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Abstract—Minimizing the use of CNOT gates in quantum
state preparation is a crucial step in quantum compilation, as
they introduce coupling constraints and more noise than single-
qubit gates. Reducing the number of CNOT gates can lead to
more efficient and accurate quantum computations. However, the
attainment of optimal solutions is hindered by the complexity
of modeling superposition and entanglement. In this paper, we
propose an effective state preparation algorithm using an exact
CNOT synthesis formulation. Our method represents a milestone
as the first design automation algorithm to surpass manual
design, reducing the best CNOT count to prepare a Dicke state by
2×. For general states with up to 20 qubits, our method reduces
the CNOT count by 9% and 32% for dense and sparse states,
respectively, on average, compared to the latest algorithms.

I. INTRODUCTION

Quantum states preparation (QSP) is essential for compiling
quantum algorithms [1], implementing quantum communica-
tions [2], studying quantum metrology [3], and experimenting
with quantum entanglement [4]. For decades, researchers have
based QSP circuit designs on mathematical derivation [5]–[8]
and created them manually. These methods are effective for
certain highly symmetric states, such as GHZ states [9], W
states [10], and Dicke states [11]. However, their approach
cannot be applied to general states.

Limitations of manual designs point us to the need to
develop design automation algorithms. Recent works propose
Boolean methods utilizing decision diagrams to prepare gen-
eral 𝑛-qubit states using O(2𝑛) CNOT gates [12]–[14]. By
leveraging sparsity, the latest studies improve the efficiency
and develop algorithms to prepare 𝑛-qubit with 𝑚 nonzero
amplitudes using O(𝑚𝑛) CNOT gates [15]–[17]. However,
these methods sacrifice optimality for efficiency, consuming
more CNOT gates than manual designs.

The challenges of solving QSP on classical computers
are the complexities of modeling superposition and entan-
glement [18]. Indeed, while classical computers store binary
information, compute Boolean operators, and retrieve a single
binary output, quantum computing processes high-dimensional
state vectors with complex amplitudes that evolve with matrix
multiplications. With superposition, the dimension of state
vectors grows exponentially with the number of qubits. There-
fore, only certain families of quantum states can be efficiently
encoded using classical bits [19], [20]. Besides, because of
entanglement, the qubits in the states are inseparable. As a
result, developing an effective divide-and-conquer approach
for QSP problems is difficult.

In this paper, we propose an exact CNOT synthesis formu-
lation for QSP. Our method encodes quantum states and gates

on a graph and formulates QSP as a shortest path problem.
This formulation provides full visibility of the solution space.
Targeting a library of gates specialized for QSP, our approach
is guaranteed to find the optimal circuit to prepare the given
state, achieving the lowest CNOT cost. For general real-
amplitude states with up to 20 qubits, our method reduces
the CNOT cost by 9% and 32% for dense and sparse states,
on average, compared to the latest algorithms. Besides, our
method represents a milestone as the first design automation
algorithm to surpass manual design, reducing the best CNOT
count to prepare a Dicke state by 2×.

In the rest of the paper, we present the background in
Section II and show an example to motivate our work in
Section III. Then, we illustrate our shortest path problem
formulation and the specialized library for QSP in Section IV
and introduce our specialized shortest path algorithm in Sec-
tion V. In Section VI, we demonstrate experimental results
and evaluate our method.

II. BACKGROUND

In this section, we provide background for quantum state
preparation. For clarity and space constraints, we refer readers
to established sources for formal definitions of notations [18]
and quantum gates [21].

A. Quantum States and Quantum Gates

We express the 𝑛-qubit quantum state as a linear combina-
tion of 2𝑛 orthonormal basis vectors.

|𝜓⟩ =
∑︁

𝑥∈𝑆 (𝜓)
𝑐𝑥 |𝑥⟩ , and

∑︁
𝑥∈𝑆 (𝜓)

|𝑐𝑥 |2 = 1,

where |𝑥⟩ ∈ {0, 1}𝑛 is the basis state, 𝑐𝑥 ∈ C are amplitudes
whose norm indicates the probability of observing |𝑥⟩, and
𝑆(𝜓) is the index set, which represents the set of basis with
nonzero amplitudes. The cardinality of a state 𝜓 is the number
of elements in its index set, |𝑆(𝜓) |.

