Late Breaking Results: Majority-Inverter Graph Minimization by
Design Space Exploration

Siang-Yun Lee
EPFL, Switzerland

Heinz Riener
Cadence Design Systems, Germany

Abstract

The majority-inverter graph (MIG) is a homogeneous logic network
widely used in logic synthesis for majority-based emerging tech-
nologies. Many logic optimization algorithms have been proposed
for MIGs, including rewriting, resubstitution, and graph mapping.
However, unlike AIGs, research on optimization flows for MIGs is
limited. In this paper, we explore combinations of well-developed
MIG optimization algorithms using an on-the-fly design space ex-
ploration strategy and present the latest best results on MIG size
minimization of EPFL benchmarks. Significant reductions (of 88%
and 79%) are observed for two specific benchmarks and an average
of 14% improvement is achieved compared to the state-of-the-art
flow.

1 Introduction

The Majority-Inverter Graph (MIG) is a directed acyclic graph mod-
eling combinational circuits, where each node represents a 3-input
majority (MAJ) gate and edges represent wires with optional in-
verters [2]. A MA]J gate computes the majority-of-three function of
its inputs: M(a, b,c) = ab + bc + ac. The size of a MIG is measured
by its number of gates, and the depth of a MIG is the length of the
longest path from a primary input to a primary output. MIGs are a
generalization of And-Inverter Graphs (AIGs) because an AIG can
be directly converted into a MIG by translating each AND gate as
a MA]J gate with a constant-0 input. Being a more compact rep-
resentation compared to AIGs, MIGs have an advantage in delay
optimization, especially for arithmetic-rich circuits, and have con-
tributed to improvements in standard cell and FPGA design flows
[2]. Moreover, MIGs are also heavily used in logic synthesis for
majority-based emerging technologies [6, 12], such as the super-
conductive Adiabatic Quantum-Flux Parametron (AQFP) circuits [9],
Spin-Torch Majority Gate (STMG) logic [5], and Quantum Cellular
Automata (QCA) [13].

Modern scalable logic synthesis algorithms tend to leverage
simple and homogeneous technology-independent network data
structures like AIGs for their efficiency. Most AIG-based optimiza-
tion methodologies can be adapted for MIGs, and tailored algo-
rithms specialized for MIG optimization have also been researched.
To name a few, algebraic rewriting applies MAJ-specific algebraic
rules to optimize MIGs [2]; cut rewriting, resubstitution, and refac-
toring are Boolean optimization algorithms originally developed
for AIGs which have been adapted for MIGs [6]; graph mapping
can be applied from MIGs to MIGs (remapping) for optimization
purpose [11].

Recent works on MIG optimization often adopt flows consisting
of existing and newly proposed algorithms to demonstrate their

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

DAC °24, June 23-27, 2024, San Francisco, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0601-1/24/06.

https://doi.org/10.1145/3649329.3663507

Alessandro Tempia Calvino
EPFL, Switzerland

Giovanni De Micheli
EPFL, Switzerland

Algorithm 1: On-the-fly design space exploration

Input: Original MIG N
Output: Best-seen MIG Npeg with the smallest size
foreach restart = 1 upto num_restarts do
Neurr < No
foreach step while not timeout and not bailout do
decompress(Neurr)
compress(Neurr)
if ‘Ncurrl < |Nbext7inner| then Nbestiinner — Neurr
if |Nbest7mner| < |Npest| then Npegt < Nbest_inner
return Npey

L R N N

optimization capability. In [12], a flow iterating algebraic rewrit-
ing, resubstitution, and refactoring until convergence is used to
optimize MIGs for AQFP technology mapping. In [4], a MIG flow
consisting of AIG-based pre-optimization, graph mapping, light-
weight resubstitution, and high-effort resubstitution is presented
to demonstrate the strength of the proposed algorithm. Finally, the
latest work [10] adds don’t-care-based rewriting and remapping
on top of the flow in [4]. However, these works present somewhat
ad-hoc flows mainly for the purpose of showcasing the proposed al-
gorithms. It is unclear what the best MIG optimization flow should
be like. While improvements have been made from one work to the
next, the limits are seldom explored. Thus, in this work, we aim to
lower the upper bounds on the problem of MIG size optimization.

2 Methods

We perform on-the-fly design space exploration to search for bet-
ter local optima in terms of MIG size. Minimizing MIG size helps
reduce circuit area for most technologies. For superconductive
circuits, reducing gate count also reduces the number of active
components (Josephson junctions) and thus decreases switching
power consumption.

