
Unleashing the Power of T1-cells in SFQ Arithmetic Circuits
Rassul Bairamkulov∗

rassul.bairamkulov@epfl.ch
Integrated Systems Laboratory, EPFL

Lausanne, VD, Switzerland

Mingfei Yu
mingfei.yu@epfl.ch

Integrated Systems Laboratory, EPFL
Lausanne, VD, Switzerland

Giovanni De Micheli
giovanni.demicheli@epfl.ch

Integrated Systems Laboratory, EPFL
Lausanne, VD, Switzerland

Abstract
Rapid single-flux quantum (RSFQ) is one of the most advanced cryo-
genic superconductive electronics technologies.With orders of mag-
nitude smaller power dissipation, RSFQ is an attractive technology
for cloud computing, aerospace electronics, and high-speed inter-
facing with quantum computing systems. Technological challenges
however greatly complicate the realization of VLSI-complexity
RSFQ systems. For example, gate-level pipelining in SFQ systems
incurs a significant area overhead due to the need for path balanc-
ing. This issue is particularly detrimental to SFQ systems due to
the limited layout density of RSFQ systems.

Multiple advanced SFQ logic cells exist that can be efficiently re-
alized using SFQ technology. For example, a T1-cell can realize the
full adder function with only half the area required by the conven-
tional realization. This cell however imposes complex constraints
on input signal timing, complicating its use.

Multiphase clocking, recently proposed to reduce the path bal-
ancing overhead, is an effective tool for controlling the timing of
the signals within a network. By utilizing multiphase clocking, the
timing of the input signals of the T1-cells can be efficiently satisfied,
enabling its use within the SFQ networks. In this paper, we propose
a two-stage SFQ technology mapping methodology supporting the
T1-cells. During the logic synthesis stage, specific parts of the SFQ
network are replaced by efficient T1-cells. During the retiming
stage, phases are assigned to each logic gate within the network
and DFFs are inserted to satisfy the timing constraints. Using our
method, the area of the SFQ networks is reduced, on average, by
6% with up to 25% reduction in optimizing the 128-bit adder.

Keywords
Superconductive Electronics, Multiphase Clocking, Logic Synthesis

1 Introduction
Superconducting electronics are commonly regarded as a highly
promising family of beyond-CMOS technologies. Rapid Single-Flux

∗Corresponding author.
This research was supported by the SNF grant “Supercool: Design methods and tools
for superconducting electronics”, 200021 1920981.

Quantum (RSFQ) [20] is a prominent representative within the
realm of superconductive technologies. RSFQ systems consistently
achieve operational frequencies in the tens of gigahertz range[8, 17],
and specific structures are demonstrated to reach frequencies in the
hundreds of gigahertz [5, 12, 14]. Furthermore, the power require-
ments for RSFQ systems are orders of magnitude lower as compared
to CMOS, even accounting for refrigeration [13]. These advantages
position RSFQ as a compelling candidate for large-scale stationary
computing, such as data centers [13], and energy-efficient comput-
ing in space [18]. In addition, due to the minuscule heat generation
and cryogenic operation, RSFQ can be used for interface circuitry
for quantum computing systems [15]. All these applications require
efficient arithmetic circuits.

In RSFQ systems, Josephson Junctions (JJ) and superconduc-
tive storage loops communicate using single flux quantum (SFQ)
pulses [4]. The presence or absence of a flux quantum within a loop
determines its logical state. Typically, a readout signal, such as a
clock is required to release an SFQ pulse from the loop. Therefore,
most SFQ gates, such as NOT and XOR require a clock signal, neces-
sitating gate-level pipelining. This feature allows SFQ circuits to
operate at tens to hundreds of gigahertz and achieve very large
throughputs. Gate-level pipelining, however, requires fanins to each
gate to have equal logic depth, an issue commonly known as path
balancing. In addition, any datapath with a fanout greater than one
requires an active splitter, consuming additional area.

To illustrate the issue of DFF and splitter insertion, consider a
logic circuit in Fig. 1 [left]. Translating this circuit to SFQ requires
two path-balancing DFFs and five splitters to ensure the correct or-
der of data propagation, as shown in Fig. 1 [center]. In large circuits,
the area consumed by path-balancing DFFs can occupy a significant
portion of the layout. Considering the relatively small density of
SFQ fabrication (∼100 times smaller than CMOS) [27], area mini-
mization becomes crucial for designing practical SFQ systems.

A variety of methods for area minimization have been proposed.
In PBMap [22], the cost of path balancing is estimated during the
optimization process. Several works extend the SFQ standard cell
library with more complex cells, to realize the target functionality
with fewer gates. In [16], for example, complex cells with up to five

f

g

a

b

c

s

s

s

s

s
f

g

a

b

c

S = 0
𝜑 = 1
σ = 1

S = 0
𝜑 = 0
σ = 0

S = 1
𝜑 = 0
σ = 2

S = 1
𝜑 = 1
σ = 3

s

s

s

s

s
f

g

a

b

c

Figure 1: [left] An example of a CMOS circuit. [center] Equivalent single-phase SFQ circuit with a
splitter and two path-balancing DFFs. [right] A two-phase SFQ circuit with no path-balancing DFFs.

https://orcid.org/0001-6783-0664
https://orcid.org/0009-6816-8903
https://orcid.org/0002-7827-3215


R. Bairamkulov, M. Yu & G. De Micheli

inputs/outputs are proposed. Gate compounding technique [2] gen-
eralizes the design of complex logic cells by classifying SFQ prim-
itives based on data synchronization. With compound logic cells,
such as NIMPLY, the area of the networks is reduced, on average,
by a factor of two [3]. Several works propose the use of unclocked
gates to minimize the path balancing overhead [17, 26, 30].