Quantum gates, or operators, denoted by 𝑈, are unitary ma-
trices representing transitions between quantum states. U(2𝑛)
represents the set of all 𝑛-qubit gates. Y rotations, R𝑦 , are
single-qubit unitaries 𝑈 ∈ U(2) with real matrices.

𝑈 =

(
𝑎 −𝑏
𝑏 𝑎

)
=

(
cos 𝜃

2 − sin 𝜃
2

sin 𝜃
2 cos 𝜃

2

)
= R𝑦 (𝜃),

where 𝑎 and 𝑏 are real numbers satisfying 𝑎2 + 𝑏2 = 1 and 𝜃

is a rotation angle that satisfies 𝜃 = 2 · arctan 𝑏
𝑎

.
CNOT is a two-qubit gate that transitions 𝛼 |00⟩ + 𝛽 |01⟩ +

𝛾 |10⟩+𝛿 |11⟩ to 𝛼 |00⟩+𝛽 |01⟩+𝛾 |11⟩+𝛿 |10⟩. All operators in



TABLE I: Selected quantum gates with their CNOT costs.

Operators R𝑦 CNOT CR𝑦 MCR𝑦

𝑅𝑦
• •

𝑅𝑦

•· · ·
𝑅𝑦 𝑅𝑦

CNOT cost 0 1 2 O(2𝑛) [23]

U(2𝑛) can be decomposed into gates in {CNOT,U(2)} [21].
We define CNOT cost of a quantum operator as the number
of CNOTs in the decomposition.

B. Quantum Circuits for State Preparations

Given a state |𝜓⟩ and a set of quantum gates L, the quantum
state preparation finds a quantum circuit comprising 𝑙 gates
𝑈1,𝑈2, ...𝑈𝑙 ∈ L such that these gates map the ground state
|0⟩ to the desired state |𝜓⟩, i.e., |𝜓⟩ = 𝑈𝑙 ...𝑈2𝑈1 |0⟩. For
noisy intermediate-scale quantum (NISQ) computers, CNOTs
introduce more noise than single-qubit gates, and our objective
is to minimize the number of CNOTs in the circuit after
decomposed into gates in {CNOT,U(2)}.

This paper studies states with real amplitudes and state
transitions in the X-Z plane due to their predominance in
quantum algorithms. Additionally, our method adapts through
a diagonal unitary phase oracle to prepare arbitrary states with
complex amplitudes [22].

Relevant quantum gates and their CNOT costs are listed
in Table I, including Y rotations (R𝑦), CNOT, and multi-
controlled Y rotations (MCR𝑦) gates. Note that an MCR𝑦

gate with 𝑛 control qubits can implement 2𝑛 rotation angles
corresponding to each combination of control qubit values. Its
CNOT cost depends on the decomposition algorithm and the
number of ancillary qubits [23]–[25]. This paper assumes an
MCR𝑦 gate with 𝑛 control qubits has a CNOT cost of 2𝑛 [23].

III. MOTIVATING EXAMPLE

Consider the problem of preparing the state 𝜓, with |𝜓⟩ =
1√
4
( |000⟩ + |011⟩ + |101⟩ + |110⟩) which comprises three qubits

with a cardinality of four. We demonstrate the quantum circuits
generated by two categories of existing methods.

The first category of methods use qubit reduction [12], [13].
These methods focus on one target qubit at each stage and
apply MCR𝑦 gates to separate it from the entanglement. As
illustrated in Fig. 1, the gates within the solid box separate
𝑞3, and the gates in the dashed box separate 𝑞2. Each box
represents an MCR𝑦 gate, with the hashed having one and the
solid having two control qubits, respectively. Therefore, this
circuit requires 21+22=6 CNOT gates.

