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Abstract—Logic synthesis is an ensemble of algorithms that
optimizes digital circuit representations and maps them to a
chosen technology. Minimizing the number of gates is essential to
reduce area occupation and power consumption. As the problem
is intractable, heuristic logic transformations are used. In par-
ticular, resubstitution attempts to express the function of a node
using other nodes already present in the network. State-of-the-
art resubstitution engines can only identify new implementations
with support of up to three inputs or being simply decomposable.
This work aims at extending resubstitution to non-decomposable
functions with more than three inputs and it outperforms previ-
ous methods. We apply our method on highly optimized designs
from the ISCAS and EPFL benchmarks, achieving additional
average improvements of 18.50% and 8.36%.

I. INTRODUCTION

THE operation of digital chips relies on switching millions
of gates within the combinational circuits they contain.

Each of these circuits is one of many possible implementations
of complex Boolean functions. Finding implementations mini-
mizing the gate count is an effective approach to obtain smaller
chip sizes, fewer wires, and reduced power consumption.

Logic synthesis is an ensemble of algorithms that optimizes
network representations before mapping to a specific tech-
nology library [1]–[3]. Reducing the number of nodes in the
network representation is crucial to reduce the number of gates
after mapping. As the problem is intractable [4], various logic
heuristic transformations are used.

Resubstitution is a very effective transformation that tries
to express (resynthesize) the function of a node using a set
of candidate nodes already present in the network [1]. The
transformation is accepted if the new implementation reduces
the node count. The exploited nodes are named divisors
because resynthesis generally occurs through a decomposition
presenting the mathematical structure of a division [5]–[7].

There are two key sub-problems in resubstitution:
1) Select a support from a set of candidate divisors.
2) Resynthesize the function using this support.
State-of-the-art resubstitution engines adress these problems

by combining functional simulation, decomposition and SAT-
solving [5], [8]–[10]. These engines are highly effective when:

1) The number of support divisors is 3 or less.
2) The functionality of the node is simply decomposable.

This work extends resubstitution to functions with more than
three inputs and that are not simply decomposable. Our
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method relies on set of pairs of functions to be distinguished
(SPFD), a powerful functional representation for investigating
the dependency of different nodes [8], [11]–[13]. In this work:

1) We define an SPFD-based cost-function H(xi) for eval-
uating whether a divisor xi should be selected.

2) We devise a support selection algorithm based on H(·).
3) We devise a resynthesis algorithm based on H(·).
4) We use these algorithms in a resubstitution engine.
The experimental results show that our approach enables

resubstitution to identify optimization opportunities that are
impossible to find with state-of-the-art engines. We apply
our method on designs for which state-of-the-art resubstitu-
tion [10] could not find any further optimization. Our heuristic
unlocks additional average improvements of 18.50% and
8.36% on the ISCAS and EPFL benchmarks.

II. BACKGROUND

A. Boolean Network Representations

Boolean networks are directed acyclic graphs in which
nodes represent logic gates, and edges represent wires. And-
Inverter Graphs (AIGs) are Boolean networks in which nodes
are two-input ANDs, and negated edges represent inverters.
XAIGs extend AIGs with two-input XORs, enabling design-
dependent optimizations not achievable with AIGs [14]. As
state-of-the-art resubstitution heuristics rely on unateness in-
formation, they struggle with XOR functionalities [5]. Hence,
investigating XAIGs is useful to test the effectiveness of
a novel resubstitution algorithm to identify XOR-dependent
optimizations. Due to space limitations, we focus on XAIGs,
but our method generalizes to other representations.

If there is a path from a node xi to a node x, xi is in the
transitive fanin (TFI) of x. The primary inputs (PIs) are nodes
without fanins in the network. The maximum fanout free cone
(MFFC) of a node x is the set of nodes that are x, or a node
in the TFI of x whose fanout is uniquely in the MFFC.

A cut of a node x, is a set of nodes, named leaves such that
any path from a PI to x passes through one leaf. The local
function of node x with respect to a cut is the Boolean function
of the subcircuit identified by the cut. The global function of
node x is the Boolean function of the sub-circuit defined from
node x to the PIs. With an abuse of notation we refer to the
global function of x as x : Bn 7→ B.

B. Sets of Pairs of Functions to be Distinguished

Let x : Bn 7→ B be the global function of a node. A minterm
M ∈ Bn is a possible inputs assignment. Then, x induces a



partition of Bn in two subsets: the onset and the offset, such
that x(M) = 1 and x(M) = 0, respectively.

The global sets of pairs of functions to be distinguished
(gSPFD) at node x is a function Υx : Bn × Bn → B:

Υx(Mi,Mj)
.
= x(Mi)⊕ x(Mj) ∀Mi,Mj ∈ Bn (1)

This function verifies if x distinguishes Mi and Mj because
one is in the onset and the other is in the offset [8], [11], [12].