The prior approaches to SFQ logic optimization are mostly in-
spired by the traditional logic gates. The SFQ technology, however,
supports highly sophisticated elements capable of complex opera-
tions with minimal resources [10]. The most prominent example
of such an element is a T1-cell [25], efficiently implementing a full
adder with more than 50% fewer JJs, as compared to its conven-
tional implementation. The T1-cell however requires input signals
to be temporally separated i.e., the input pulses must never overlap.
Ensuring this condition requires additional resources, such as delay
elements or layout modifications. Therefore, the T1-cell is used
in select regular layouts, such as counter [21] and bit-serial mul-
tiplier [24], where the correct order of signals can be maintained
with relatively few resources. To this date, however, no generalized
methodology for supporting the T1-cell exists in the literature.

Multiphase clocking has been recently proposed for designing
area-efficient SFQ systems [19]. Using several phase-shifted clock
signals allows data to propagate with fewer DFFs. For example, by
using two-phase clocking, the path-balancing DFFs can be com-
pletely removed, as shown in Fig. 1 [right]. In addition to the area
efficiency, using multiple phases enables precise control of the
signal timing. This feature can be exploited to control the input
signals in T1-cells, thus supporting the use of an efficient full adder
in arbitrary logic networks.

In this paper, we propose a novel technology mapping method-
ology to synthesize multiphase SFQ networks utilizing T1-cells.
Using cut enumeration and Boolean matching, we replace those
parts of an SFQ circuit implementing functions compatible with a
T1-cell. Next, we formulate an integer linear programming problem
to assign phases to each gate within the network. Finally, the DFFs
are inserted to satisfy the timing constraints of each gate within
the network. In our case studies, the area of multiphase circuits
with T1-cells can be reduced by up to 25%. The largest reduction
is observed in such circuits as adder and voter with frequently
appearing exclusive-or and majority operations.

The rest of the paper is organized as follows. The background
on SFQ technology, multiphase clocking, and T1-cell is provided in
Section 2. The technology mapping methodology utilizing the T1-
cells is described in Section 3. Experimental results are presented
in Section 4, followed by the conclusions in Section 5.

2 Background
Amulti-output Boolean function 𝑓 : B𝑘 ↦→ B𝑚 maps𝑘 input signals
to𝑚 output signals. A Boolean function 1 𝑓 can be represented by a
Boolean network 2 N = (V = I ∪ O ∪ G, E) — a directed acyclic
graph (DAG) representing the sequence of the Boolean operations
applied to realize 𝑓 . Set G is a set of gates, where each node 𝑢 ∈ G
applies a function 𝑓𝑢 to its fanins FI(𝑢) and passes the result to
fanouts FO(𝑢). SetI denotes the set of primary inputs (PI), i.e., nodes

1For brevity, we use the term function to represent a Boolean function
2We use the terms network and circuit interchangeably to represent a Boolean network

without fanins. Set O denotes the set of primary outputs (PO), i.e.,
nodes without fanouts.

A cut 𝐶 = (𝑢, 𝐿) of a node 𝑢 is defined as a set of nodes 𝐿 such
that any path from the PIs to 𝑢 traverses a node 𝑣 ∈ 𝐿. The cut is
called 𝑘-cut if |𝐿 | = 𝑘 .. The process of finding all 𝑘-cuts within the
network is called 𝑘-cut enumeration, or simply cut enumeration [6].
Each cut implements a single-output Boolean function 𝑓 : B𝑘 ↦→ B
and can be represented as a truth table with 2𝑘 rows. A truth table
can be conveniently encoded as a 2𝑘 -bit string Y = y2𝑘−1 . . . y0
where bit y𝑖 denotes the output at the 𝑖th row in the truth table.
For example, 𝑓1 (x1, x0) = x1 ∨ x0 is encoded as Y1 = 11102, since
𝑓1 (1, 1) = 1, 𝑓1 (1, 0) = 1, 𝑓1 (0, 1) = 1, and 𝑓1 (0, 0) = 0. For brevity,
Y can be represented as a hexadecimal number, e.g., Y1 = E16.

A maximum fanout free cone MFFC(𝑢) of a node 𝑢 is a set of
nodes such that deletion of the node 𝑢 disconnects MFFC(𝑢) from
the fanouts. In this case, the nodes in MFFC(𝑢) become dangling and
have no effect on any PO.

2.1 Single-Flux Quantum technology
Rapid Single-flux Quantum (RSFQ) is a cryogenic superconductive
computing logic family based on Josephson junctions (JJ). RSFQ
gates consist of superconductive loops storing quantized magnetic
flux. These superconductive loops exchange the data in the form of
SFQ pulses with the area of Φ0 = ℏ/2𝑒 ≈ 2.07 mV·ps [18].

According to [2], conventional SFQ logic gates can be divided
into three major categories based on synchronization mechanisms;

• Asynchronous input, Asynchronous output (AA) compo-
nents process the input information immediately upon arrival
(e.g., splitter and confluence buffer (CB), a.k.a. merger).