Other related works perform cardinality reduction [15]. This
method iteratively selects two different basis vectors from

𝑞1 : |0⟩ 𝑅𝑦 ( 𝜋2 ) • •

𝑞2 : |0⟩ 𝑅𝑦 ( 𝜋2 ) 𝑅𝑦 ( 𝜋2 ) •

𝑞3 : |0⟩ 𝑅𝑦 (𝜋) 𝑅𝑦 (𝜋)

Fig. 1: 6-CNOT circuit using the qubit reduction method for |𝜓⟩ =
1√
4
( |000⟩ + |011⟩ + |101⟩ + |110⟩).

the index set and merges them using CNOT and controlled
rotation gates. As depicted in Fig. 2, the circuit strictly reduces
cardinality by one after each “merging” from right to left until
|𝑆 | = 1, which is the ground state, |000⟩. This circuit contains a
single-qubit gate, three CNOTs, and two controlled Y-rotation
gates. Therefore, the CNOT cost is 3×1+2×2=7.

𝑞1 : |0⟩ 𝑅𝑦 ( 2𝜋3 ) • 𝑅𝑦 (−1.2) • •

𝑞2 : |0⟩ • 𝑅𝑦 ( 𝜋2 ) •

𝑞3 : |0⟩
1√
4
|000⟩ +

√
3√
4
|011⟩ 1√

4
|000⟩ + 1√

4
|010⟩ +

√
2√
4
|111⟩

Fig. 2: 7-CNOT circuit using the cardinality reduction method.

Both qubit- and cardinality-reduction methods divide and
conquer the QSP to decrease complexity. However, their
heuristics introduce structural constraints to the circuit, lim-
iting the visibility in the solution space. As a result, neither
approach can reach the solution in Fig. 3 that prepares the state
|𝜓⟩ using fewer CNOT gates. Indeed, qubit reduction methods
target each qubit consecutively, while in Fig. 3, an R𝑦 and a
CNOT targeting 𝑞1 are separated by a CNOT targeting 𝑞3;
similarly, each rotation gate in cardinality reduction methods
strictly reduce the cardinality by one, while the two R𝑦 gates
shrink the cardinality directly from four to one.

𝑞1 : |0⟩ 𝑅𝑦 ( 𝜋2 ) •

𝑞2 : |0⟩ 𝑅𝑦 ( 𝜋2 ) •

𝑞3 : |0⟩
1√
4
( |000⟩ + |001⟩ + |010⟩ + |011⟩

Fig. 3: 2-CNOT circuit using the exact synthesis (ours).
This example points to the need to eliminate unnecessary

constraints in the problem formulation, thereby reducing the
number of CNOT gates required. More specifically, heuristics
that rigidly guide the state transition process often lead to
greedy decisions that are locally advantageous, such as reduc-
ing entanglement between qubits or decreasing cardinality, but
are globally suboptimal. The following sections demonstrate
our method that explores various directions for state transition
to identify the optimal solution.

IV. EXACT CNOT SYNTHESIS FORMULATION

Based on the necessity to explore state transitions compre-
hensively, we formulate the QSP as a shortest path problem.
In this section, we will first detail the problem formulation
and then discuss the selection of the gate library.

A. Shortest Path Problem Formulation

Given a set of quantum gates L with fixed CNOT costs,
we define state transition graph, 𝐺L = (𝑉𝐺 , 𝐴𝐺), where
vertices are quantum states and arcs represent state transitions
implementable by gates in L. An arc 𝑎 = (𝜓, 𝜑) in 𝐴𝐺

corresponds to an operator 𝑈𝑎 such that |𝜑⟩ = 𝑈𝑎 |𝜓⟩. The
distance of 𝑎, denoted by 𝑑 (𝑎), is a known variable and given
by the CNOT cost of 𝑈𝑎.
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Fig. 4: Example of exploring a (portion of a) state transition graph from the target state |𝜓⟩ = 1√
4
( |000⟩ + |011⟩ + |101⟩ + |110⟩).

