equivalent) clock and same input signals (except D). With
compatible groups, we ensure that the registers in the same
group have the same clock and hence can be analyzed to-
gether as part of the same Boolean network. Input signals
other than D can now be safely ignored.

3.2.2 Decomposition of Complex Registers. The number of
compatible groups can reach a large number for designs with
a variety of different input signals to registers. To overcome
this, we perform pull out of the synchronous input pins by
modelling them with the D pin of every register. This re-
sults in compatible groups having registers with different
synchronous input signals, but the same clock and same
asynchronous inputs. This solution highly reduces the total
number of groups. Also, since more registers are considered
in the same group, it helps to explore a larger state-space
in a single optimization problem, thereby leading to more
optimization opportunities. Synchronous input signals are
modelled by modifying the Boolean logic at D input by in-
serting equivalent combinational logic (containing the syn-
chronous signal) to mimic the same synchronous behavior.
For example, consider the register with synchronous enable
pin (E) in Figure 3, the effective logic at D after pull-out is:

Enabling Scalable Sequential Synthesis and Formal Verification in an Industrial Flow

Algorithm 1 High-level pseudocode of proposed flow
Input: Hierarchies candidate_hiers to be optimized
Output: Optimized hierarchies
1: for each hier ℎ ∈ candidate_hiers do
2: 𝑎𝑙𝑙_𝑟𝑒𝑔𝑠 ← optimizable registers ∈ ℎ
3: 𝑟𝑒𝑔_𝑔𝑟𝑜𝑢𝑝𝑠 ← classify 𝑎𝑙𝑙_𝑟𝑒𝑔𝑠 into compatible groups
4: Generate guides used as ‘reference’ for verification
5: for each reg group 𝑅 ∈ 𝑟𝑒𝑔_𝑔𝑟𝑜𝑢𝑝𝑠 do
6: 𝐶 ← combinational instances connected to 𝑅
7: 𝐷 ← registers of 𝑅
8: create sequential Boolean network 𝑁 using 𝐶 and 𝐷
9: for each reg 𝑟 ∈ 𝐷 do
10: Pullout synchronous pins and add logic to 𝑁

11: Store id of pulled out gates
12: Add mark don’t_touch on them
13: end for
14: sequential optimization on 𝑁

15: 𝑠𝑢𝑟𝑣𝑖𝑣𝑜𝑟_𝑟𝑒𝑔𝑠 ← regs after optimization
16: for each reg 𝑟 ∈ 𝑠𝑢𝑟𝑣𝑖𝑣𝑜𝑟_𝑟𝑒𝑔𝑠 do
17: Undo pullout logic
18: Rewire to original signals
19: end for
20: Generate further guides for verification
21: Map and commit changes to the hierarchy
22: end for
23: end for

(𝐸&𝐷) | (𝐸&𝑄). This works similarly for other synchronous
signals.

3.3 Novel Sequential Synthesis Flow
In this section we summarize the overall industrial flow
for sequential synthesis. In particular, we give details on
how to make it scalable to be applied on large designs. The
pseudocode of the approach is depicted in Algorithm 1. We
present here an approach that works on one hierarchy at
the time; extension to multiple hierarchies is discussed be-
low. For each hierarchy, the registers are first classified into
different compatible groups (see Section 3.2.1). Such classifi-
cation is done considering the decomposition described in
Section 3.2.2. The sequential Boolean network is built for
each group of registers. To build the sequential network for
each group, we keep the problem size (and thus runtime)
under constraint. This is achieved on two fronts: (i) we only
add the combinational logic that is relevant to the optimiza-
tion problem (line 6). In other words, we collect enough
logic around the registers to give the sequential algorithm
all the context it needs, without including any useless in-
formation, that would increase the SAT problem size (and
thus its runtime). With a larger SAT problem the algorithm
would be slower to solve and may give up in proving some
optimization. (ii) We partition the network by identifying

