®

Check for
updates

Synthesis of SFQ Circuits
with Compound Gates

Rassul Bairamkulov, Alessandro Tempia Calvino®™), and Giovanni De Micheli

Integrated Systems Laboratory, EPFL, Lausanne, Switzerland
{rassul.bairamkulov,alessandro.tempiacalvino,giovanni.demicheli}@epfl.ch

Abstract. Rapid single-flux quantum (RSFQ) is one of the most
advanced superconducting technologies with the potential to supplement
or replace conventional VLSI systems. However, scaling RSFQ systems
up to VLSI complexity is challenging due to fundamental differences
between RSFQ and CMOS technologies. Due to the pulse-based nature
of the technology, RSFQ systems require gate-level pipelining. Moreover,
logic gates have an extremely limited driving capacity. Path balancing
and clock distribution constitute a major overhead, often doubling the
size of circuits. Gate compounding is a novel technique that substantially
enriches the functionality realizable within a single clock cycle. However,
standard logic synthesis tools do not support its specific synchronization
constraints. In this paper, we build first a database of minimum-area
compound gates covering all the Boolean functions up to 4 variables and
all possible input arrival patterns. Then, we propose a technology map-
ping method for RSFQ circuits that exploits compound gates using the
database as a cell library. We evaluate our framework over the EPFL
and ISCAS benchmark circuits. Our results show, on average, a 33%
lower logic depth with 24% smaller area, as compared to the state of
the art. We further extend our technology mapping framework to sup-
port the novel three-input SFQ gates, namely AND3, MAJ3, and OR3. We
demonstrate the by using these gates, the area and logic depth of the
logic networks are reduced, on average, by 11% and 30% respectively,
indicating that developing the logic cells for these three-input gates can
significantly improve the scalability of the SFQ technology.

Keywords: Single-Flux Quantum - logic synthesis

1 Introduction

Rapid Single-Flux Quantum (RSFQ) [1] is one of the most promising beyond-
CMOS technologies. RSFQ systems consistently achieve operating frequencies on
the order of tens of gigahertz [2—4], with particular cells operating at hundreds of
gigahertz [5-7]. Furthermore, the operating power of the RSFQ systems is two to
three orders of magnitude smaller than CMOS, even considering the refrigeration
power [8].

© IFIP International Federation for Information Processing 2024

Published by Springer Nature Switzerland AG 2024

I. (Abe) M. Elfadel and L. Albasha (Eds.): VLSI-SoC 2023, IFIP AICT 680, pp. 3-19, 2024.
https://doi.org/10.1007/978-3-031-70947-0_1

4 R. Bairamkulov et al.

However, achieving the aforementioned advantages at scale remains a chal-
lenge. Unlike CMOS, most RSFQ logic gates operate as latches with one clock
input and one or more data inputs [9]. Arrival of a single-flur quantum (SFQ)
pulse at the data input changes the internal state of the gate. The presence
or absence of an SFQ pulse within the clock period represents logical 1 or 0,
respectively. The clock pulse resets the gate to initial state, potentially releas-
ing an SFQ pulse. This reliance on the clock signal requires SFQ circuits to be
pipelined at the gate level. To ensure a correct data propagation, i.e., correct
data arrives in the correct time frame, path balancing is required, as shown by
the two path-balancing D-flip-flops (DFF) in Fig. 1b. Furthermore, due to the
quantized nature of SFQ pulses, most RSFQ primitives have a maximum driv-
ing capacity of one gate. Consequently, a special cell called splitter is used to
duplicate signals [9,10], as illustrated in Fig. 1.

Despite the advances in RSFQ technology mapping [11-13], the number of
path-balancing DFFs and splitters can be prohibitively large, degrading the area
and yield of an integrated system [14]. Different approaches have been proposed
in the literature to tackle this fundamental issue. In [11], the number of path-
balancing DFFs is reduced using dynamic programming, yielding, on average a
12% smaller area. Further reductions in path-balancing overhead is achieved by
using dual clocking, where high- and low- frequency clock signals are used [15].
This technique however requires relatively expensive NDRO DFFs along with
the duplication of the clock distribution network.

Different techniques to reduce the number of clocked elements are proposed in
the literature [16,17]. In dynamic SFQ (DSFQ) the gates reset to the initial state
after the specified period of time [18]. The design of DSFQ circuits is therefore
similar to CMOS circuits where large combinational blocks can be synchronized
using relatively few synchronous elements [10]. A similar approach based on
clockless logic gates is proposed in [2]. Based on nondestructive readout (NDRO)
flip-flops, two additional clockless cells, namely the NIMPLY (—x¢Ax;) and the AND
functions, are efficiently realized using fewer clocked elements for synchroniza-
tion. The advantages of these approaches are smaller area, lower clock network
complexity, and simpler path balancing, as compared to conventional RSFQ. The
timing constraints, however, constitute a major challenge. In DSFQ, the inter-
action between the input skew tolerance, clock frequency, and bias margins [10]

A \ A A
T h o], h L

a) b)

Fig. 1. a) An example of a CMOS circuit. b) Equivalent RSFQ circuit with a splitter
and two path-balancing DFF's.

Synthesis of SFQ Circuits with Compound Gates 5

complicates the circuit design. The NDRO-based clockless gates are particularly
sensitive to the arrival time of the inputs, necessitating careful timing analy-
sis [19].