Let 𝛾(𝜓, 𝜑) be the CNOT cost to prepare 𝜑 from the state
𝜓. For a given target state 𝜓0, our objective is to find the
circuit that minimizes 𝛾( |0⟩ , 𝜓0). Note that the CNOT cost of
a circuit is determined by the sum of the costs of its individual
gates. Similarly, the distance of a path is calculated as the
cumulative sum of the distances along its arcs. Consequently,
the problems of finding the optimal circuit and the shortest
path in the state transition graph are equivalent.

As an example, Fig. 4 displays a portion of the state
transition from the example in Section III. We label the gates
and the corresponding costs on the edges. The solid and
dashed paths correspond to the circuits in Fig. 3 and Fig. 2,
respectively. On the given state transition graph, the CNOT
costs of these circuits are exactly given by the distances: the
bold path has a distance of 1+1=2, while the distance of the
dashed path is 1+2+1+2+1=7.

B. Specialized Set of Quantum Gates for QSP

The selection of library L determines the graph size since
the vertices 𝑉𝐺 include all reachable states using gates in L.
Let 𝜖 be the precision level of amplitudes. A universal set
of quantum gates such as {CNOT,U(2)} can reach all 𝑛-
qubit states (≈ 𝜖−2𝑛 ). As 𝜖 approaches zero, the graph size
increases dramatically to infinity, and the shortest path problem
is impractical to solve.

To upper bound the complexity, we introduce a specialized
set of quantum gates composed of single-target amplitude-
preserving transitions, where amplitude values are conserved,
but the associated basis vectors, or indices, are changed. We
can describe an amplitude-preserving transition between 𝜓 and
𝜑 as 𝜓 =

∑̃
𝑥𝑐𝑥 |𝑥⟩ and 𝜑 =

∑̃
𝑥𝑐𝑥 | 𝑓 (𝑥)⟩, where |𝑥⟩ and

| 𝑓 (𝑥)⟩ are basis vectors and 𝑐𝑥 is the amplitude. The symbol∑̃
denotes a specialized function that computes the root of the

quadratic sum of amplitudes corresponding to the same index.
It preserves the integrity of a quantum state.

For example, all state transitions in Fig. 4 are amplitude-
preserving. The vertices, 𝜓1, 𝜓2, ..., 𝜓8, have the amplitude
vector of (

√
0.25,

√
0.25,

√
0.25,

√
0.25) and differ only by

their basis vectors. 𝜓6, for instance, corresponds to the vector
(|000⟩ , |011⟩ , |011⟩ , |010⟩) with duplicated indices |011⟩. It

represents 𝜓6 =
√

0.25 |000⟩ +
√

0.25+0.25 |011⟩ +
√

0.25 |010⟩
after merging the two amplitudes of |011⟩.

Encoding amplitude-preserving transitions proves efficient
on classical computers, as each state is uniquely defined by its
index vector, consisting of 𝑚 𝑛-bit indices, where 𝑚 represents
the cardinality and 𝑛 is the number of qubits. Consequently, the
size of the transition graph is capped at 2𝑛𝑚. Furthermore, as
illustrated in Fig. 4, a single-target operator flips only certain
bits within the same column. This allows for parallelized bit-
wise Boolean operations, which are significantly more efficient
than matrix multiplications involving floating-point numbers.

V. SHORTEST PATH ALGORITHM

The state transition graph provides us full visibility of the
solution space. This section introduces our approach to solving
the shortest path problem and a state compression method
designed to accelerate the algorithm. For a given state, our
approach is guaranteed to find the optimal circuit comprising
amplitude-preserving transitions that minimize the CNOT cost.
Due to the space limit, we refer readers to the appendices for
the proof of optimality and complexity [26].

A. Admissible Heuristic Function and A* Algorithm

A* algorithm is the general solution to the shortest path
problem, whose pseudocode is shown in Algorithm 1. A
while loop at line 4 traverses all the reachable quantum states
in ascending order of CNOT cost from the target state 𝜓. We
iteratively pop the top element in the queue, enumerate all
of its adjacent states, and add those states to the queue if a
lower distance is found. After reaching the ground state, our
algorithm backtracks the path and returns the quantum circuit
by mapping each edge to the corresponding quantum operator.