The exploration process is outlined in Algorithm 1. The algo-
rithm has an outer loop (lines 1-7), where each iteration is called a
restart, and an inner loop (lines 3-6), where each iteration is called a
step. The intuition is to apply a long sequence of logic synthesis al-
gorithms on the original network Ny, continue without rolling back
(“undoing”) even if the size of the network becomes bigger in the
process, and record the best result seen in each restart (Npet inner)
as well as among all restarts (Np,s;). The inner loop breaks on either
a timeout condition, when the execution time of the current restart
exceeds a predefined length, or a bailout condition, when Ny inner
have not been updated for more than a certain number of steps.
The outer loop serves as an occasional reset to the starting point
such that different trajectories in the design space may be explored.

The main optimization process happens in the decompress and
compress functions (lines 4-5). In decompress, a script is randomly
chosen from a predefined set of decompressing scripts and applied,
aiming at restructuring the network drastically and possibly in-
creasing its size. Applying decompressing scripts helps escape from
local minima and achieve the “hill climbing” effect in the non-
convex design space. In our experiment, we use the following set
of decompressing scripts:

https://doi.org/10.1145/3649329.3663507

DAC ’24, June 23-27, 2024, San Francisco, CA, USA

(1) Convert the MIG into an AIG by replacing each MAJ gate with
four AND gates using M(a, b, c) = ab + c(a + b); apply ABC! [3]
commands &dch (choice computation), &if (k-LUT mapping,
with 2 < k < 6), &nf's (resubstitution on the k-LUT network),
and &st (convert to AIG); convert the resulting AIG back into
MIG with versatile graph mapping [11].

(2) Perform LUT mapping on the MIG to obtain a k-LUT network,
where 3 < k < 6; convert the k-LUT network back into MIG
either by disjoint support decomposition (DSD) and Shannon de-
composition or by sum-of-product (SOP) factoring.

(3) Decompose each MAJ gate without constant input into four MAJ
gates with constant inputs using the formula in (1).

Similarly, the function compress randomly applies a script chosen
from a predefined set of compressing scripts, which aims at opti-
mizing the MIG and reducing its size as much as possible. In our
experiment, we have used some subsets of the following set:

(a) Convert the MIG into an AIG as in decompressing script (1);
apply ABC script resyn2rs (AIG optimization flow); convert the
resulting AIG back into MIG with graph mapping.

(b) Apply graph remapping [11] with one round of area flow and
two rounds of exact area optimization, optionally with logic
sharing and/or satisfiability don’t cares enabled.

(c) Apply MIG rewriting [10] with a cut size of 4, optionally with
satisfiability don’t cares computed using a window size of 8.

(d) Apply simulation-guided MIG resubstitution [4] with a window
size of 6 or 8 and maximum dependency circuit size between 0
and 7.

(e) Apply three times remapping (as in (b)); apply three times rewrit-
ing (as in (c)); apply once resubstitution (as in (d)).

3 Experimental Results

We report the latest best results for MIG size minimization on the
EPFL benchmark suite [1] in Table 1. The EPFL benchmark suite
consists of un-optimized arithmetic and random control bench-
marks commonly used to test the capabilities of logic synthesis
tools. The results are obtained using the logic synthesis library
mockturtle? [7, 8] and are made available online3. The number of
restarts is 4, the bailout condition is 50 steps without improve-
ment, and the timeout condition is max{|Np|/10, 1000} seconds per
restart.

In Table 1, the MIG size and depth are reported, as well as the im-
provement in size compared to the state-of-the-art flow (SoTA) con-
sisting of AIG-based pre-optimization, remapping with don’t cares,
rewriting with don’t cares, and resubstitution [10]. The depths of
our results are reported here for completeness, but it is not the
optimization objective in this paper (and was not reported in [10]).

We have tried three settings of the compressing script set: {(a), (b)
without don’t cares, (d)}, {(a), (b), (c), (d)}, and {(a), (¢)}. Moreover, we
also tried to use the results in [10] as the starting point, in addition
to starting from the original MIGs directly converted from AIGs.
Results presented in Table 1 are the best ones we obtained and are
not all from the same run. Nevertheless, the total sizes of each run
are within 1% difference to the total of the collective best, indicating
a consistent improvement.

For the benchmarks “adder” and “dec”, we observe that almost all
methods and flows, whether simple or complicated, obtain exactly
the same results. It is thus very likely that these results are the
global optimum and can never be further improved. In contrast,
for the benchmarks “arbiter” and “mem_ctrl”, we observe drastic
improvements of 88.2% and 78.5%, respectively, achieved by our
design space exploration compared to any other existing flows.

! Available: https://github.com/berkeley-abc/abc
2Available: https://github.com/Isils/mockturtle
3 Available: https://github.com/Isils/benchmarks-mig/

Siang-Yun Lee, Alessandro Tempia Calvino, Heinz Riener, and Giovanni De Micheli

Table 1. Latest best results for MIG size optimization.