• Asynchronous input, Synchronous output (AS) elements
process the input information immediately upon arrival and
release the output only after the arrival of the clock signal (e.g.,
DFF, NOT and XOR).

• Synchronous input, Asynchronous output (SA) elements
require the input pulses to arrive simultaneously to operate cor-
rectly (e.g., AND and OR). The result of the computation is released
immediately after processing.

Unlike the three types of logic gates described in the previous
section, the timing requirements governing the T1-cell are more
complex, not covered by the above categories.

2.2 T1-cell
The topology of the T1-cell is illustrated in Fig. 2a. The circuit
has two inputs, T (toggle) and R (reset); and three outputs, S (sum),
C (carry) and Q. Initially, the bias current 𝐼0 flows along the blue
dotted arrow towards junction 𝐽Q, corresponding to the storage of
logical 0. A pulse arriving at input T switches 𝐽Q, producing the
pulse at output Q∗ (see Fig. 2b). The bias current is redirected along
the red solid arrows, towards junctions 𝐽C and 𝐽S, corresponding
to the storage of logical 1. A second pulse at input T switches 𝐽C,
producing the pulse at output C∗, resetting the bias current towards
𝐽Q, i.e., logical 0. If the loop state is 1, an SFQ pulse at the input R
switches 𝐽S, producing the pulse at output S, while resetting the
loop state to 0. If the loop state is 0, an SFQ pulse at the input R is
rejected by 𝐽R.



Unleashing the Power of T1-cells in SFQ Arithmetic Circuits

T

Q*

R

S

С
С*

Q
JQ

JC JS

I0

JR
a)

Clock (R)

Data (T)

Loop current

Sum (S)

Carry (C, C*)

Or (Q, Q*)

a a b a b c

0 1 0 1 0 0 1 00 10

b)

c)
CB

a
b
c

CB

T1 sum (XOR3)
carry (MAJ3)
OR3

0

1

2

T
R

S
C
Q

φ0 φ1 φ2 φ0

Figure 2: T1-cell. a) Schematic, b) simulation, c) full adder.

The T1-cell can be used to efficiently realize a full adder, as de-
scribed in Fig. 2c. The three operands are connected to input T
using two mergers. The clock signal is connected to the input R.
Outputs R and C∗ execute, respectively, XOR3 and majority-3 (MAJ3)
functions. The output C∗ produces the pulses asynchronously, mak-
ing the output timing ambiguous. To alleviate this issue, the output
C∗ is connected to the DFF, holding the pulse until the arrival of
the clock signal. Similarly, by connecting a DFF to output Q∗, a syn-
chronous OR3 function can be realized (see shaded DFFs in Fig. 2a).
In addition, the C∗ and Q∗ can be also connected to inverters to
produce inverted XOR3 and MAJ3. Therefore, the extended T1-cell
can efficiently produce up to five synchronous outputs. The variety
of functions supported by the T1-cell can be further extended by
allowing complemented inputs. With three inputs, a total of 23 com-
binations of three-input, five-output functions can be supported,
as listed in Table 1. Note that, typically, using only two outputs is
sufficient to significantly reduce the circuit area.

The major advantage of the T1-cell is its compactness, as com-
pared to the regular SFQ cells. Compare the T1-cell-based full adder
with the regular implementation shown in Fig. 1 [center]. The total
number of JJs required for this circuit is 70 JJs according to CON-
NECT cell library [31]. In contrast, the T1-based full adder is 60%
more compact, requiring only 29 JJs. However, the primary draw-
back of the T1-cell is its reliance on the order of input arrival. If
any two input pulses arrive simultaneously to the merger element,
only a single pulse propagates forward. Ensuring sufficient tem-
poral separation of the input pulses requires precise delay tuning,
potentially negating the benefits of using the T1-cell. For example,
the multiplier unit proposed in [9] requires adjustment of the data
and clock interconnects to control the order of input arrival.

Table 1: Truth tables (in hexadecimal format) realizable with T1-cell

Input negation Sum Carry Or Carry Inv. Or Inv.
𝑎 𝑏 𝑐 0x96 0xE8 0xFE 0x17 0x01
𝑎 𝑏 ¬𝑐 0x69 0xD4 0xFD 0x2B 0x02
𝑎 ¬𝑏 𝑐 0x69 0xB2 0xFB 0x4D 0x04
𝑎 ¬𝑏 ¬𝑐 0x96 0x71 0xF7 0x8E 0x08

¬𝑎 𝑏 𝑐 0x69 0x8E 0xEF 0x71 0x10
¬𝑎 𝑏 ¬𝑐 0x96 0x4D 0xDF 0xB2 0x20
¬𝑎 ¬𝑏 𝑐 0x96 0x2B 0xBF 0xD4 0x40
¬𝑎 ¬𝑏 ¬𝑐 0x69 0x17 0x7F 0xE8 0x80

2.3 Multiphase clocking
Recently, multiphase clocking in SFQ has been suggested in [19]
to tackle the issue of path balancing. A 𝑛-phase system utilizes
𝑛 periodic signals {𝑡0, · · · , 𝑡𝑛−1} operating at the same frequency.
Each clocked element 𝑔 within the network is synchronized by only
one clock signal at phase 𝜑 (𝑔). The epoch 𝑆 (𝑔) of a gate 𝑔 is defined
as the number of clock cycles separating the gate 𝑔 from the PIs, as
illustrated in Fig. 1 [right]. The clock signals are ordered by phase
𝜑 ∈ {0, · · · , 𝑛 − 1}, i.e., during any epoch, the clock signal 𝑡𝑖 arrives
before clock signal 𝑡 𝑗 if 𝑖 < 𝑗 . For convenience, we define a stage
𝜎 (𝑔) of a gate 𝑔 as