groups of registers that do not share any logic, and that
can be optimized separately to further reduce the problem
size. The algorithm proceeds then with performing the ac-
tual logic pull-out (Section 3.2.2). Lines [10-12] make sure
that the pullout nodes are considered in the optimization
problem, but marked as do-not-touch to prevent their opti-
mization. The do-not-touch is an attribute on the nodes of the
Boolean network: the core optimization engine is enhanced
to recognize such attributes and is bound to preserve the
corresponding nodes. The sequential optimization in line 14
runs the mentioned optimization presented in Section 3.1
(e.g., enhanced SSW, sequential synthesis with SODCs, etc.).
Regarding technology mapping, we tailored our methods to
work incrementally when dealing with mapped networks.
Similarly to [20], our methods can be tuned to preserve all
the mapped gates that are not modified by the optimization.
In this way, we perform technology mapping only on the
subset of nodes that are unmapped (i.e., those modified by
the sequential optimization); this allows us to save additional
runtime. The changes are then committed to the hierarchy
and the next group is considered. Note that line 4 and 20
are used to provide information to the verification (e.g., on
the initial states of registers). Synthesis-aware verification is
essential to contain runtime, as will be discussed in details
in Section 4.

3.3.1 Parallelization. Even after reducing the number of
compatible groups and partitioning the logic, runtime can
still be an issue, especially when working on designs with
multiple (large) hierarchies. To address scalability, we present
here a parallelization scheme based on groups. Note that
parallelization based on hierarchies is not a doable option
because multiple compatible groups in a hierarchy need to
commit changes to the same design, which cannot be done
in parallel. We address this with the following approach: Let
us consider hierarchies 𝐻1, 𝐻2, . . . , 𝐻𝑛 . Each hierarchy can
have multiple compatible groups 𝐻1𝐺1, 𝐻1𝐺2, . . . 𝐻𝑛𝐺1, . . . ,
𝐻𝑛𝐺𝑚 . Our new approach processes the first group of each
hierarchy in parallel (i.e.,𝐻1𝐺1,𝐻2𝐺1, . . . ,𝐻𝑛𝐺1), commit the
changes to the respective hierarchies, then proceed to group
2 of each hierarchy, and so on. Since at each parallel step,
every group is from a different hierarchy, it is guaranteed
that there is no sharing of logic among the groups. Commit of
every group is done sequentially. This novel parallelization
further reduced the runtime and improved scalability of our
flow. For example, for “Design10” from our industrial designs
set of experiments, it enabled more than 2x speedup.

3.3.2 Hierarchical Visibility Flow. In the flow presented in
Alg. 1, optimization is applied on one hierarchy at the time.
This means that, while analyzing a hierarchy, we consider
any connected signal coming from other hierarchies (parent

E. Testa, D. Marakkalage, M. Quayle, S. Kundu, A. Kumar, D. Ghosh, G. Meuli, G. De Micheli and L. Amaru

Figure 4: Hierarchical visibility: motivation and exam-
ple.

or children) as PIs/POs of the Boolean network. In this sec-
tion, we describe an enhancement that considers multiple
hierarchies to improve logic visibility. For example, consider
the design in Figure 4. Hierarchies 𝐻1, 𝐻2 and 𝐻3 share
signals with each other. If the optimization considers these
hierarchies individually, it won’t be able to find any optimiza-
tion. If they are instead considered as one Boolean network,
SSW will be able to detect that output of 𝑂1 is stuck-at-0.

Our hierarchical visibilitymethodworks similarly to Alg. 1,
but is further modified as follows:
• Pre-process the design to group hierarchies into different
groups. Each group should be disjoint, meaning that a par-
ticular hierarchy should not be part of more than one group.
This is done to not increase the problem size for verification
and allow parallelization.
• Instead of working on one hierarchy, perform “virtual
ungrouping” of hierarchies in the same group and include
all their instances in the optimization problem.
• The sequential optimization is thus applied on a Boolean
network that contains nodes coming from different hierar-
chies. It is important to consider that merging (or any other
optimization) should be done so that nodes belonging to
different hierarchies must not get merged. Our algorithms
are thus modified to store such information to avoid cross-
hierarchies optimization.
• Once a group is processed, we don’t include any of its
member hierarchies for any other optimization problem. The
information related to the group of hierarchies is passed for
verification.