When exhaustively simulating a network is intractable, it is
customary to select a subset of the input minterms M⊆Bn,
perform the functional simulation of the network, and treat the
resulting partial truth tables x̃, named simulation signatures,
as an approximation of the global functions. The approximate
SPFD (aSPFD) Υx̃ is obtained by evaluating Eq. 1 on x̃ [15].

An Information graph (IG) is the graph representation of an
SPFD where each vertex is a minterm, and there is an edge
{Mi,Mj} if x(Mi) ̸= x(Mj), i.e., if Eq. 1 evaluates to 1 [16].
Fig. 1 shows the IGs of the nodes in a simple network.

Fig. 1: From top to bottom: global functions at the cut nodes,
their IGs, and the covering check of the target IG at each cut.

C. Dependency and Graph Covering

A dependency function for node x and set C={xc(l)}kl=1, is
a function g : Bk → B s.t. x=g(C) [17]. Given a node x and
a set of variables C, a necessary and sufficient condition for
the existence of a dependency function is that, ∀Mi,Mj ∈ Bn,

x(Mi) ̸= x(Mj)⇒∃xl ∈ C s.t. xl(Mi) ̸= xl(Mj). (2)

When C is a cut of a node x, the local function constitutes a
dependency function, and Eq. 2 is necessarily satisfied.

Using the definition of SPFDs (Eq. 1), we rewrite Eq. 2 as

Υx(Mi,Mj)≤
k∨

l=1

Υxc(l)
(Mi,Mj) (3)

Where a ≤ b (or a ⇒ b [4]) is 0 only if a = 1 and b = 0.
Eq. 3 identifies a covering condition on the IGs: the IG of
node x is covered by the union of the IGs of the nodes in C
for which there is a dependency function. Fig. 1 illustrates the
satisfaction of Eq. 3 at the cuts {x0, x1}, {x2, x3}, and {x4}:
the IG of x is covered by the union of the IGs at each cut.

D. Resubstitution and Related Works Based on SPFDs
Boolean resubstitution (RS) is a logic minimization heuristic

that can optimize Boolean networks in which:
1) There are nodes with constant global function.
2) There are nodes that can be resynthesized with a new

set of variables reducing the node count of the network.
An important sub-problem to address in RS is the support se-
lection problem, i.e., finding a new set of nodes to resynthesize
a target node. Since a valid support must satisfy Eq. 3, several
RS methods can be understood using this equation.

Originally, gSPFDs were computed exhaustively [18]. More
recently, Zhang et al. [8] combined partial simulation and SAT-
solving to reconstruct gSPFDs and identified valid supports
from a set of candidates. Reconstructing the gSPFD with SAT-
solving makes the method computationally intensive [15].

In logic rectification, Yang et al. [15] addressed this problem
using aSPFDs. Nevertheless, their method relies on expensive
heuristics that iterate through all the edges of the aSPFDs.

Goldberg et al. [19] proposed an RS-like algorithm for
subcircuit replacement. However, they only use the initial sub-
circuit’s inputs, restricting the method to local optimizations.

E. The Simulation-Guided Paradigm For Resubstitution
Algorithm 1 outlines the principle of operation of modern

resubstitution [5], [8]–[10]. First, the network is simulated with
|M| simulation patterns. Next, for each node x, a structural
exploration of the network identifies a list of divisors D. If
node x can be resynthesized with some divisors from D,
and the transformation reduces the node count, a SAT-solver
checks if the transformation preserves functional equivalence.
This paper focuses on the research problem of resynthesizing
a node given a set of divisors, i.e., the core of Algorithm 1.

State-of-the-art resynthesis engines for XAIGs enumerate
optimum XAIGs with up to 3 inputs, and verify if evaluating
any of them at a subset of the divisors yields the simulation
pattern of node x [10]. Unateness-based heuristics improve
runtime and quality by reducing the number of cases consid-
ered, and identifying if a function is simply decomposable,
i.e., f(S) = xi⊙ f(S\xi) for some Boolean function ⊙ [20].
However, these heuristics can result in missing optimization
opportunities, especially when non-unate functions like XORs
are involved. We name Algorithm 1 with this engine urs.

In this paper, we propose a resynthesis algorithm capable
of handling arbitrary functions with more than 3 inputs.
We address the problem in two steps: support selection and
resynthesis. We name Algorithm 1 with our method irs.

III. SPFD-BASED RESUBSTITUTION

A. Covering Processes and SPFD Representations
Given a node x and an ordered set of nodes C = (xc(t))

T
t=1,

a covering process is the sequence Υ0
x→Υ1

x. . .Υ
t
x. . .→ΥT

x ,
where Υ0

x = Υx, and at each step t we remove the edges
covered by Υxc(t)

. Fig 2 shows an example where we use
simulation signatures of length |M| = 5. We name H(Υt

x)
the number of edges of Υt

x. To implement this process, we
need an efficient representation for SPFDs.