𝜎 (𝑔) = 𝑛𝑆 (𝑔) + 𝜑 (𝑔). (1)

We observe that, in addition to area efficiency, the multiphase
clocking technique allows the time of input arrival to be precisely
controlled. This capability can be utilized to correctly time the
inputs to the T1 gate, as illustrated by phases φ0, φ1, and φ2 in
Fig. 2c. The inputs to the T1-cell are connected to the DFFs, with
each DFF assigned a different phase Thus, after the T1-cell is reset,
the input 𝑎 is released to the T1-cell at phase 0, input 𝑏 is next
released at phase 1, and, finally, the input 𝑐 is released at phase 2;
i.e., assigning three different phases to the inputs of a T1-cell is
sufficient to ensure no temporal overlap. During phase assignment
and DFF insertion, described in Sections 3.2-3.3, this condition is
encoded as a set of constraints to correctly assign phases and insert
DFFs into a multiphase SFQ circuit with T1-cells.

3 T1-cell-aware technology mapping
Fig. 3 provides a flow diagram of the proposed methodology. To
utilize a T1-cell within a circuit, we initially identify the gates that
can be implemented using T1-cells. We replace these gates with
more area-efficient T1-cells. Next, we ensure correct functioning of
the resulting SFQ circuit with the T1-cells, by satisfying the timing
requirements of each gate. The latter task can be further divided
into the two subtasks. First, the each gate is assigned a phase based
on our integer-linear program (ILP) that minimizes the expected
number of DFFs. Second, the DFFs are inserted within the network
to satisfy the timing constraints of each gate. Our formulation based
on constraint programming with satisfiability (CP-SAT) determines
the optimal number of DFFs for a given phase assignment.

3.1 T1-cell detection
Since a T1-cell realizes 3-input functions, to determine which parts
of a given network can be substituted by T1-cells, we first perform
cut enumeration. The 3-cuts are computed for all the nodes in the
network in a topological order.

After enumeration, we identify those cuts that (1) have the same
leaves and (2) implement compatible functions. Specifically, if a set



R. Bairamkulov, M. Yu & G. De Micheli

Cut 
enumeration

Boolean
matching

Replacement Phase 
assignment

DFF 
insertion

Logic network Logic network 

with T1-cells
T1-cell detection

Figure 3: Proposed T1-cell insertion flow. The flow starts with the 3-cut enumeration. Those cuts compatible with the T1-cell are identified by
Boolean matching. The compatible cuts are replaced with the T1 cells if the replacement yields smaller area. The correct timing is ensured by phase
assignment and DFF insertion.

of cuts C = {𝐶 (𝑢1), . . . ,𝐶 (𝑢𝑛)}, 2 ≤ 𝑛 ≤ 5 sharing the same leaves
{𝑎, 𝑏, 𝑐} executes the functions realizable with the T1-cell, i.e. a
subset of functions listed in Table 1, the cuts {𝐶 (𝑢1), . . . ,𝐶 (𝑢𝑛)}
are considered for being replaced by a T1-cell. This procedure of
matching a gate/cell and a cut by comparing their Boolean func-
tions is commonly known as Boolean matching [7]. To ensure the
substitution is beneficial, the area reduction Δ𝐴 due to replacement
is calculated as

Δ𝐴 =

𝑛∑︁
𝑖=1

𝐴(MFFC(𝑢𝑖 )) −𝐴T1(C), (2)

where 𝐴(MFFC(𝑢𝑖 )) is the total area of the nodes within the MFFC
of node 𝑢𝑖 , and 𝐴T1(C) is the area of the T1-cell implementing
the functions realized by cuts in C considering possible input and
output negations. Positive Δ𝐴 indicates that the area can be reduced
by the substitution. The MFFCs of the nodes𝑢1, . . . , 𝑢𝑛 are therefore
replaced by the T1-cell.

3.2 Phase assignment
After the replacement process, the stage of each gate in the network
is determined by the ILP-based phase assignment [1]. The goal of
the ILP is minimization of the number of path-balancing DFFs while
satisfying the timing requirements of each gate. Each gate type,
including T1-cell, imposes different timing requirements. Here, we
describe how these requirements inform the phase assignment pro-
cess. For brevity, we divide the set of logic gates into three disjoint
subsets G = 𝐺AA ∪𝐺AS ∪𝐺SA ∪𝐺T1, where each subset represents
the elements of the corresponding category.

3.2.1 Constraints. To facilitate interfacing with the external cir-
cuitry, the epochs of the PIs and POs should be equalized, producing
the following constraints

𝜎 (𝑔) = 0, 𝑔 ∈ I . (3)

𝜎 (𝑔1) = 𝜎 (𝑔2), 𝑔1, 𝑔2 ∈ O . (4)
For each pair (𝑖, 𝑗) ∈ E of sequentially adjacent gates, the fanout
𝑗 cannot have a clock stage earlier than 𝑖 . However, specific gate
combinations impose more stringent constraints on phase assign-
ment as described in [1]. The constraints imposed by the regular
AA, AS, and SA gates can be described as

𝜎 ( 𝑗) − 𝜎 (𝑖) ≥ Δ𝜎min (𝑖, 𝑗), (𝑖, 𝑗) ∈ E (5)

where Δ𝜎min (𝑖, 𝑗) ∈ {0, 1} is minimum stage difference depending
on the types of 𝑖 and 𝑗 as summarized below.