The key idea of the A* algorithm is to find a lower bound
estimation for the distance between state 𝜓 and the destination,
denoted by 𝛿(𝜓, |0⟩). Then, the queue sorts the states based
on the sum of 𝛾(𝜓0, 𝜓) +𝛿(𝜓, |0⟩). This way, we prioritize the
state more likely to be the shortest path that potentially reaches
the destination and returns earlier. If the function is admissible,
i.e., 𝛿(𝜓, |0⟩) always underestimates the true cost between 𝜓

and |0⟩, then the A* heuristic can prune unpromising branches
and improve efficiency without loss in optimality.



Algorithm 1: A* algorithm
input : The target quantum state 𝜓0.
output: A sequence of quantum operators to prepare

𝜓0 from the ground state.
1 q ← PriorityQueue()
2 𝛾(𝜓0, :) ← ∞ , 𝛾(𝜓0, 𝜓0) ← 0
3 q.put(𝜓0)
4 while 𝑞 is not empty do
5 𝜓 ← q.pop()
6 if 𝜓 = |0⟩ then
7 break
8 for (𝜓, 𝜑) ∈ 𝐴𝐺 do
9 𝛾′ ← 𝛾(𝜓0,Π(𝜓)) + 𝑑 (𝜓, 𝜑).

10 if 𝛾′ ≥ 𝛾(𝜓0,Π(𝜑)) then
11 continue
12 𝛾(𝜓0,Π(𝜑)) ← 𝛾′

13 q.put(𝜑)
14 path ← back trace the edges from 𝜓0 to ground state.
15 return path.

Given a state 𝜓, we derive a lower bound on CNOT by
checking the number of entangled qubit pairs, which can be
acquired by evaluating mutual information [27]. Take state 𝜓1
in Fig. 4 as an example. The cofactors of 𝑞2, the sets of indices
with 𝑞2=1 (𝜓1 |𝑞2=1) and 𝑞2=0 (𝜓1 |𝑞2=0), are identical:

𝑆

(
𝜓1 |𝑞2=1

)
= 𝑆

(
𝜓1 |𝑞2=0

)
=
{
|00⟩𝑞1𝑞3 , |11⟩𝑞1𝑞3

}
,

which indicates 𝑞2 might be separable. Meanwhile, both 𝑞1
and 𝑞3 have different cofactors, which implies that they are
entangled with other qubits, and at least one CNOT is required
to separate every two entangled qubits.

B. State Compression using Canonicalization

Using the A* algorithm, our solver does not explicitly
construct the graph comprising all 2𝑛𝑚 states but explores a
small portion around the given target. To further decrease the
time complexity, we introduce a state compression heuristic
that reduces the number of enqueued states.

The idea is based on canonicalization. We associate states
with their equivalence class, denoted by 𝑉𝐺/∼, a set of
equivalent states under relation ∼, which is defined as follows:
• Single-qubit unitaries, U(2): Two states 𝜓 and 𝜑 are

equivalent if a unitary operation 𝑈 ∈ U(2) exists such
that 𝜓 = 𝑈𝜑.

• Qubit permutation, designated by P: Two states are
equivalent if they differ only by the swapping of the
definition of two qubits.

For example, the state 𝜑= 1√
2
( |100⟩+|010⟩) is equivalent to:

• 𝜓1=
1√
2
( |000⟩+|110⟩) because applying a Pauli-X gate on

the first or the second qubit transitions 𝜑 to 𝜓1.
• 𝜓2 =

1√
4
( |000⟩+ |001⟩+ |110⟩+ |111⟩) because applying a

R𝑦 ( 𝜋2 ) gate on the last qubit further transitions 𝜓1 to 𝜓2.
• 𝜓3 =

1√
2
( |100⟩+ |001⟩) because it is equivalent to 𝜑 after

swapping the definition of the second and the last qubit.
We can utilize equivalent relations to compress states.

Since the gates in U(2) have zero CNOT cost, the states

TABLE II: Number of canonical 4-qubit uniform states.