Note that different heuristics can be involved to create the
hierarchy groups. In our implementation, we give priority to
decrease the number of compatible groups. Hierarchies are
also grouped based on their size to avoid large size Boolean
network and contain the runtime.

4 AUTOMATED SCALABLE
VERIFICATION

Equivalence checking of the implemented circuits using for-
mal verification tools is essential in today’s commercial EDA

flows. We describe here the first industrial automated flow
for sequential synthesis verification. This is essential to ver-
ify our novel sequential synthesis flow. Here, we use SSW
as running example of sequential optimization; a similar
approach is used with the other sequential techniques.

4.1 Proposed Approach
Our novel flow for verification aims at providing a scalable
solution. This is achieved by:

(1) using a hybrid approach that uses both CEC and SEC
techniques. The key idea is to use CEC tools for verifying
non-sequential transformations and to isolate the sequential
optimizations during synthesis for the SEC tool. This novel
approach uses the best of both worlds, can formally verify
both combinational and sequential optimizations, and can
scale to huge design sizes.
(2) allowing a synthesis-aware verification. The idea is to
drive the verification using guides (i.e., hints describing
details of various optimizations) obtained from synthesis
through an automated file for verification. Verification is
required to independently confirm that the guide or hint is
correct before accepting. However, when verified, the guide
is incorporated and becomes part of the reference.

4.1.1 Sequential Guides. We propose new sequential opti-
mization specific guides to communicate key information
needed by the SEC tool for sequential synthesis verifica-
tion (see Alg. 1). This information includes: (i) Pre- and post-
netlists for the region in which sequential optimizations
occurred; (ii) Hierarchy grouping; (iii) Register initial state
specification; (iv) Register groups and number of frames for
analysis; (v) Constant and merged registers.

4.2 Novel Verification Flow
Here we detail our scalable hybrid verification flow with
guides. The flow works as follows:

(1) A CEC tool is processing guides for the reference during
verification.
(2) When a sequential optimization guide is encountered, the
CEC tool extracts netlists for the modules being processed
both before and after the SSW transformation occurs. The
CEC tools verifies the pre-SSW netlist and register initial
states against the reference.
(3) If successful, the CEC tool invokes the SEC tool with
both pre- and post-netlists and initial states to verify the
proposed sequential changes.
(4) If SEC is successful, the CEC tool performs additional
nonsequential checks on the transformation, e.g., verifying
that Unified Power Format (UPF, [3]) power intent remains
correct.

Enabling Scalable Sequential Synthesis and Formal Verification in an Industrial Flow

Table 1: Average gain post P&R on 10 industrial designs.
Negative numbers represent improvement w.r.t. the
baseline.

Flow Area WNS TNS Tot. Power Runtime

Design 1 -0.8 % -0.9 % -0. 2% -0.6 % 0.1 %
Design 2 -1.8 % -0.7 % 0.1 % -0.4 % 0.2 %
Design 3 -2.1 % -2.7 % -0.7 % -5.4 % 0.4 %
Design 4 -3.3 % 0.4 % -0.2 % -4.4 % 0.5 %
Design 5 -1.4 % 0.4 % -0.7 % -1.1 % 0.5 %
Design 6 -1.9 % -2.1% 7.8 % -1.6 % 1.4 %
Design 7 -0.9 % -0.8 % 0.2 % -0.4 % 1.4 %
Design 8 -3.6 % 1.2 % -0.1 % -2.1 % 1.7 %
Design 9 -1.0 % -0.0 % -0.0 % -0.2 % 2.9 %
Design 10 -3.5 % -0.8 % -0.9 % -2.9 % 3.3 %

Average -2.0 % -0.6 % 0.5 % -1.9 % 1.2 %

(5) If all steps have succeeded, the CEC tool replaces the
original module in the reference with the post-SSW-netlist,
and the rest of the verification continues.

