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Abstract
The majority-inverter graph (MIG) is a homogeneous logic network
widely used in logic synthesis for majority-based emerging tech-
nologies. Many logic optimization algorithms have been proposed
for MIGs, including rewriting, resubstitution, and graph mapping.
However, unlike AIGs, research on optimization flows for MIGs is
limited. In this paper, we explore combinations of well-developed
MIG optimization algorithms using an on-the-fly design space ex-
ploration strategy and present the latest best results on MIG size
minimization of EPFL benchmarks. Significant reductions (of 88%
and 79%) are observed for two specific benchmarks and an average
of 14% improvement is achieved compared to the state-of-the-art
flow.

1 Introduction
The Majority-Inverter Graph (MIG) is a directed acyclic graph mod-
eling combinational circuits, where each node represents a 3-input
majority (MAJ) gate and edges represent wires with optional in-
verters [2]. A MAJ gate computes the majority-of-three function of
its inputs:𝑀 (𝑎, 𝑏, 𝑐) = 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 . The size of a MIG is measured
by its number of gates, and the depth of a MIG is the length of the
longest path from a primary input to a primary output. MIGs are a
generalization of And-Inverter Graphs (AIGs) because an AIG can
be directly converted into a MIG by translating each AND gate as
a MAJ gate with a constant-0 input. Being a more compact rep-
resentation compared to AIGs, MIGs have an advantage in delay
optimization, especially for arithmetic-rich circuits, and have con-
tributed to improvements in standard cell and FPGA design flows
[2]. Moreover, MIGs are also heavily used in logic synthesis for
majority-based emerging technologies [6, 12], such as the super-
conductive Adiabatic Quantum-Flux Parametron (AQFP) circuits [9],
Spin-Torch Majority Gate (STMG) logic [5], and Quantum Cellular
Automata (QCA) [13].

Modern scalable logic synthesis algorithms tend to leverage
simple and homogeneous technology-independent network data
structures like AIGs for their efficiency. Most AIG-based optimiza-
tion methodologies can be adapted for MIGs, and tailored algo-
rithms specialized for MIG optimization have also been researched.
To name a few, algebraic rewriting applies MAJ-specific algebraic
rules to optimize MIGs [2]; cut rewriting, resubstitution, and refac-
toring are Boolean optimization algorithms originally developed
for AIGs which have been adapted for MIGs [6]; graph mapping
can be applied from MIGs to MIGs (remapping) for optimization
purpose [11].

Recent works on MIG optimization often adopt flows consisting
of existing and newly proposed algorithms to demonstrate their
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Algorithm 1: On-the-fly design space exploration
Input: Original MIG 𝑁0
Output: Best-seen MIG 𝑁best with the smallest size

1 foreach restart = 1 upto num_restarts do
2 𝑁curr ← 𝑁0
3 foreach step while not timeout and not bailout do
4 decompress(𝑁curr)
5 compress(𝑁curr)
6 if |𝑁curr | < |𝑁best_inner | then 𝑁best_inner ← 𝑁curr
7 if |𝑁best_inner | < |𝑁best | then 𝑁best ← 𝑁best_inner
8 return 𝑁best

optimization capability. In [12], a flow iterating algebraic rewrit-
ing, resubstitution, and refactoring until convergence is used to
optimize MIGs for AQFP technology mapping. In [4], a MIG flow
consisting of AIG-based pre-optimization, graph mapping, light-
weight resubstitution, and high-effort resubstitution is presented
to demonstrate the strength of the proposed algorithm. Finally, the
latest work [10] adds don’t-care-based rewriting and remapping
on top of the flow in [4]. However, these works present somewhat
ad-hoc flows mainly for the purpose of showcasing the proposed al-
gorithms. It is unclear what the best MIG optimization flow should
be like. While improvements have been made from one work to the
next, the limits are seldom explored. Thus, in this work, we aim to
lower the upper bounds on the problem of MIG size optimization.

2 Methods
We perform on-the-fly design space exploration to search for bet-
ter local optima in terms of MIG size. Minimizing MIG size helps
reduce circuit area for most technologies. For superconductive
circuits, reducing gate count also reduces the number of active
components (Josephson junctions) and thus decreases switching
power consumption.

The exploration process is outlined in Algorithm 1. The algo-
rithm has an outer loop (lines 1-7), where each iteration is called a
restart, and an inner loop (lines 3-6), where each iteration is called a
step. The intuition is to apply a long sequence of logic synthesis al-
gorithms on the original network 𝑁0, continue without rolling back
(“undoing”) even if the size of the network becomes bigger in the
process, and record the best result seen in each restart (𝑁best_inner)
as well as among all restarts (𝑁best). The inner loop breaks on either
a timeout condition, when the execution time of the current restart
exceeds a predefined length, or a bailout condition, when 𝑁best_inner
have not been updated for more than a certain number of steps.
The outer loop serves as an occasional reset to the starting point
such that different trajectories in the design space may be explored.