𝑚 |𝑉𝐺 | |𝑉𝐺/U(2) | |𝑉𝐺/PU(2) |
1 16 1 1
2 120 11 3
3 560 35 6
4 1820 118 16
5 4368 273 27
6 8008 525 47
7 11440 715 56
8 12870 828 68

𝜓, 𝜑 ∈ 𝑉𝐺/U(2) can be prepared using the same number
of CNOT gates. Similarly, if all qubits are interchangeable,
which implies a symmetric coupling graph, then states 𝜓, 𝜑 ∈
𝑉𝐺/PU(2) should have the same CNOT cost. Therefore, in
lines 10 to 13 in Algorithm 1, we select a representative, Π(𝜑),
to store the distance of the equivalence class of state 𝜑. We can
skip exploring state 𝜑 if another state in the same equivalence
class is enqueued with a lower or equal distance.

Table II presents the graph size without an equivalency
relation (|𝑉𝐺 |), with a layout-variant equivalency |𝑉𝐺/U(2) |,
and with a layout-invariant equivalency |𝑉𝐺/PU(2) |. The
results demonstrate the effectiveness of state compression
using canonicalization.

VI. EVALUATION

The proposed algorithm is implemented using Python and
is open-source.1 In this section, we illustrate the effectiveness
and efficiency of our method compared with manual designs
and three recent works: a cardinality reduction method (“𝑚-
flow”) [15], a qubit reduction method (“𝑛-flow”) [13], and
the latest QSP solver: a hybrid method combining 𝑛- and
𝑚-flows (“hybrid”) [16]. The hybrid method requires one
ancilla, while all others employ no ancilla qubits. We run all
the experiments on a classical computer with a 3.7GHz AMD
Ryzen 9 5900X processor with 64GB of RAM.

A. Workflow

The workflow is illustrated in Fig. 5, where we integrate
our exact CNOT synthesis into a scalable framework. Given
the state with 𝑛 qubits and cardinality 𝑚, we choose the
divide-and-conquer method based on the sparsity. If the state is
sparse (𝑛𝑚 < 2𝑛), we iteratively run the cardinality reduction
method until the complexity is acceptable for exact CNOT

1Available at https://github.com/Nozidoali/quantum-xyz

Fig. 5: Evaluation workflow of exact CNOT synthesis.



TABLE III: CNOT count comparison results of Dicke state prepa-
ration. We calculate the improvements achieved by four design
automation algorithms compared to the manual design.

Dicke states preparation |𝐷⟩𝑘𝑛
𝑛 𝑘 Manual [7] 𝑚-flow [15] 𝑛-flow [13] Hybrid [16] ours
3 1 4 5 6 27 4
4 1 7 9 14 141 7
4 2 12 24 14 141 6
5 1 10 13 30 237 10
5 2 20 67 30 601 16
6 1 13 17 62 241 13
6 2 28 117 62 645 22
6 3 33 231 62 779 25
geo. mean 13.0 28.5 26.6 251.1 10.9
Impr% - -119% -105% -1832% 17%

synthesis; otherwise, if the state is dense (𝑛𝑚 ≥ 2𝑛), we
apply qubit reduction before an exact synthesis. We use the
library introduced in Section IV-B. We verify the correctness
of the circuits returned by the QSP solver employing Qiskit
simulators [28] and evaluate the number of CNOT gates after
mapping the circuit to {U(2),CNOT}.

B. Preparation of Dicke States

Dicke states, denoted by |𝐷⟩𝑘𝑛, are the family of quantum
states of 𝑛 qubits with nonzero coefficient if 𝑘 out of the
𝑛 qubits in the basis state is |1⟩. Due to its importance and
wide applications [6], various manually designed techniques
have been proposed [5]–[8]. The latest manual design requires
(5𝑛𝑘 − 5𝑘2 − 2𝑛) CNOT gates to prepare |𝐷⟩𝑘𝑛 [7].

Table III presents the CNOT count of each method and
the improvements compared to the manual design [7], which
demonstrates the effectiveness of the exact synthesis method
on small states: our method achieves the best CNOT cost
among four methods on all the benchmarks.