Note, this flow can be performed in parallel, assuming the
CEC and SEC verifications are independent from each other.

4.2.1 Enhanced Sequential Equivalence Checking. Our pro-
posed approach addresses the scalability issue of state-of-
the-art SEC tools, resulting in more conclusive outcomes.
For this, our tight handshake with synthesis is essential. The
new sequential guides provided by the synthesis are key to
controlling the verification complexity. Each SEC verification
executes the following steps:
(1) Compile the spec and impl designs into a combined Data-
Flow Graph (DFG).
(2) For each set of register and hierarchies groups provided
in the sequential guides, perform SSW with the #frames
provided.
(3) Check if each constant register guide can be proven in
our model. If yes, then replace with the constant.
(4) Check if eachmerged register can be proven in ourmodel.
If yes, then replace them with the representative equivalent
register.
After these steps, we use traditional sequential equivalence
checking technologies to solve the problem.

Our novel flow for verification is able to successfully verify
truly sequential transformations within an industrial flow,
as will be detailed in the next section.

5 EXPERIMENTAL RESULTS
Our proposed approach requires to be tested on industrial
designs with multiple large hierarchies, complex registers,
and to be fully integrated within an industrial EDA flow.

We thus run experiments on 10 benchmarks coming from
major electronic industries with mentioned characteristics.
Experiments are run using 4 cores. To present our synthesis
results, we compare our new flow (enhanced with novel
sequential synthesis) to a baseline flow running a state-of-
the-art commercial EDA flow without our optimization. Our
novel flow mainly targets area (and power) optimization;
The flow runs a complete synthesis flow including Place &
Route (P&R).
The results are presented in Table 1. For each design, we

compare various metrics w.r.t. the baseline flow: area, timing
and, power. We also report the “Runtime” as the % of runtime
increased by the sequential synthesis as compared to the run-
time of the whole flow. On average, our flow achieves -2.0%
improvement in area and -1.9% in total power post P&R. Such
major improvement is achieved with minor negative effect
on timing (measured as bothWorst Negative Slack (WNS) and
Total Negative Slack (TNS)). The area/power improvements
are up to -3.6%/ -5.4%. On average, the runtime is contained
to only +1.2% of the entire flow. For the verification results,
default verification tool cannot verify our novel transfor-
mations and proposed flow. Our novel hybrid automated
approach for formal equivalence checking was able to auto-
matically verify all benchmarks to be equivalent. Meaning
that all sequential transformation were fully proved to be
equivalent, without incurring in any “inconclusive” results.

6 CONCLUSIONS
In this work, we introduced the first industrial flow for se-
quential logic synthesis and scalable sequential formal verifi-
cation. From a synthesis perspective, we described enhance-
ments to state-of-the-art methods and provided details on
our scalable industrial framework. We also described a novel
verification flow, which focuses on combining the high capac-
ity of combinational equivalence checking with the proving
power of sequential verification methods. We demonstrated
results not attainable by any other industrial EDA flow. We
showed impressive PPA results on 10 commercial bench-
marks, up to -3.6%/-5.4% area/power improvement post P&R,
accompanied by successful formal equivalence proofs.

REFERENCES
[1] “Synopsys Formality, [Nov. 2023]:

https://www.synopsys.com/implementation-and-
signoff/signoff/formality-equivalence-checking.html.”

[2] “TSMC’s New 3nm Chip Wafers Priced at $20,000, [Nov. 2023]:
https://www.siliconexpert.com/blog/tsmc-3nm-wafer/.”