The gate compounding technique has been recently proposed as an alterna-
tive strategy to reduce the number of clocked elements [20]. Unlike DSFQ and
clockless gates, compound gates (logic gates obtained by gate compounding) are
not sensitive to the arrival of the inputs, reducing the complexity of the sys-
tem design process. The functionality achievable within a single clock cycle is
enriched by exploiting RSFQ synchronization mechanisms. Gate compounding
can significantly reduce the pipeline depth and number of clocked elements, not
only improving the latency and area of a functional circuit, but also reducing the
size of the clock distribution network. However, due to complex synchronization
requirements, traditional technology mapping tools are not directly applicable.

In this work, we first summarize a technology mapping method for SFQ
compound gates based on a previous paper [21]. Inspired by [22-24], we create a
database of compound gates using enumeration. We generate functionally correct
and area-optimal compound gates for all functions up to four variables and
all possible input arrival patterns. Next, we utilize these gates as library cells
during technology mapping to synthesize large-scale SFQ circuits. Furthermore,
we extend this framework to leverage three-input threshold SFQ gates (AND3,
MAJ3, and OR3) as additional primitives for the creation of compound gates. In
the experimental results, we show a drastic reduction in the area and logic depth
by 24% and 33%, respectively, compared to the state-of-the-art, when using
compound gates based on 2-input cell primitives. When extending compound
gates to use 3-input cell primitives, the area and logic depth are further reduced
by 11% and 30%, respectively, compared to compound gates generated using
2-input cells.

2 Gate Compounding Technique

The gate compounding technique exploits differences in pulse synchronization
mechanisms to reduce the pipeline depth of an RSFQ circuit. In particular, RSFQ
logic gates can be divided into three categories, namely, AA, AS, and SA, where
the first letter denotes whether input signals should arrive (a)synchronously,
while the second letter indicates whether the output is released (a)synchronously.

AA elements process the inputs immediately upon arrival and the output is
released without a synchronizing signal (clock). For instance, a merger cell, often
referred to as confluence buffer (CB), directs signals from multiple (typically
two) input branches into one output branch, i.e., implements an OR function.
Note that the merger produces two subsequent output pulses if input pulses are
temporally separated, or a single pulse, if input signals arrive simultaneously.

AS elements process the input information immediately upon arrival and
release the output synchronously after the arrival of the clock signal. The sim-
plest RSFQ component of this type is D-flip-flop (DFF) that stores an incoming
pulse and releases it upon the arrival of the clock signal. Other important AS
elements are the inverter (NOT) and exclusive-or (XOR).

6 R. Bairamkulov et al.

AA AS SA AA

ng
o D o

Fig. 2. Generic compound gate structure.

SA elements require the inputs to arrive simultaneously. The result of the
computation is released immediately after processing. Assuming inputs arrive
simultaneously, a CB can be tuned to produce at most a single output pulse,
producing an OR element [25]. Furthermore, by adjusting the JJ size and bias
current, the OR structure can be transformed into AND element. Note that, unlike
conventional RSFQ, OR and AND elements are not clocked and require inputs to
arrive simultaneously.

These three categories of components govern the flow of data within an RSFQ
circuit. Most importantly, the SA components ensure simultaneous release of the
SFQ pulses. Therefore, SA components can only be placed directly after the AS
elements. To comply with these restrictions, the gate compounding technique
was proposed in [20]. A compound SFQ logic gate can be produced by following
the generic structure illustrated in Fig. 2. Inputs to a compound gate are initially
processed by AA elements. The signals then flow towards the AS components
where the result of a logical operation is stored until the arrival of the clock
signal. The clock signal triggers the simultaneous release of the data towards the
SA elements. Finally, the AA components complete the function.

The proposed structure offers two major advantages. Since the initial pro-
cessing is handled by the AA or AS elements, arbitrary order of input arrival is
supported, relaxing the timing constraints of the circuit. The proposed gate com-
pounding technique significantly expands the set of functions realizable within
a single clock cycle. Using compound gates, for example, all 16 two-input func-
tions are realized within a single clock cycle, as compared to only 13 functions
in conventional SFQ [20].

3 Background and Notation

A multi-output Boolean function f : B*¥ — B™ maps k input signals to m output
signals. A single output Boolean function (m = 1) f : B* ~ B can be represented
as a truth table with 2* rows. A truth table can be conveniently encoded as a

Synthesis of SFQ Circuits with Compound Gates 7

2k_bit string Y = yox ;- -y, where bit y, denotes the output at the i row in
the truth table. For example, fi(x1,%x0) = x1 @ %o is encoded as Y; = 01105,
since f1(1,1) = 0, f1(1,0) = 1, f1(0,1) = 1, and f,(0,0) = 0.

A Boolean function' f can be represented by a Boolean network? N = (V =
ZUOUG,E)—a directed acyclic graph (DAG) representing the sequence of the
Boolean operations applied to realize f. Set G is a set of gates, where each node
u € G applies a function f, to its fanins FI(u) and passes the result to fanouts
FO(u). Set Z denotes the set of primary inputs (PI), i.e., nodes without fanins.
Set O denotes the set of primary outputs (PO), i.e., nodes without fanouts.