SoTA [10] New Best Results
Bench. Size Size Impr. Depth
adder 384 384 - 129
bar 2433 1906 21.7% 15
div 12462 12368 0.8% 2251
hyp 115541 115539 0.002% 9129
log2 22010 22008 0.01% 184
max 2190 1939 11.5% 172
multiplier 17112 17112 - 137
sin 3870 3869 0.03% 124
sqrt 12357 12247 0.9% 2156
square 8138 8089 0.6% 126
arbiter 6711 792 88.2% 108
cavlc 492 374 24.0% 16
ctrl 74 60 18.9% 8
dec 304 304 - 3
i2¢ 871 636 27.0% 16
int2float 172 115 33.1% 9
mem_ctrl 32097 6886 78.5% 26
priority 406 337 17.0% 23
router 147 97 34.0% 13
voter 4555 3894 14.5% 32
Total 242326 208956 13.8% 14677

Overall, a 13.8% improvement is achieved compared to the state of
the art.

4 Conclusions

In this late-breaking-results paper, we present our latest best results
on MIG size optimization and provide some insights into what a
good MIG flow would be like. As the Boolean optimization problem
faced in logic synthesis is intractable and global optimum results are
typically unknown, this work contributes to finding better upper
bounds on the minimal size of common benchmarks, which in turn
helps researchers evaluate new algorithms in the future. In future
work, we plan to run a similar study on MIG depth minimization,
which is important for latency optimization in many technologies.

References

[1] Luca Amart, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. 2015. The
EPFL combinational benchmark suite. In Proceedings of IWLS.

[2] Luca Amaru, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. 2015.
Majority-inverter graph: A new paradigm for logic optimization. IEEE Trans. on
CAD 35, 5 (2015), 806-819.

[3] Robert K. Brayton and Alan Mishchenko. 2010. ABC: An Academic Industrial-
Strength Verification Tool. In Proceedings of CAV. 24-40.

[4] Siang-Yun Lee and Giovanni De Micheli. 2023. Heuristic Logic Resynthesis
Algorithms at the Core of Peephole Optimization. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. (2023).

[5] Dmitri E Nikonov, George I Bourianoff, and Tahir Ghani. 2011. Proposal of a
spin torque majority gate logic. IEEE Electron Device Letters (2011).

[6] Heinz Riener, Eleonora Testa, Luca G. Amart, Mathias Soeken, and Giovanni
De Micheli. 2018. Size Optimization of MIGs with an Application to QCA and
STMG Technologies. In Proceedings of NANOARCH. 157-162.

[7] Heinz Riener, Eleonora Testa, Winston Haaswijk, Alan Mishchenko, Luca G.

Amart, Giovanni De Micheli, and Mathias Soeken. 2019. Scalable Generic Logic

Synthesis: One Approach to Rule Them All. In Proceedings of DAC. 70.

Mathias Soeken, Heinz Riener, Winston Haaswijk, Eleonora Testa, Bruno Schmitt,

Giulia Meuli, Fereshte Mozafari, Siang-Yun Lee, Alessandro Tempia Calvino,

Dewmini Sudara Marakkalage, and Giovanni De Micheli. 2022. The EPFL Logic

Synthesis Libraries. arXiv:1805.05121 http://arxiv.org/abs/1805.05121

Naoki Takeuchi, Dan Ozawa, Yuki Yamanashi, and Nobuyuki Yoshikawa. 2013.

An adiabatic quantum flux parametron as an ultra-low-power logic device. Su-

perconductor Science and Technology 26, 3 (2013), 035010.

Alessandro Tempia Calvino and Giovanni De Micheli. 2024. Scalable Logic

Rewriting Using Don’t Cares. In Proceedings of DATE.

Alessandro Tempia Calvino, Heinz Riener, Shubham Rai, Akash Kumar, and

Giovanni De Micheli. 2022. A Versatile Mapping Approach for Technology

Mapping and Graph Optimization. In Proceedings of ASP-DAC. 410-416.

Eleonora Testa, Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli. 2021.

Algebraic and Boolean Optimization Methods for AQFP Superconducting Circuits.

In Proceedings of ASP-DAC. 779-785.

P Douglas Tougaw and Craig S Lent. 1994. Logical devices implemented using

quantum cellular automata. Journal of Applied physics 75, 3 (1994), 1818-1825.

=

[9

[10

[11

[12

(13

https://github.com/berkeley-abc/abc
https://github.com/lsils/mockturtle
https://github.com/lsils/benchmarks-mig/
http://arxiv.org/abs/1805.05121

	Abstract
	1 Introduction
	2 Methods
	3 Experimental Results
	4 Conclusions
	References