The main optimization process happens in the decompress and
compress functions (lines 4-5). In decompress, a script is randomly
chosen from a predefined set of decompressing scripts and applied,
aiming at restructuring the network drastically and possibly in-
creasing its size. Applying decompressing scripts helps escape from
local minima and achieve the “hill climbing” effect in the non-
convex design space. In our experiment, we use the following set
of decompressing scripts:
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(1) Convert the MIG into an AIG by replacing each MAJ gate with
four AND gates using𝑀 (𝑎, 𝑏, 𝑐) = 𝑎𝑏 + 𝑐 (𝑎 + 𝑏); apply ABC1 [3]
commands &dch (choice computation), &if (𝑘-LUT mapping,
with 2 ≤ 𝑘 ≤ 6), &mfs (resubstitution on the 𝑘-LUT network),
and &st (convert to AIG); convert the resulting AIG back into
MIG with versatile graph mapping [11].

(2) Perform LUT mapping on the MIG to obtain a 𝑘-LUT network,
where 3 ≤ 𝑘 ≤ 6; convert the 𝑘-LUT network back into MIG
either by disjoint support decomposition (DSD) and Shannon de-
composition or by sum-of-product (SOP) factoring.

(3) Decompose each MAJ gate without constant input into four MAJ
gates with constant inputs using the formula in (1).

Similarly, the function compress randomly applies a script chosen
from a predefined set of compressing scripts, which aims at opti-
mizing the MIG and reducing its size as much as possible. In our
experiment, we have used some subsets of the following set:
(a) Convert the MIG into an AIG as in decompressing script (1);

apply ABC script resyn2rs (AIG optimization flow); convert the
resulting AIG back into MIG with graph mapping.

(b) Apply graph remapping [11] with one round of area flow and
two rounds of exact area optimization, optionally with logic
sharing and/or satisfiability don’t cares enabled.

(c) Apply MIG rewriting [10] with a cut size of 4, optionally with
satisfiability don’t cares computed using a window size of 8.

(d) Apply simulation-guided MIG resubstitution [4] with a window
size of 6 or 8 and maximum dependency circuit size between 0
and 7.

(e) Apply three times remapping (as in (b)); apply three times rewrit-
ing (as in (c)); apply once resubstitution (as in (d)).

3 Experimental Results
We report the latest best results for MIG size minimization on the
EPFL benchmark suite [1] in Table 1. The EPFL benchmark suite
consists of un-optimized arithmetic and random control bench-
marks commonly used to test the capabilities of logic synthesis
tools. The results are obtained using the logic synthesis library
mockturtle2 [7, 8] and are made available online3. The number of
restarts is 4, the bailout condition is 50 steps without improve-
ment, and the timeout condition ismax{|𝑁0 |/10, 1000} seconds per
restart.

In Table 1, the MIG size and depth are reported, as well as the im-
provement in size compared to the state-of-the-art flow (SoTA) con-
sisting of AIG-based pre-optimization, remapping with don’t cares,
rewriting with don’t cares, and resubstitution [10]. The depths of
our results are reported here for completeness, but it is not the
optimization objective in this paper (and was not reported in [10]).

We have tried three settings of the compressing script set: {(a), (b)
without don’t cares, (d)}, {(a), (b), (c), (d)}, and {(a), (e)}. Moreover, we
also tried to use the results in [10] as the starting point, in addition
to starting from the original MIGs directly converted from AIGs.
Results presented in Table 1 are the best ones we obtained and are
not all from the same run. Nevertheless, the total sizes of each run
are within 1% difference to the total of the collective best, indicating
a consistent improvement.

For the benchmarks “adder” and “dec”, we observe that almost all
methods and flows, whether simple or complicated, obtain exactly
the same results. It is thus very likely that these results are the
global optimum and can never be further improved. In contrast,
for the benchmarks “arbiter” and “mem_ctrl”, we observe drastic
improvements of 88.2% and 78.5%, respectively, achieved by our
design space exploration compared to any other existing flows.

1Available: https://github.com/berkeley-abc/abc
2Available: https://github.com/lsils/mockturtle
3Available: https://github.com/lsils/benchmarks-mig/

Table 1. Latest best results for MIG size optimization.

SoTA [10] New Best Results
Bench. Size Size Impr. Depth
adder 384 384 - 129
bar 2433 1906 21.7% 15
div 12462 12368 0.8% 2251
hyp 115541 115539 0.002% 9129
log2 22010 22008 0.01% 184
max 2190 1939 11.5% 172
multiplier 17112 17112 - 137
sin 3870 3869 0.03% 124
sqrt 12357 12247 0.9% 2156
square 8138 8089 0.6% 126
arbiter 6711 792 88.2% 108
cavlc 492 374 24.0% 16
ctrl 74 60 18.9% 8
dec 304 304 - 3
i2c 871 636 27.0% 16
int2float 172 115 33.1% 9
mem_ctrl 32097 6886 78.5% 26
priority 406 337 17.0% 23
router 147 97 34.0% 13
voter 4555 3894 14.5% 32
Total 242326 208956 13.8% 14677

Overall, a 13.8% improvement is achieved compared to the state of
the art.

4 Conclusions
In this late-breaking-results paper, we present our latest best results
on MIG size optimization and provide some insights into what a
good MIG flow would be like. As the Boolean optimization problem
faced in logic synthesis is intractable and global optimum results are
typically unknown, this work contributes to finding better upper
bounds on the minimal size of common benchmarks, which in turn
helps researchers evaluate new algorithms in the future. In future
work, we plan to run a similar study on MIG depth minimization,
which is important for latency optimization in many technologies.
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