𝑖
𝑗 AA AS SA

AA 0 0 1
AS/T1 0 1 0
SA 0 1 1

The T1-cell requires the phases of the fanins to be unequal.
Suppose the T1-cell with fanins {𝑖1, 𝑖2, 𝑖3}, 𝜎 (𝑖1) ≤ 𝜎 (𝑖2) ≤ 𝜎 (𝑖3),
is placed at stage 𝜎 ( 𝑗). Therefore,
• 𝜎 (𝑖3) ≤ 𝜎 ( 𝑗) − 1, since the T1-cell is clocked;
• 𝜎 (𝑖2) ≤ 𝜎 ( 𝑗) − 2, since 𝜎 ( 𝑗) − 1 is occupied by 𝑖3;
• 𝜎 (𝑖1) ≤ 𝜎 ( 𝑗) − 3, since 𝜎 ( 𝑗) − 1 is occupied by 𝑖3 and 𝜎 ( 𝑗) − 2 is

occupied by 𝑖2.
Therefore, the phase of the T1-cell is constrained as

𝜎 ( 𝑗) ≥ max (𝜎 (𝑖1) + 3, 𝜎 (𝑖2) + 2, 𝜎 (𝑖3) + 1) ,
(𝑖, 𝑗) ∈ E, 𝑗 ∈ 𝐺T1, 𝜎 (𝑖1) ≤ 𝜎 (𝑖2) ≤ 𝜎 (𝑖3)

(6)

3.2.2 DFF count. The goal of phase assignment is to find those
stages of the gates minimizing the number of path-balancing DFFs
inserted into the network. Finding the precise number of DFFs how-
ever requires excessively complex models, potentially degrading the
runtime of the phase assignment. Therefore, more efficient models
are adopted, while the precise placement of DFFs is determined dur-
ing DFF insertion. For any pair of adjacent gates (𝑖, 𝑗) ∈ E, where
𝑗 is not a T1-cell, the number of DFFs required for path balancing
is estimated as

𝑐1 ( 𝑗) =
⌊
𝜎 ( 𝑗) − 𝜎 (𝑖) + ( 𝑗 ∈ 𝐺SA)

𝑛

⌋
, 𝑗 ∈ G, 𝑖 ∈ FI( 𝑗) (7)

where an additional DFF is required if the fanout is an SA gate.
The complex constraints imposed by the T1-cell, require more

sophisticated modeling. Since the T1-cell requires the inputs to
arrive separately, additional DFFs are required if the phases of the
inputs are equal,

𝑐2 ( 𝑗) = (𝜙 (𝑖1) = 𝜙 (𝑖2)) ∧ (𝜎 ( 𝑗) − 𝜎 (𝑖1) ≤ 𝑛) +
+ (𝜙 (𝑖2) = 𝜙 (𝑖3)) ∧ (𝜎 ( 𝑗) − 𝜎 (𝑖2) ≤ 𝑛) ,
𝑗 ∈ 𝐺T1, 𝑖1, 𝑖2, 𝑖3 ∈ FI( 𝑗)

(8)

where 𝜎 (𝑖1) ≤ 𝜎 (𝑖2) ≤ 𝜎 (𝑖3).
The combined optimization problem is formulated as

min
𝜎 (𝑔)∀𝑔∈𝐺

∑︁
𝑔∈G

𝑐1 (𝑔) +
∑︁

𝑔∈𝐺T1

𝑐2 (𝑔), (9)

Subject to constraints (3)-(6).

3.3 DFF insertion
After assigning a stage to each gate within the circuit, the DFFs can
be inserted to each datapath. We adopt a two-stage DFF insertion
methodology based on CP-SAT. First, those portions of the networks
bounded by the AS and SA gates are identified as independent
paths [1]. The DFFs within distinct independent paths do not affect
each other. Each independent path can be processed separately,
greatly reducing the runtime. Next, for each independent path, we
formulate the CP-SAT problem where the timing constraints for
each gate are satisfied using the smallest number of DFFs.



Unleashing the Power of T1-cells in SFQ Arithmetic Circuits

The independent paths 𝑃 is a portion of the logic network 𝑃 =

(𝐼 , 𝐴,𝑂), where set 𝐴 ⊆ 𝐺AA contains the internal unclocked AA
gates and sets 𝐼 ,𝑂 ⊆ 𝐺AS ∪ 𝐺SA ∪ 𝐺T1 contain, respectively, the
clocked gates at the input and output of the datapath. In Fig. 4a, the
three independent paths are

𝑃1 = (𝐼 = {A, B, C}, 𝐴 = {1, 2, 3, 4, 5},𝑂 = {W, X, Y, Z}) ,
𝑃2 = (𝐼 = {E}, 𝐴 = ∅,𝑂 = {W}) ,

𝑃3 = (𝐼 = {C, F}, 𝐴 = {6},𝑂 = {Z}) .
For each independent path within the network, we identify the

potential DFF sites for subsequent DFF insertion. To uniquely iden-
tify each potential DFF site, we define 𝑑 = (fi(𝑑), fo(𝑑), 𝜎 (𝑑)),
where fi(𝑑) ∈ 𝐼 ∪𝐴 and fo(𝑑) ∈ 𝐴 ∪𝑂 are, respectively, the fanin
and fanout elements of the DFF site, and 𝜎 (𝑑) is the stage of the
DFF site. We define a chain 𝑄 = (𝑑𝑚𝑖𝑛, · · · , 𝑑𝑚𝑎𝑥 ) as a sequence of
adjacent DFF locations situated between 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 . Examples
of DFF sites and a chain are shown in Fig 4b. We define the length
of chain Δ𝜎 (𝑄) as the stage difference between 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 .