Using the truth table of the function in Eq. 1 allows for a
straightforward implementation, because covering is a bitwise



Algorithm 1 ⟨METHOD⟩rs(N ; |M|, Nmax)

1: random_simulation(N , |M|)
2: for all x ∈ N do
3: while iteration < Nmax do
4: D ← collect_divisors()
5: xnew ← resynthesize⟨METHOD⟩(x,D)
6: if #(removed nodes) > #(new nodes) then
7: if SAT-CEC(xnew, x) == true then
8: return the subcircuit to perform optimization
9: else

10: update_simulation (N )

Fig. 2: From top to bottom: covering using IGs and simulation
signatures, and number of edges H(Υt

x) after covering.

operation Υt
x = Υxc(t)

< Υt−1
x , and counting the edges is

a popcount operation H(Υt
x) =

popcount(Υt
x)

2 . However, the
memory cost of this representation is quadratic in the number
of minterms O(|M|2), limiting the size of the simulation
signatures and, consequently, the expressiveness of aSPFDs.

We propose an alternative covering approach using the |M|-
dimensional simulation signatures. Covering the graph with
Υxc(t)

corresponds to exploiting the information of xc(t), i.e.,
to separate the graph in two disconnected parts identified by
xc(t). This amounts to partitioning the signature of x using the
onset and offset of xc(t). The bottom part of Fig. 2 shows the
partitioning of the signature. At each step, H(Υt

x) is the sum
of the products of the number of 0s and 1s in each part. This
representation requires a O(2T |M|)-memory occupation.

The choice of a representation depends on T and |M|.

B. The Support Selection Algorithm
Let x be a target node and D={xd(l)}Dl=1 a set of candidate

divisors. The support selection problem consists of finding a
subset C⊂D satisfying Eq. 3. We define two algorithms, both
relying on the definition of a covering process: at each step,
we choose a divisor, we update the support, and we cover Υt

x.
We aim for sets C satisfying Eq. 3 and having small sizes:
small supports contain more informative variables, which are
more likely to result in compact resynthesis sub-circuits.

The first approach we consider is a greedy strategy [21]. Let
Υt

x be the partially covered IG at iteration t, and H(Υxi
<

Υt
x) the number of remaining edges after covering Υt

x with
Υxi

. In greedy support selection we choose the divisor xi

minimizing H(Υxi
< Υt

x), and we break ties at random.

Fig. 3: Greedy support selection: At t = 1 two x0 and x1 have
the same cost H(xi)=3. The tie is broken at random and x1

is selected. At t = 2 the divisor x0 completes the covering.

Fig. 3 illustrates the greedy support selection using the 5-
dimensional simulation signatures of three divisors: at each
step t, the divisors are tested based on the IG covering they
induce, until obtaining the support C0 = {x1, x0}.

The greedy heuristic does not guarantee finding the smallest
size support or the best support for the resynthesis problem.
To increase the capability of the algorithm to explore small
size solutions, we define a statistical version of the algorithm.
At each step t of the covering process, we define a probability
distribution over the candidate divisors, and we sample a
divisor from it. The probability distribution reads

p(xi;β, t) ∝ e−βH(Υxi
<Υt−1

x ) ∀xi ∈ D (4)

The divisors covering the largest number of edges have the
highest probabilities. In the limit β → ∞, the algorithm
degenerates to the greedy approach: the only divisors with non
zero probability are the ones with the lowest H(Υxi

< Υt−1
x ).

As β decreases, the likelihood of selecting locally sub-optimal
(but potentially globally optimal) divisors increases, until all
divisors are equally likely in the limit β → 0.

The flexibility of the statistical approach comes at the cost
of an extra O(D) runtime at each iteration for sampling.

C. SPFD-Based Cut-by-Cut Synthesis

Let x be a target node, and C0 a set of divisors satisfying
Eq. 3, i.e., a support. The resynthesis problem consists of
finding a sub-circuit taking the nodes in C0 as the input, and
having the output node with the same global function as x. We
synthesize circuits one cut at the time. We aim for networks
with a close-to-minimum number of nodes to maximize the
optimization potential of resynthesis. The set C0 contains the
inputs of a small network, or a set of divisors in a bigger
circuit. At each level l, we add a new cut to the netlist, i.e., a set
Cl = {xcl(i)}ki=1. Following the discussion in Sec. II-B, each
cut Cl must satisfy Eq. 3, i.e., Cl must have enough information
to resynthesize x.