3.1 Delay

In SFQ, the delay is typically expressed in terms of the number of clock cycles
required to realize a function. In practice, input signals can often arrive at dif-
ferent clock cycles, as illustrated in Fig.3a. We define the input level pattern
Ly = [KO, e ,6’“_1} as a vector of integers describing the clock cycles during
which the PI signals enter the network A/. Without loss of generality, we nor-
malize the input patterns such that the earliest PI signal arrives at cycle 0, i.e.,
min(£y) = 0. For example, an input level pattern €5 = [0, 1] indicates that the
data from the second PI is delayed by one clock cycle. A level [,, denotes the
number of clock cycles between the earliest PI and node w. The input arrival
pattern d,, = [d% o dﬁ_l} is the number of clock cycles between u and each PI,

dy =, —0°,... 1, —*1.
We define two operators to compare the delay patterns of any two nodes v and v:

d,=d, e Vid, =d,
d, <d, & 3id, <d and #i d’, > d’.

In the former case, corresponding delays are equal. In the latter case, the delays
of u are not greater than the corresponding delays of v, but for at least one PI
the delay of u is smaller.

3.2 Cost

The most common metric to evaluate the cost of an SFQ circuit is the JJ count,
which directly correlates with the area of an SFQ circuit. Let ¢, be the area
cost associated with the logic primitive implemented by a node u. The area cost
c(N) of a circuit N is the sum of costs g, for each node v € G. A transitive
fanin cone TFI(u) is defined as the set of all nodes having a path to u. The area
cost ¢, of a node u is defined as the cost of its TFI. Note that ¢, differs from g,

! For brevity, we use the term function to represent a Boolean function.
2 We use the terms network and circuit to represent a Boolean network.

8 R. Bairamkulov et al.

)19

Fig. 3. Realization of an XNOR function between networks X and Y. The left network
uses a path-balancing DFF (1) followed by an XNOR with equal delay pattern (2). This
structure requires three clock cycles and 33 JJs. The right network uses an XNOR element
with unequal delay pattern (3), requiring two clock cycles and 21 JJs.

since ¢, defines the cost of a single primitive, while ¢, is the sum of costs of all
ancestors of u. Suppose nodes u, v are fanins of node w. The cost of the node w
is,

Cw = Guw + S(U,”U),

S(u,v) = Z [gn + gs max (|[FO(n)| — 1,0)],

n€TFI (u)UTFI (v)

where ¢, is the cost of splitter.

An SFQ circuit should comply with specific technological constrains, such as
path balancing and fanout constraints in SFQ. With SFQ gate compounding,
gates also follow the structure described in Fig.2 to avoid the data hazards
described in the upcoming subsection.

3.3 Data Hazards

Double Pulse Hazard. If two pulses entering a CB are sufficiently spaced
in time, two subsequent SFQ pulses are generated at the output, potentially
producing an error. For instance, a double pulse produced by a CB entering a
XOR may trigger unwanted switching, producing incorrect result. In particular,
the internal storage loop within a XOR is toggled one additional time between 0
or 1 by the input pulses. Nevertheless, if the CB has its output pin connected
to a DFF or an inverter, the second pulse has no effect on the system [9].

Consider the circuit implementing (A V B) @ C shown in Fig. 4. The storage
loop within the XOR element is correctly switched and reset with pulses A and C.
The pulse B, however, sets the storage loop to state 1, producing an incorrect
result. To avoid this data hazard, the XOR component is placed after a CB only
if the CB is guaranteed to produce at most one SFQ pulse, i.e., the inputs to a
CB are never simultaneously equal to 1.

Synthesis of SFQ Circuits with Compound Gates 9

Q 500
« 250
£
E“ 0
© 500
D b
3
O 250
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
A B C Time, ns

Fig. 4. Incorrect realization of (A V B) & C function using a CB and an XOR. The main
loop within an XOR element is set to 1 by A, reset to 0 by C, and subsequently set to 1
by pulse B, incorrectly producing an output pulse.

To identify the condition where a CB can produce two pulses, we assign a
hazard flag h,, to each node n. If n is not a CB, h,, is 0; otherwise,

h, =h, Vh, V3I(Y, AY,),

where u,v € FI(n) and 6(Y) = 1 only if Y is nonzero.

For example, consider nodes u, v, w, with Y, = 10105, Y, = 00015, Y,, =
11005, and h,, = h, = h,, = 0. Connecting u and v to a CB produces node p
that can be used with XOR, since h, = h, = 0 and

6(Yy AY,) = 8(10105 A 00015) = 6(00005) = 0 = h,, = 0,

i.e., the u and v are never simultaneously equal to 1. In contrast, connecting
and w to a CB produces node ¢ that cannot be used with XOR, since

5(Y, AYy) = 6(10105 A 11005) = §(10005) = 1 = h, = 1.

Suppose node r is produced by connecting ¢ and v to a CB. Although 6(Y,AY,) =
0, node r cannot be used with XOR since hy = 1 = h, = 1.

Desynchronization Hazard. The signal desynchronization is a timing hazard
where the inputs cannot simultaneously arrive to an SA element. Consider for
example the circuit illustrated in Fig. 5a. The splitter is placed between the AS
(DFF) and SA (AND) components. Delays ag — a1 and by — b; are not equal.
Therefore, pulses from A and B do not arrive simultaneously, violating the input
timing requirement of the AND element. Thus, the AND operates as a constant O.

A possible correction is shown in Fig.5b. The splitter is placed before the
DFFs to equalize delays ag — a1 and by — b;. The timing violation is therefore
avoided at the cost of an additional DFF.