For each DFF site 𝑑 , we introduce a binary variable 𝛿 (𝑑) equal
to 1 if the DFF is placed at 𝑑 and 0 otherwise. The problem of
minimizing the number of path-balancing DFFs can therefore be
formulated as a CP-SAT problem minimizing

∑
𝑑∈𝑃

𝛿 (𝑑).

Several constraints describe the valid placement of the DFFs
within an independent path. First, for each stage, only a single DFF
can be placed along a chain.∑︁

𝑑∈𝑄,𝜎𝑑=𝑖

𝛿 (𝑑) ≤ 1. (10)

For example, in Fig. 4b, the sites 𝑑 and 𝑒 cannot be simultaneously
occupied. Second, the distance between adjacent clocked elements
along a chain should not exceed 𝑛 in an 𝑛-phase system. Therefore,
at least one DFF should be placed along any chain of length 𝑛,∨

𝑑∈𝑄,Δ𝜎 (𝑄 )=𝑛
𝛿 (𝑑) = 1. (11)

In Fig. 4b, for example, at least one grey DFF site should be occupied,
to avoid data hazard.
φ 0 1 2 3 0 1 2 3 0 1 2
S 0 0 0 0 1 1 1 1 2 2 2
σ 0 1 2 3 4 5 6 7 8 9 0

B

F4

6

A 5

21

Y

3

E

D

W

X

Z

Ca)

φ 0 1 2 3 0 1 2 3 0 1 2
S 0 0 0 0 1 1 1 1 2 2 2
σ 0 1 2 3 4 5 6 7 8 9 0

B

4

A 5

21

Y

3

D

W

X

Z
a b

ed
(3,Y,7)

(A,5,2)

Q=(dmin=(B,1,3), dmax=(2,3,6)) 
Δσ(Q)=4

c

b)

Figure 4: Example of a datapath within a four-phase network (𝑛 = 4).
The black triangles and black curved shapes represent the AS and SA
elements, respectively. Red circles denote the AA elements. a) Three
independent paths are drawn with red solid, black solid, and black
dotted arrows. b) DFF sites are shown as rectangles within the red
independent path. The grey DFF sites represent the chain Q of length
𝑛. Diagonally shaded DFF sites precede the SA gates. DFFs should
therefore be placed at these sites.

Third, recall that the SA gates should be preceded by an AS gate
to function correctly. Thus, if an SA element is not directly preceded
by an AS gate, a DFF should be placed before the SA element,

𝛿 (𝑑) = 1 ∀fo(𝑑) ∈ 𝐺SA, 𝜎 (fo(d)) = 𝜎 (𝑑). (12)

Finally, the inputs to the T1-cell should never arrive simulta-
neously. Suppose the clocked elements (DFFs or gates) 𝑑1 ∈ 𝑄1,
𝑑2 ∈ 𝑄2, 𝑑3 ∈ 𝑄3 precede the T1-cell. To ensure the inputs arrive
at different stages, the stages of these DFFs should all be different,

𝜎 (𝑎) ≠ 𝜎 (𝑏) ⇔ 𝑎 ≠ 𝑏 ∀𝑎, 𝑏 ∈ {𝑑1, 𝑑2, 𝑑3} (13)

An example of a correctly balanced datapath containing a T1-cell
is shown in Fig. 5. Observe that the DFFs b and c are placed such
that the phases of the clocked elements preceding the T1-cell (i.e.,
D, b, and c) are all different, ensuring no temporal overlap among
the input pulses.

Eqs. (10)-(13) constitute a CP-SAT problem where the conditions
(10)-(13) are satisfied with the minimum number of DFFs.

4 Experimental results
We integrate the DFF placement methodology into the technology
mapping flow for SFQ compound gate circuits. The SFQ circuits are
synthesized with mockturtle using the depth-oriented technology
mapping applied to a database of pre-computed compound gate
structures [3]. After inserting those T1-cells that provide improve-
ment in area inserted into the network, we apply our CP-SAT-based
phase assignment and DFF insertion procedures using Google OR-
Tools [23]. Each CP-SAT problem run has been limited by 300
seconds to ensure no excessive runtime. In all cases, the phase as-
signment is satisfied within the allotted time. The DFF insertion
determines the location and phase of each DFF within the network.