[3] “UPF: Standard for design and verification of low power integrated
circuits, 1801-2009 - IEEE standard association,” March 2009.

[4] J. Baumgartner, H. Mony, V. Paruthi, R. Kanzelman, and G. Janssen,
“Scalable sequential equivalence checking across arbitrary design trans-
formations,” in Int’l Conf. on Computer Design, 2006, pp. 259–266.

E. Testa, D. Marakkalage, M. Quayle, S. Kundu, A. Kumar, D. Ghosh, G. Meuli, G. De Micheli and L. Amaru

[5] P. Bjesse and K. Claessen, “SAT-based verification without state space
traversal,” ser. FMCAD, 2000, p. 372–389.

[6] R. K. Brayton and A. Mishchenko, “Sequential rewriting and synthesis,”
in Int’l Workshop on Logic and Synthesis, 2007.

[7] M. L. Case, V. N. Kravets, A. Mishchenko, and R. K. Brayton, “Merging
nodes under sequential observability,” in Design Automation Confer-
ence, 2008, pp. 540–545.

[8] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Progress on the
state explosion problem in model checking,” Informatics: 10 Years Back,
10 Years Ahead, pp. 176–194, 2001.

[9] G. DeMicheli, “Synchronous logic synthesis: algorithms for cycle-time
minimization,” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 10, no. 1, pp. 63–73, 1991.

[10] A. Kuehlmann and C. A. van Eijk, “Combinational and sequential
equivalence checking,” in Logic synthesis and Verification. Springer,
2002, pp. 343–372.

[11] H. H. Kwak, I.-H. Moon, J. H. Kukula, and T. R. Shiple, “Combinational
equivalence checking through function transformation,” in Int’l Conf.
on Computer-Aided Design, 2002, pp. 526–533.

[12] D. S. Marakkalage, E. Testa, W. Lau Neto, A. Mishchenko, and et al.,
“Scalable sequential optimization under observability don’t cares,” in
arXiv:2311.09967, cs.LO, 2023.

[13] A.Mishchenko,M. Case, R. Brayton, and S. Jang, “Scalable and scalably-
verifiable sequential synthesis,” in Int’l Conf. on Computer-Aided De-
sign, 2008.

[14] A. Mishchenko and R. K. Brayton, “Scalable logic synthesis using a
simple circuit structure,” in Int’l Workshop on Logic and Synthesis, 2006,
pp. 15–22.

[15] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, “Improvements
to combinational equivalence checking,” in Int’l Conf. on Computer-
Aided Design, 2006, pp. 836–843.

[16] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting a fresh look at combinational logic synthesis,” in Design
Automation Conference, 2006, pp. 532–535.

[17] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton, “FRAIGs:
A unifying representation for logic synthesis and verification,” UC
Berkeley, Tech. Rep., 2005.

[18] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman, “Exploiting
suspected redundancy without proving it,” in Design Automation Con-
ference, 2005, pp. 463–466.

[19] C. Pixley, “A theory and implementation of sequential hardware equiv-
alence,” IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 11,
no. 12, pp. 1469–1478, 1992.

[20] V. Possani, L. Amaru, and P. Vuillod, “Revisiting SAT-based resubstitu-
tion for incremental mapped optimization,” in Int’l Workshop on Logic
and Synthesis, 2022.

[21] C. van Eijk, “Sequential equivalence checking based on structural
similarities,” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 19, no. 7, pp. 814–819, 2000.

	Abstract
	1 Introduction
	2 Background
	2.1 Sequential Boolean Network
	2.2 Sequential Synthesis
	2.3 Sequential Equivalence Checking

	3 Scalable Sequential Synthesis
	3.1 Enhanced Sequential Synthesis
	3.2 Complex Registers
	3.3 Novel Sequential Synthesis Flow

	4 Automated Scalable Verification
	4.1 Proposed Approach
	4.2 Novel Verification Flow

	5 Experimental Results
	6 Conclusions
	References