Moreover, our method is the first design automation algo-
rithm that outperforms manual designs. Utilizing the exact
CNOT synthesis formulation, our algorithm implicitly derives
more complicated properties throughout the vast solution space
exploration. While the properties developed manually are
mostly symmetric or inductive, our solver synthesizes irregular
yet effective circuits that are not easily generalizable, as shown
in Fig. 6. We reduce the CNOT count from 12 to 6.

C. Preparation of General Quantum States

Then, we evaluate the generality of our method by applying
exact CNOT synthesis on asymmetry states with various
numbers of qubits with different cardinalities. Our benchmark
suites contain dense states with cardinality 𝑚 = 2𝑛−1 and the
sparse states with 𝑚 = 𝑛. We randomly sample 100 different
states for each parameter setup and present the average number
of CNOT gates in Table IV.

𝑞1 :

𝑞2 : 𝑅𝑦 (𝜋/4) 𝑅𝑦 (𝜋/4) •

𝑞3 : 𝑅𝑦 (𝜋/2)

𝑞4 : 𝑅𝑦 (0.39𝜋) • •

Fig. 6: Circuit to prepare |𝐷⟩24 using 6 CNOTs

TABLE IV: CNOT number comparison results of general state
preparation. “TLE” represents that the method fails to prepare the
state within a one-hour time limit. We calculate the improvement of
our method compared to the most effective baseline in each category:
to 𝑛-flow for dense states and to 𝑚-flow for sparse states.

Dense states preparation (𝑚 = 2𝑛−1)
𝑛 𝑚 𝑚-flow [15] 𝑛-flow [13] Hybrid [16] ours impr%
3 4 8 6 5 5 17%
4 8 40 14 28 9 36%
5 16 123 30 401 29 3%
6 32 478 62 899 56 10%
7 64 1382 126 1268 112 11%
8 128 3954 254 2804 226 11%
9 256 10902 510 6911 484 5%

10 512 28743 1022 15646 962 6%
11 1024 72441 2046 35650 1812 11%
12 2048 178996 4094 82836 3846 6%
13 4096 440843 8190 183556 7746 5%
14 8192 1053633 16382 398602 15630 5%
15 16384 2487775 32766 879236 31254 5%
16 32768 5810670 65534 1915109 63720 3%
17 65536 TLE 131070 4109698 128330 2%
18 131072 TLE 262142 8802090 261684 0%
geo. mean 1399.3 18855.9 1274.7 9%

Sparse states preparation (𝑚 = 𝑛)
𝑛 𝑚 𝑚-flow [15] 𝑛-flow [13] Hybrid [16] ours impr%
3 3 4 6 7 3 37%
4 4 9 14 38 6 34%
5 5 14 30 83 9 36%
6 6 22 62 181 14 36%
7 7 30 126 253 20 33%
8 8 39 254 398 27 30%
9 9 51 510 472 37 29%

10 10 66 1022 560 44 33%
11 11 80 2046 679 54 33%
12 12 97 4094 763 66 32%
13 13 114 8190 878 78 31%
14 14 130 16382 965 91 30%
15 15 152 32766 1095 106 30%
16 16 172 65534 1187 119 31%
17 17 201 131070 1268 139 31%
18 18 217 262142 1399 155 29%
19 19 238 524286 1491 173 28%
20 20 267 1048574 1605 192 28%
geo. mean 64.3 2809.3 429.8 44 32%

We observe that the disparity in divide-and-conquer ap-
proaches between 𝑛-flow and 𝑚-flow leads to distinct benefits.
When preparing states with 𝑛 qubits and cardinality of 𝑚, the
𝑛-flow exhibits a CNOT count bounded by O(2𝑛), which is
well-suited for dense states. On the other hand, the 𝑚-flow
requires a CNOT count of O(𝑚𝑛) and proves advantageous
for sparse states. Meanwhile, the CNOT count of the hybrid
method falls between the 𝑛-flow and the 𝑚-flow.