We apply our flow to synthesize a subset of EPFL [28] and IS-
CAS [11] benchmark circuits implementing arithmetic functions.
We ran our experiments on a laptop with an Apple M1 10-core CPU
with 64 GB of RAM. The number of path-balancing DFFs, circuit
area (expressed in the number of JJs), and logic depth (in cycles) are
shown in Table 2 (column T1). We compare our synthesis results
against two baselines. The first baseline (1φ) is the single-phase
circuits with full path balancing as described in [2, 3]. No T1-cells
are used in the network, since the T1-cell requires at least three
phases. Compared to the single-phase mapping, the area is reduced
by 41% in our work, consistent with the observations in [1, 19]. The
second baseline is the multiphase clocking without T1-cells [1] (4φ).
Compared with the implementation without T1-cells our method-
ology achieves, on average a 6% better area and number of DFFs at
the cost of 13% increase in the logic depth. The increase in depth
can be explained by the additional stages necessary to accommo-
date the stringent timing constraints of the T1-cells. The benefits of
adding the T1-cell vary among the circuits. The largest reduction is
σ 0 1 2 3 4 5 6 7 8 9 0

A

E

F

D

B

C

b

T1

T
S
С

Q
c

Figure 5: Example of a correctly balanced three-phase datapath con-
taining a T1-cell. Gates B, C, and D are inputs to the T1-cell. DFFs b and
c are placed such that 𝜑 (D) ≠ 𝜑 (b) , 𝜑 (D) ≠ 𝜑 (c) , and 𝜑 (b) ≠ 𝜑 (c) .



R. Bairamkulov, M. Yu & G. De Micheli

Table 2:Multiphase clocking with T1-cells applied to a subset of EPFL and ISCAS benchmark circuits. Our results (T1) are compared against the
state-of-the-art single-phase mapping [3] (1φ) and four-phase mapping without T1 cells [1] (4φ).

#T1-cells #DFF Ratio vs. Area Ratio vs. Depth Ratio vs.
found used 1φ[3] 4φ[1] T1 1φ[3] 4φ[1] 1φ[3] 4φ[1] T1 1φ[3] 4φ[1] 1φ[3] 4φ[1] T1 1φ[3] 4φ[1]

adder 127 127 32’768 7’963 5’958 0.18 0.75 238’419 64’784 48’844 0.20 0.75 128 32 33 0.26 1.03
c7552 17 9 2’489 713 765 0.31 1.07 32’038 19’606 19’907 0.62 1.02 16 4 5 0.31 1.25
c6288 142 142 2’625 1’431 1’349 0.51 0.94 47’198 38’840 35’386 0.75 0.91 29 8 10 0.34 1.25
sin 81 77 13’416 4’631 4’714 0.35 1.02 164’938 103’443 102’806 0.62 0.99 88 22 25 0.28 1.14
voter 252 252 10’651 5’779 5’584 0.52 0.97 222’101 187’997 182’972 0.82 0.97 38 10 11 0.29 1.10
square 861 806 44’675 16’645 14’304 0.32 0.86 525’311 329’101 301’287 0.57 0.92 126 32 32 0.25 1.00
multiplier 824 769 58’717 14’641 13’745 0.23 0.94 682’792 374’260 356’984 0.52 0.95 136 33 36 0.26 1.09
log2 644 593 86’985 33’790 33’946 0.39 1.00 978’178 605’813 598’292 0.61 0.99 160 40 47 0.29 1.18
Average 0.35 0.94 0.59 0.94 0.29 1.13

observed in adder where almost the entire circuit is replaced with
the T1-cells, yielding a 25% smaller area. Significant reduction is
also observed in voter, square and multiplier, while c7552 and
sin yielded inferior area, likely due to the increase in the circuit
depth, requiring additional path balancing DFFs.

By analyzing the final networks, we observed that none of the T1-
cells utilize the output Q. All inserted T1-cells use only the S (sum)
and C (carry) outputs. This trend can be attributed to a relatively
low cost of the OR3 function – only two mergers and a single DFF.
The area gained by replacing the OR3 function is therefore reduced.
Therefore, according to Eq. (2), such T1-cell is less likely to be com-
mitted. This observation is consistent with [29]. The half and full
adder were found to be the most frequently occurring multi-output
cells, while other multi-output cells occurred relatively rarely.

5 Conclusions
RSFQ technology presents a remarkable opportunity to achieve
unprecedented performance and energy efficiency of mainstream
computing systems. Nonetheless, realizing its full potential neces-
sitates the resolution of major technological issues, including path
balancing. The T1-cells can substantially reduce the area of SFQ sys-
tems. This area reduction is particularly beneficial, since the current
manufacturing technology severely limits the circuit size. Existing
EDA tools however offer limited support of T1-cells in systems with
asynchronous SFQ gates. In this work, we present a technology
mapping for multiphase SFQ systems supporting T1-cells. Starting
from an initial logic network, the T1-cells replace those parts of
the network implementing the compatible functions yielding area
improvements. Using the CP-SAT-based formulation, a multiphase
path-balancing solution minimizing the path-balancing cost is de-
termined. In the experimental results, we showed an average of
6% reduction in the number of JJs when compared to single-phase
systems. Up to 25% reduction in area is achieved when using the
four-phase clocking with T1-cells.

References
[1] R. Bairamkulov and G. De Micheli. 2024. Towards Multiphase Clocking in

Single-Flux Quantum Systems. In Proc. ASP-DAC.
[2] R. Bairamkulov and G. De Micheli. 2023. Compound Logic Gates for Pipeline

Depth Minimization in Single Flux Quantum Integrated Systems. In Proc.
GLSVLSI.

[3] R. Bairamkulov, A. Tempia Calvino, and G. De Micheli. 2023. Synthesis of SFQ
Circuits with Compound Gates. In Proc. VLSI-SoC.

[4] P. Bunyk, K. Likharev, and D. Zinoviev. 2001. RSFQ Technology: Physics and
Devices. IJHSES 11, 01 (2001).