10 R. Bairamkulov et al.

A rzY
ao A A
A.— A a 4({ ()

D =T
bo bl I— M—
1

B

Fig. 5. a) A system violating the compound gate structure. Any AA element (splitter)
between AS (DFF) and SA (AND) elements may desynchronize the input arrival. b) The
issue is resolved by moving the splitter before the AS elements.

4 Library Construction

The fixed structure of the compound gates combined with the hazards described
in the previous section complicates the technology mapping process. For exam-
ple, AA elements should be prevented from being placed between AS and SA
elements, an issue described in Sect.3.3. Adapting the existing tools to con-
sider these constraints requires to significantly modify the underlying algorithms,
potentially degrading run time and quality of results.

Area- or delay-optimal SFQ circuits can be created using exact synthesis
methods, such as Boolean satisfiability [26,27] and enumeration [22]. However,
exact methods are limited to small sizes (< 16 nodes) and few variables (< 6),
due to the computational intractability of the problem. Nevertheless, exact syn-
thesis can be applied to create a database of optimal small-scale structures. Since
the number of Boolean functions grows double exponentially with the number
of variables (22k), complete databases are typically limited to 4 variables. These
locally-optimal networks are subsequently used to produce larger networks [22—
24]. Library-driven approaches have been successfully applied to MIG resynthe-
sis [23,24] and AQFP logic synthesis [22]. The database-driven mapping offers
several advantages:

— Functional correctness. Each circuit block within a database describes a real-
ization of a logic function complying with the specific technological con-
straints. Thus, technology mapping can safely proceed at the block level, since
the technological requirements are satisfied during the database creation.

— Local optimality. The logic blocks in the database can be optimized for area
or delay.

— Performance. The parameters of each logic block, such as area and delay, are
computed in advance and can be accessed in constant time during mapping.

— Reuse. Once created, the database can be used multiple times to synthesize
arbitrary SFQ circuits.

In this section, we present the procedure to create a database of area-optimal
compound gate structures for each of the k-input, single-output Boolean func-
tion.

Synthesis of SFQ Circuits with Compound Gates 11

) b)

d €)
‘ SA, 1001[43]
001023
g o300 053] Ad,
0111 [27]

1000[19]
1011[23] — E

@ 1101 [23]

A,

ECaal=

{[Ttrue =1111[0]
|| £alse =0000 [0]

Fig. 6. Example of enumeration with 2 primary inputs represented by truth tables
1100 and 1010. The numbers in brackets represent the cost of a node (in JJ). The red
1 represents the double pulse hazard. The crossed grey numbers represent the discarded
truth tables. (Color figure online)

4.1 Enumeration Procedure

The algorithm constructs a Boolean network N' = (V, £), where nodes represent
a particular realization of a logic function using compound gates. Each node
u= Yy, lu, Cu,hy) € V is a 4-tuple of a truth table, level, cost, and hazard flag.
The procedure is initialized with k& nodes representing the Pls. For example,
Fig.6a describes the initialization for k = 2:

a = (1100,,0,0,0) b = (1010,,0,0,0)

For completeness, constant true and false are also included. After initialization,
the algorithm cycles through three subroutines, following the compound gate
structure in Fig. 2.

AA. The stage AA; implements the addition of AA elements to a compound
gate at level i. For each pair of nodes u = (Y, ?, ¢y, hy) and v = (Y4, 1, ¢y, hy,), a
new node w = (Y, VYy, 4, g +5(cu, ¢y), hy) is produced. Consider the AA; stage,
illustrated in Fig. 6b, where the new node w = (1110,,0,7,1) is discovered. The
7-JJ cost of the node is the cost of a CB used to realize this function.

AS. For each node u = (Y,,7 — 1, ¢y, hy), stage AS; produces two new nodes,
b= (Yu7i7cu +CDFF7O) and q= (ﬁYuaiacu +CNOT70)7

corresponding to addition of a DFF and NOT element. Note that the hazard flag is
reset to 0, since only a single pulse is produced by the AS elements. In addition,
for each pair of nodes u = (Y,,i—1,¢,,0) and v = (Y,,i— 1, ¢, 0), whose hazard
flag is 0, a new node is produced

r= (Yu S¥ YvaLQXDR + S(CU7C’U)? O)-

In Fig. 6¢, three new nodes are produced by a DFF, while four new truth tables
are discovered by applying NOT and XOR operations. Note that the node w is not
used with XOR due to the hazard flag h,, = 1.

12 R. Bairamkulov et al.

SA. After the AS stage, inputs are synchronized enabling the use of SA gates.
At stage SA;, each pair of nodes u = (Yy,1,¢y,0) and v = (Y,,14, ¢y, 0) produces
2 new nodes

b= (Yu A YU;LQAND + S<Cu; C’U)7O)7 a‘nd
q= (Yu \ Yv;ia(IDR + S(Cu> Cv)a O)-

In Fig.6d, the outputs of the AS; stage proceed to the SA; stage where the
logical AND and OR are applied to the outputs of the previous stage. The 6 nodes
implementing previously undiscovered functions with smallest cost are added to
the network, while 36 nodes are discarded.

The algorithm repeats these three stages (AA;_; — AS; — SA; — AA; — ...)
until all 22° k-input functions are realized. In our example for k = 2, after stage
SA; the algorithm proceeds to stage AA;, where 78 nodes are produced, of which
only a single node implements the remaining function 10015. After this stage,
all of the 22° = 16 two-input truth tables are discovered and the enumeration
process is terminated.