Synthesizing a circuit one cut at the time has the advantage
that, at each level l, there is a small number of candidate new
nodes to add: each element of Cl is either a wire pushing a
variable in Cl−1 forward, or a binary Boolean operation from
the set {∨̄, <,>,∧,⊕} between two variables in Cl−1. The
enumeration of these candidates identifies a set Dl, from which
we can find a cut Cl by solving the support selection problem.
We iterate the procedure until there is a cut of size 1. Fig. 4
shows the first step of the procedure for C0 = {x0, x1}. We



Fig. 4: Adding the cut C1 to the circuit. From left to right:
enumeration of the candidate nodes and selection of the cut.

remove the XOR to make the example non-trivial. Then, D1=
{x0, x1, x0∨̄x1, x0 < x1, x0 > x1, x0 ∧ x1}, from which we
obtain the cut C1 = {x1 < x0, x1 > x0}.

Compared to previously proposed cut-by-cut synthesis
methods [19], our approach is simpler, and its design space
exploration capabilities are noteworthy in their own right.

IV. EXPERIMENTS

A. SPFD-Based Synthesis
The goal of this experiment is to show that, if provided

with the support divisors, our resynthesis method can identify
high-quality solutions in the design space. We target a Boolean
function for which no state-of-the-art decomposition algorithm
finds the optimum XAIG (12 nodes) [9]. The hexadecimal rep-
resentation of the truth table of this function is 0x43B86C25.
We used our engine to synthesize 10 circuits at 150 different

calls (10 designs for each statistically selected first cut). We re-
peated the experiment varying β. The small size of the problem
allows us to use the gSPFD instead of the aSPFD. Fig. 5 shows
that we can find an optimum XAIG. The convergence time to
the optimum is influenced by β. We validated the effectiveness
of this synthesis method with β = 100 via experiments on
other 5-input functions with known optimum [4], which we
do not report for space limitation reasons.

B. SPFD-Based Resubstitution
We show now the effectiveness of our technique by applying

it to a set of standard benchmark circuits. In this experiment
we show that irs can find optimization transformations
not accessible to the state-of-the-art resubstitution algorithm
urs [10]. First, we iteratively optimize industrial designs with
urs until no further improvement can be found (urs∞).
Next, we apply one round of our strategy. We use the notation
irsK,S,I : K is the maximum allowed support size, S is the
maximum number of supports we sample from the candidate
divisors for optimizing a node, and I is the number of calls to
the statistical resynthesis engine for a given support. Increasing
these parameters enables higher effort optimization.

We used Nmax =100 for both urs and irs. Despite the
high effort optimization of the state-of-the-art engine, irs
unlocks additional improvements in most designs.

Fig. 5: Function 0x43B86C25: size of the best XAIG found
during the exploration of the design space. Experiment used
to set β = 100 based on the convergence time to the optimum.

TABLE I: irs on the ISCAS and EPFL benchmarks, pre-
optimized with the urs algorithm [10] until convergence.

Design urs∞ → irs4,1,1 → irs7,10,10
ISCAS |XAIG| |XAIG| time[s] |XAIG| time[s]
c17 6 6 0.00 6 0.00
c432 166 166 0.01 166 0.15
c499 388 246 0.03 214 0.15
c880 296 269 0.02 261 0.27
c1355 420 263 0.03 202 0.14
c1908 280 181 0.02 165 0.15
c2670 532 484 0.04 455 0.65
c3540 787 750 0.08 730 1.40
c5315 1277 1211 0.10 1168 1.27
c6288 1480 1426 0.07 1420 0.48
c7552 1291 1146 0.11 1039 1.41

−13.84% −18.50%
EPFL |XAIG| |XAIG| time[s] |XAIG| time[s]
adder 892 653 0.07 643 0.22
bar 2968 2904 0.35 2840 6.43
div 38942 33304 11.09 32876 20.81
hyp 205329 171170 114.97 169450 178.07
log2 29390 26316 33.75 24858 78.61
max 2862 2862 0.24 2862 3.64
multiplier 25403 20341 5.94 19103 27.40
sin 4929 4578 1.63 4444 7.82
sqrt 18450 18015 3.92 16559 19.58
square 16199 14261 1.79 13460 7.47
arbiter 11839 11839 0.90 11839 16.37
cavlc 591 591 0.17 588 2.78
ctrl 85 85 0.01 85 0.10
dec 304 304 0.01 304 0.01
i2c 1151 1145 0.10 1145 1.52
int2float 204 204 0.03 202 0.50
mem ctrl 33579 33303 3.73 32745 48.34
priority 484 484 0.04 484 0.48
router 205 181 0.03 177 0.26
voter 7325 6922 0.72 6416 5.68

−6.52% −8.65%

V. CONCLUSIONS

This paper proposes a new synthesis heuristic capable
of achieving optimum or close-to-optimum XAIGs for non-
simply decomposable functions with more than 3 inputs. By
using this algorithm in a resubstitution engine, we show that it
pushes the optimization capabilities of resubstitution beyond
the limitations of state-of-the-art engines.
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