[5] W. Chen et al. 1999. Rapid Single Flux Quantum T-Flip Flop Operating up to 770
GHz. IEEE TASC 9, 2 (1999).

[6] J. Cong, C. Wu, and Y. Ding. 1999. Cut Ranking and Pruning: Enabling a General
and Efficient FPGA Mapping Solution. In Proc. FPGA.

[7] G. De Micheli. 1994. Synthesis and Optimization of Digital Circuits. McGraw-Hill.
[8] Z. J. Deng et al. 1997. Data-Driven Self-Timed RSFQ High-Speed Test System.

IEEE TASC 7, 4 (1997).
[9] M. Dorojevets et al. 2013. 20-GHz 8x8-Bit Parallel Carry-Save Pipelined RSFQ

Multiplier. IEEE TASC 23, 3 (2013).
[10] K. Gaj, E. G. Friedman, and M. J. Feldman. 1997. Timing of Multi-Gigahertz Rapid

Single Flux Quantum Digital Circuits. J. VLSI Sig. Proc. Syst. 16, 2 (1997).
[11] M. C. Hansen, H. Yalcin, and J. P. Hayes. 1999. Unveiling the ISCAS-85 Bench-

marks: A Case Study in Reverse Engineering. IEEE Des. Test. Comput. 16, 3
(1999).

[12] Q. P. Herr, A. D. Smith, and M. S. Wire. 2002. High Speed Data Link between
Digital Superconductor Chips. Applied Physics Letters 80, 17 (2002).

[13] D. S. Holmes, A. L. Ripple, and M. A. Manheimer. 2013. Energy-Efficient Su-
perconducting computing—Power Budgets and Requirements. IEEE TASC 23, 3
(2013).

[14] T. Jabbari et al. 2020. Repeater Insertion in SFQ Interconnect. IEEE TASC 30, 8
(2020).

[15] M. R. Jokar et al. 2022. DigiQ: A Scalable Digital Controller for Quantum Com-
puters Using SFQ Logic. In IEEE HPCA.

[16] N. K. Katam and M. Pedram. 2018. Logic Optimization, Complex Cell Design,
and Retiming of Single Flux Quantum Circuits. IEEE TASC 28, 7 (2018).

[17] T. Kawaguchi et al. 2015. Demonstration of an 8-Bit SFQ Carry Look-Ahead
Adder Using Clockless Logic Cells. In Proc. ISEC.

[18] G. Krylov and E. G. Friedman. 2022. Single Flux Quantum Integrated Circuit
Design. Springer.

[19] X. Li, M. Pan, T. Liu, and P. A. Beerel. 2022. Multi-Phase Clocking for Multi-
Threaded Gate-Level-Pipelined Superconductive Logic. In Proc. ISVLSI.

[20] K. Likharev, O. Mukhanov, and V. Semenov. 1985. Resistive Single Flux Quantum
Logic for the Josephson-Junction Digital Technology. Proc. SQUID 85 (1985).

[21] T. Onomi, T. Kondo, and K. Nakajima. 2009. Implementation of High-Speed
Single Flux-Quantum Up/Down Counter for the Neural Computation Using
Stochastic Logic. IEEE TASC 19, 3 (2009).

[22] G. Pasandi and M. Pedram. 2019. PBMap: A Path Balancing Technology Mapping
Algorithm for Single Flux Quantum Logic Circuits. IEEE TASC 29, 4 (2019).

[23] L. Perron. 2011. Operations Research and Constraint Programming at Google. In
Proc. CP.

[24] S. Polonsky, J. C. Lin, and A. Rylyakov. 1995. RSFQ Arithmetic Blocks for DSP
Applications. IEEE TASC 5, 2 (1995).

[25] S. Polonsky, V. Semenov, and A. Kirichenko. 1994. Single Flux, Quantum B
Flip-Flop and Its Possible Applications. IEEE TASC 4, 1 (1994).

[26] S. V. Rylov. 2019. Clockless Dynamic SFQ and Gate with High Input Skew
Tolerance. IEEE TASC 29, 5 (2019).

[27] L. Schindler, J. A. Delport, and C. J. Fourie. 2021. The ColdFlux RSFQ Cell Library
for MIT-LL SFQ5ee Fabrication Process. IEEE TASC 32, 2 (2021).

[28] M. Soeken et al. 2018. The EPFL Logic Synthesis Libraries. arXiv Preprint
arXiv:1805.05121v3 (2018).

[29] A. Tempia Calvino and G. De Micheli. 2023. Technology Mapping Using Multi-
output Library Cells. In Proc. ICCAD.

[30] G. Tzimpragos et al. 2020. A Computational Temporal Logic for Superconducting
Accelerators. In Proc.ASPLOS.

[31] S. Yorozu, Y. Kameda, H. Terai, A. Fujimaki, T. Yamada, and S. Tahara. 2002. A
Single Flux Quantum Standard Logic Cell Library. Physica C: Superconductivity
378-381 (2002).

https://arxiv.org/abs/1805.05121
https://arxiv.org/abs/1805.05121

	Abstract
	1 Introduction
	2 Background
	2.1 Single-Flux Quantum technology
	2.2 T1-cell
	2.3 Multiphase clocking

	3 T1-cell-aware technology mapping
	3.1 T1-cell detection
	3.2 Phase assignment
	3.3 DFF insertion

	4 Experimental results
	5 Conclusions
	References