4.2 Filtering

During the enumeration process, the size of the network grows rapidly with
each additional stage. In Fig. 6, for example, only 7 nodes are produced at stage
ASq, while 62 nodes are produced at stage AA;. The number of nodes considered
during enumeration drastically increases with k, with several billions of nodes
processed while enumerating four-input functions. To limit the number of nodes
and prevent inferior nodes from being added to the database, the dominance
relationship is used. Suppose, the node u implements a Boolean function f with
input arrival pattern d,, and area ¢, . Also, suppose another node v implementing
the same function f with input arrival pattern d, and area c, has previously
been discovered. The node v is said to dominate the node u in two cases,

— faster delay: d, < d, and ¢, < ¢y;
— lower cost: d, = d, and ¢, < ¢,.

In these cases, the node u is not created.

4.3 Input Arrival Patterns

During initial enumeration, all PIs are placed at equal levels £ = (0,...,0). To
consider different input arrival patterns, the enumeration process is repeated
with PlIs introduced at different levels £ = (60, - ,Ek_l). The number of
input level patterns considered during the enumeration process can be reduced
based on dominance relationship. Suppose that, while considering the pattern
Ly = (Y, ..., 09,. .. (%), all nodes were dominated by or equivalent to previously
discovered nodes. The pattern £, = (¢1,...,¢9 +1,...,£%) is therefore unlikely
to yield a non-dominated node, due to inferior delay and cost.

Synthesis of SFQ Circuits with Compound Gates 13

A

A k k

A 4

(o8}
I S —
-- ?--?—-;——
A\ 4

\4

. , . small I,
Quos | | | | large Jou.
. I‘_+

medium I,
medium Jg
large I,
small Jg.¢

>

=]
8

(os]
-
N—
[
o
=1
o
o
pm)
=
=
o
w
= =

b)

Fig. 7. Circuit and waveforms of the three-input threshold SFQ gates. a) Circuit dia-
gram. b) Waveforms. By increasing the bias current and reducing the size of junction
Jout, the AND3 gate can be turned into MAJ3 and OR3.

5 Extension to Three-Input Gates

Multiple works in the literature describe the use of the gates with fanin higher
than two [28,29]. In the pioneering work [29], the ternary majority (MAJ3) func-
tion has been shown to provide greater expressive power, producing networks
with superior area and delay. The high expressive power of the three input gates
has been further investigated in [28]. Generally, three-input gates lead to a signif-
icant reduction in the number of necessary gates to implement a network, but it
also increases the overall edge count. Multi-input gates in SFQ technology have
been discussed in [30], where AND and OR gates with up to five inputs have been
designed. Three-input majority gates for SFQ technology have been proposed in
[31].

The topology of the SFQ AND3, MAJ3, and OR3 gates is a natural extension
of the two-input AND2 and OR2 structures, as illustrated in Figs. 7a-b. The SFQ
AND2 and OR2 gates can be viewed as threshold logic functions. In AND2 gate,
the bias current is reduced while the size of the output junction is increased.
Therefore, two pulses should arrive simultaneously from each input branch to
produce and output pulse. By increasing the bias current and reducing the size,
the output junction is made more sensitive, producing an OR2 gate. A single
pulse is sufficient to switch the output junction.

By adding an extra input branch to the AND2/0R2 topology, the three-input
threshold gates can be realized. The AND3 gate is produced by setting the small
bias current and large output junction size. SFQ pulses from all three branches
are necessary to switch the output junction. By increasing the bias current and
reducing the size of the output the gate becomes MAJ3, and next OR3, requiring,
respectively two and one pulse to switch the output junction, as shown in Fig. 7c.

14 R. Bairamkulov et al.

To evaluate the impact of using the three-input gates in SFQ logic synthesis,
we created a separate database incorporating the AND3, MAJ3, and OR3 gates.
From the synchronization perspective, these gates belong to the SA category,
since they require all inputs to arrive simultaneously. The enumeration process
follows the same procedures outlined in Sects. 4.1-4.3.

6 Technology Mapping

We propose a three-stage technology mapping flow to synthesize arbitrary
Boolean networks using SFQ compound gates, similarly to [13]. First, we employ
a delay-driven technology mapper that uses the computed database as a cell
library. Due to path balancing, delay optimization is essential for area reduction
in SFQ circuits. Intuitively, longer critical paths require more DFF elements due
to longer paths to balance [32].

Next, our flow inserts path-balancing DFFs and minimizes their number
using minimum-area retiming [33], which provides an optimal solution. Note
that retiming preserves the path-balancing constraint since each path traverses
the same number of DFFs before and after retiming.

Finally, splitter cells are inserted to satisfy the driving capacity constraint.
Our synthesis flow has been implemented using the open-source logic synthesis
library mockturtle [34].

7 Experimental Results

7.1 Database Creation

We employed a computing cluster with 48 2.5 GHz Intel Xeon E5-2680 CPUs and
256 GB of RAM to create two databases. The original database only considers
gates with up to two inputs. The extended database incorporates the three-
input threshold gates, namely AND3, MAJ3, and OR3. Due to the computational
complexity, we limited the number of inputs to four, i.e., k = 4. The enumeration
process starts from pattern £y = (0,0,0,0), i.e., all of the PIs are at the same
level. During the subsequent iterations, the level of one of the Pls is incremented
and the enumeration process is repeated. If the enumeration does yield to non-
dominated nodes, a new PI level is incremented. Figure 8 illustrates possible level
patterns considered by the enumeration process.