After employing the exact CNOT synthesis, we improve
the results on both dense and sparse states. Compared with
the corresponding advantageous baseline, our method reduces
the CNOT count by 9% and 32% on dense and sparse states,
respectively. Since we set fixed thresholds (𝑛 ≤ 4 and 𝑚 ≤ 16)
to activate the exact synthesis in our workflow, the room for
improving the CNOT count does not scale with the problem
size. Therefore, the relative benefit of exact synthesis decreases
as 𝑛 and 𝑚 increases. We are investigating a more effective
integration of the exact synthesis to scale the improvements.

D. CPU Time Analysis

Exact CNOT synthesis searches the shortest path with
full visibility of the solution space, which naturally has a
higher time complexity than the baselines. We investigate the
scalability comparison in Fig. 7, where we plot the CPU
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Fig. 7: CPU time analysis on (a) dense states and (b) sparse states
compared with two baselines: the 𝑛-flow [13], and the 𝑚-flow [15].
For clarity, we omit the CPU time of the hybrid method [16], which
falls between 𝑛-flow and 𝑚-flow.

time with the growth of qubit numbers. We show the results
for dense states and sparse states separately in Fig. 7a and
Fig. 7b, as their divide-and-conquer procedures are different,
as mentioned in Section VI-A.

The slope in Fig. 7a demonstrates the robustness of our state
encoding. We use 𝑛 × 𝑚 classical bits to encode a quantum
state while the 𝑚-flow [15] inherits Qiskit’s data structure [28],
which stores indices as string. The 𝑛-flow [13] and the
hybrid method [16] use C++ CUDD2 library with truth tables
of 2𝑛 bits. Moreover, although all three methods are efficient
on sparse states, our canonicalization method helps filter out
separable qubits, further compressing the states and acceler-
ating the solver. As the number of qubits increases, fixing
𝑚=𝑛 will likely decrease the degree of entanglement. Our state
compression algorithm identifies the separability and reduces
the complexity, as shown in Fig. 7b. Therefore, although
integrated with exact CNOT synthesis, our flow consumes
CPU time comparable to baseline methods and exhibits better
scalability as the number of qubits increases.

VII. CONCLUSION

Quantum state preparation (QSP) initializes quantum super-
position which is essential in quantum computing. Synthesiz-
ing efficient circuits for QSP improves the accuracy of quan-
tum algorithms. However, the characterization of superposition
and entanglement hinders the development of classical algo-
rithms to automate quantum designs. This paper formulates
QSP as a shortest path problem, encodes quantum states on
a graph, and finds the optimal circuit with the lowest CNOT
cost. Equipped with the A* algorithm and state compression
heuristics, our method solves QSP efficiently without any
loss in optimality. Compared to existing design automation
algorithms, our method improves the CNOT count by 9% and
32% for dense and sparse state preparation, on average, using
comparable CPU time. On a practical QSP problem, we reduce

2CUDD: CU Decision Diagram package, https://github.com/ivmai/cudd.

the best CNOT cost by 2×, which is the first time design
automation algorithms surpass manual designs.

ACKNOWLEDGEMENT

The authors would like to thank Bochen Tan for constructive
comments on the methodology. Dr. Mathias Soeken for the
helpful discussion, and Marci Baun for proofreading the paper.

REFERENCES

[1] A. M. Childs et al., “Finding cliques by quantum adiabatic evolution,”
arXiv preprint quant-ph/0012104, 2000.

[2] M. Ben-Or and A. Hassidim, “Fast quantum byzantine agreement,” in
Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing, 2005, pp. 481–485.

[3] G. Tóth, “Multipartite entanglement and high-precision metrology,”
Physical Review A, vol. 85, no. 2, p. 022322, 2012.

[4] R. Horodecki et al., “Quantum entanglement,” Reviews of Modern
Physics, vol. 81, no. 2, p. 865, 2009.

[5] D. Cruz et al., “Efficient quantum algorithms for GHZ and W states,
and implementation on the IBM quantum computer,” Advanced Quantum
Technologies, vol. 2, no. 5-6, p. 1900015, 2019.
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