For the original database, the computation for the input level pattern
£y = (0,0,0,0) (without the three-input gates) required seven hours, evaluat-
ing over 13 billion nodes. Other delay patterns required between one to five
hours. The resulting database was created in 52h and consisted of 488,636
entries. Next, we filtered entries based on input-permutation equivalences (P-
classes) [35]. Our final database contains 28,258 non-dominated implementations
for all the 3,984 P-classes of Boolean functions up to 4 variables. Each entry rep-
resents a valid RSFQ compound gate. Note again that the considerable initial
runtime for database creation is amortized by repeated use.

Synthesis of SFQ Circuits with Compound Gates 15

0,0,1, ‘051’2’
0,0,1,2 40,0, 2@Bo,1,1, ‘0,1, ,3
[0,0,0,0}—0,0,0,1F~[0,0,1,1F>lo0,1,1,1] Yo,1,1,2 o,1,2,2 ‘o, 2,280, ,2,3

Fig. 8. Level patterns considered during enumeration. Due to permutation symmetry,
only the sorted level patterns are considered. The process starts with the pattern
(0,0,0,0). In subsequent iterations, the level of one of the Pls is incremented (marked
red). If the iteration does not yield any cost- or area-optimal nodes, the pattern is not
incremented (shaded gray). (Color figure online)

The process of calculating the extended database requires much smaller run-
time as compared to the two-input database. The initial input level pattern
£o = (0,0,0,0) required less than three hours while each remaining input arrival
pattern was explored in 1-2 hours. This speedup is attributed to the high expres-
sive power of the three-input gates. During the enumeration process, the depth-
optimal implementations of all 22" = 65, 536 functions are found with fewer logic
levels and nodes to be explored.

7.2 Mapping with Original Database

We apply our original database to synthesize a subset of EPFL [34] and
ISCAS [36] benchmark circuits. We compare our results against PBMap [11],
the state-of-the-art dynamic programming algorithm for path balancing. The
results are shown in Table 1. Compared to the state of the art, gate compound-
ing technique drastically reduces logic depth by an average of 33%. Due to the
use of more expressive compound gates, the area of the circuits (expressed as
total JJ count) is reduced by an average of 24%, despite 53% larger number of
path-balancing DFFs.

Despite substantial improvements in many benchmarks, our approach yields
a weaker result in dec circuit. The increase in JJ count can be attributed to two
factors. First, the logic depth of this circuit is only 4 cycles, limiting the impact
of compound gates. Second, the JJ cost of each primitive in the RSFQ library
used in [11] is not openly available at the reference. Likely, the CONNECT cell
library [37] used in this work has a higher JJ cost for logic primitives compared
to [11], contributing to the area increase.

We also compare our results with the dual clock methodology [15]. A logic
circuit is partitioned into separate clocking domains using the NDRO flip flops.
Subcircuits within each partition are clocked at high frequency, while the NDRO
flip flops operate at a frequency 7 times smaller than the high frequency. The
throughput of the system is therefore reduced by a factor of 7. The results
are compared in Table2. Despite 7 times smaller throughput and 64% fewer
DFFs, the dual clocking method requires almost 2 times more JJs as compared
to gate compounding. In addition, DCM systems require relatively expensive
NDRO DFFs, pulse repeaters and an additional low-frequency clock distribution
network, further degrading the area of the system.

16 R. Bairamkulov et al.

Table 1. Number of path-balancing DFFs, JJs, and logic depth in a subset of EPFL [38]
and ISCAS [36] benchmarks

Benchmark #DFF #JJ Delay Runtime, s
Baseline|Ours |Ratio|Baseline/Ours |Ratio|Baseline|Ours Ratio

sin 13,666 [17,627(1.29 (215,318 (126,694(|0.59 |182 86 |0.47 0.399
cavlc 522 987 |1.89 (16,339 |15,098 |0.92 |17 11]0.65 |0.009
dec 8 16 2.00 5,469 16,324 [1.16 |4 4 1.00 |0.006
int2float 270 443 |1.64 6,432 |5,616 |0.87 |16 10 |0.63 |0.004
priority (9,064 [14,754/1.63 |102,085 |95,370 (0.93 127 125 10.98 [0.013
c499 476 512 [1.08 [7,758 [5,593 [0.72 |13 8 0.62 |0.040
c880 774 1,179 11.52 12,909 (8,359 [0.65 |22 13]0.59 |0.013
c1908 696 799 [1.15 (12,013 |[5,553 [0.46 |20 11]0.55 |0.025
c3540 1,159 (1,556 [1.34 28,300 (22,231 |0.79 (31 18]0.58 |0.034
c5315 2,908 |3,727 |1.28 |52,033 |33,524 (0.64 |23 13]0.57 |0.091
c7552 2,429 |4,744 |1.95 |48,482 {28,900 (0.60 |19 13]0.68 |0.115
Average 1.53 0.76 0.67

Table 2. Comparison with DCM [15] with 1/7 throughput on a subset of EPFL [38]
and ISCAS [36] benchmarks

benchmark DCM (1/7) [15] Our Work
#DFF|#JJ #DFF|Ratio/#JJ Ratio
int2float [117 |7,770 440 |3.76 5,973 0.77
priority |8,562 |257,252 |14,754|1.72 (68,177 |0.27
voter 7,204 447,044 (8,357 |1.16 |189,622|0.42
c432 224 110,734 1,180 |5.27 6,905 |0.64
c880 362 |14,658 1,176 (3.25 |8,650 |0.59
c1355 193 18,739 448 |2.32 5,703 0.65
c1908 282 [13,169 (799 |2.83 [5,497 |0.42
c3540 776 43,437 |1,554 [2.00 (20,820 |0.48
Average 2.79 0.53

7.3 Mapping Using Three-Input Gates

To evaluate the effect of using three-input gates in SFQ logic synthesis, we repeat
our experiments using the extended database. The results are shown in Table 3.
On average, the use of three-input gates reduces the number of DFFs by 43%,
while reducing the area by 11%. These improvements can be attributed to two
factors. First, the compound gates utilizing three-input elements, provide more
logical expressive power with smaller area. Furthermore, the logic depth of the
networks in reduced by 30%. With smaller logic depth fewer path balancing
DFFs are needed to realize the same function.

Synthesis of SFQ Circuits with Compound Gates 17

Table 3. Synthesis of a subset of EPFL [38] and ISCAS [36] benchmarks using the
original and extended (with three input-gates) databases

Benchmark #DFF #JJ Delay
Original Extended Ratio|Original Extended Ratio|Original Extended Ratio
sin 17,627 |11,988]0.680(126,694 (105,377 |0.832/86 69 0.802
cavlc 987 433 0.439(15,098 13,311 |0.882/11 7 0.636
dec 16 2 0.125/6,324 8,848 1.399 4 2 0.500
int2float (443 182 0.410/5,616 4,521 0.805(10 6 0.600
priority [14,754 [10,084 |0.683(95,370 144,016 |0.462125 62 0.496
c499 512 430 0.840(5,593 (4,847 0.867|8 7 0.875
c880 1,179 |780 0.662(8,359 7,283 0.871(13 10 0.769
c1908 799 435 0.544 /5,553 |5,667 1.021 11 8 0.727
c3540 1,556 936 0.602(22,231 19,131 |0.861/18 13 0.722
c5315 3,727 12,798 0.751|33,524 31,139 [0.92913 11 0.846
c7552 4744 2,201 0.464 (28,900 25,084 |0.868/13 9 0.692
Average 0.564 0.891 0.697

8 Conclusions

RSFQ technology has the potential to enhance power and speed of the main-
stream computing systems by several orders of magnitude. The gate compound-
ing technique is a novel method to reduce the logic depth by exploiting the
synchronization mechanisms of RSF(Q technology. With more expressive logic
gates, area of the circuits is considerably reduced. In this paper, we proposed a
scalable technology mapping method that leverages SFQ compound gates. We
generated a database of functionally correct and area-optimal compound gates
for all functions up to 4 variables. Then, we applied a delay-driven technology
mapping using the pre-computed database as a cell library. In the experimental
results, we showed a substantial reduction in the area and logic depth by 24%
and 33%, respectively, compared to the state-of-the-art.

We further extend our results to support the logic synthesis with three-input
threshold gates, namely AND3, MAJ3, and OR3. By using the more expressive logic
gates, the area and logic depth is further reduced by, respectively, 11% and 30%.
These results indicate the great potential for the use of these three-input gate
in SFQ logic synthesis, motivating the development of these logic cells in future
SFQ cell libraries.

Acknowledgement. This research was supported by the SNF grant “Supercool:
Design methods and tools for superconducting electronics”, 2000211920981, and Syn-
opsys Inc.

18

R. Bairamkulov et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Likharev, K., Mukhanov, O., Semenov, V.: Resistive single flux quantum logic for

the josephson-junction digital technology. In: Proceedings of International Confer-
ence on Superconducting Quantum Devices, vol. 85, pp. 1103-1108 (1985)

. Kawaguchi, T., Tanaka, M., Takagi, K., Takagi, N.: Demonstration of an 8-bit SFQ

carry look-ahead adder using clockless logic cells. In: International Superconductive
Electronics Conference (2015)

Gupta, D., Inamdar, A.A., Kirichenko, D.E., Kadin, A.M., Mukhanov, O.A.:
Superconductor analog-to-digital converters and their applications. In: Proceed-
ings of IEEE MTT-S International Microwave Symposium (2011)

. Yang, S., Gao, X., Yang, R., Ren, J., Wang, Z.: A hybrid josephson transmission

line and passive transmission line routing framework for single flux quantum logic.
IEEE TASC 32(9), 1-11 (2022)

Chen, W., Rylyakov, A., Patel, V., Lukens, J., Likharev, K.: Rapid single flux
quantum t-flip flop operating up to 770 GHz. IEEE TASC 9(2), 3212-3215 (1999)
Herr, Q.P., Smith, A.D., Wire, M.S.: High speed data link between digital super-
conductor chips. Appl. Phys. Lett. 80(17), 3210-3212 (2002)

Akaike, H., et al.: Demonstration of a 120 GHz single-flux-quantum shift register
circuit based on a 10 kA ¢m™? Nb process. Supercond. Sci. Technol. 19(5), S320
(2006)

Holmes, D.S., Ripple, A.L., Manheimer, M.A.: Energy-efficient superconducting
computing-power budgets and requirements. IEEE TASC 23(3), 1701610 (2013)
Bunyk, P., Likharev, K., Zinoviev, D.: RSFQ technology: physics and devices. Int.
J. High Speed Electron. Syst. 11(01), 257-305 (2001)

Krylov, G., Friedman, E.G.: Single Flux Quantum Integrated Circuit Design.
Springer, Cham (2022)

Pasandi, G., Pedram, M.: PBMap: a path balancing technology mapping algorithm
for single flux quantum logic circuits. IEEE TASC 29(4), 1-14 (2019)

Kito, N., Takagi, K., Takagi, N.: Logic-depth-aware technology mapping method
for RSFQ logic circuits with special RSFQ gates. IEEE TASC 32(4), 1-5 (2021)
Calvino, A.T., De Micheli, G.: Algebraic and boolean methods for SFQ supercon-
ducting circuits. In: Proceedings of ASP-DAC (2024)

Bairamkulov, R., Jabbari, T., Friedman, E.G.: QuCTS - single-flux quantum clock
tree synthesis. IEEE TCAD 41(10), 3346-3358 (2022)

Pasandi, G., Pedram, M.: Depth-bounded graph partitioning algorithm and dual
clocking method for realization of superconducting SFQ circuits. ACM JETCAS
17(1), 1-22 (2020)

Yang, J.-H., et al.: Distributed self-clock: a suitable architecture for SFQ circuits.
IEEE TASC 30(7), 1-7 (2020)

Li, X., et al.: Optimization of delay time stabilization for single flux quantum cell
library. IEEE TASC 30(7), 1-5 (2020)

Rylov, S.V.: Clockless dynamic SFQ and gate with high input skew tolerance.
IEEE TASC 29(5), 1-5 (2019)

Kawaguchi, T., Takagi, K., Takagi, N.: Static timing analysis for single-flux-
quantum circuits composed of various gates. IEEE TASC 32(5), 1-9 (2022)
Bairamkulov, R., De Micheli, G.: Compound logic gates for pipeline depth mini-
mization in single flux quantum integrated systems. In: Proceedings of GLSVLSI
(2023)

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

Synthesis of SFQ Circuits with Compound Gates 19

Bairamkulov, R., Calvino, A.T., De Micheli, G.: Synthesis of SFQ circuits with
compound gates. In: 2023 IFIP/IEEE 31st International Conference on Very Large
Scale Integration (VLSI-SoC), pp. 1-6 (2023)

Marakkalage, D.S., Riener, H., De Micheli, G.: Optimizing adiabatic quantum-
flux-parametron (AQFP) circuits using an exact database. In: Proceedings of
NANOARCH (2021)

Amari, L., et al.: Enabling exact delay synthesis. In: Proceedings of ICCAD, pp.
352-359 (2017)

Calvino, A.T., Riener, H., Rai, S., Kumar, A., De Micheli, G.: A versatile mapping
approach for technology mapping and graph optimization. In: Proceedings of ASP-
DAC, pp. 410-416 (2022)

Mukhanov, O., Semenov, V., Likharev, K.: Ultimate performance of the RSFQ
logic circuits. IEEE Trans. Magn. 23(2), 759-762 (1987)

Soeken, M., et al.: Practical exact synthesis. In: Proceedings of DATE, pp. 309-314
(2018)

Zhang, H.-T., Jiang, J.-H.R., Amard, L., Mishchenko, A., Brayton, R.: Deep inte-
gration of circuit simulator and SAT solver. In: Proceedings of DAC, pp. 877-882
(2021)

Marakkalage, D.S., Testa, E., Riener, H., Mishchenko, A., Soeken, M., De Micheli,
G.: Three-input gates for logic synthesis. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 40(10), 2184-2188 (2020)

Amaru, L., Gaillardon, P.-E., De Micheli, G.: Majority-inverter graph: a novel
data-structure and algorithms for efficient logic optimization. In: Proceedings of
the Design Automation Conference (2014)

Katam, N.K., Pedram, M.: Logic optimization, complex cell design, and retiming
of single flux quantum circuits. IEEE TASC 28(7), 1-9 (2018)

Krylov, G., Friedman, E.G.: Asynchronous dynamic single-flux quantum majority
gates. IEEE TASC 30(5), 1-7 (2020)

Calvino, A.T.; De Micheli, G.: Depth-optimal buffer and splitter insertion and
optimization in AQFP circuits. In: Proceedings of ASP-DAC, pp. 152-158 (2023)
Leiserson, C.E., Saxe, J.B.: Retiming synchronous circuitry. Algorithmica 6(1-6),
5-35 (1991)

Soeken, M., et al.: The EPFL Logic Synthesis Libraries. arXiv:1805.05121v3 (2018)
Benini, L., De Micheli, G.: A survey of boolean matching techniques for library
binding. ACM Trans. Design Autom. Electr. Syst. 2(3), 193-226 (1997)

Hansen, M.C., Yalcin, H., Hayes, J.P.: Unveiling the ISCAS-85 benchmarks: a case
study in reverse engineering. IEEE Des. Test Comput. 16(3), 72-80 (1999)
Yorozu, S., et al.: A single flux quantum standard logic cell library. Physica C:
Superconductivity 378-381, 1471-1474 (2002)

Amart, L., Gaillardon, P.-E., De Micheli, G.: The EPFL combinational benchmark
suite. In: Proceedings of IWLS (2015)

