
1

Heuristic Logic Resynthesis Algorithms
at the Core of Peephole Optimization

Siang-Yun Lee and Giovanni De Micheli, Life Fellow, IEEE

Abstract—Logic resynthesis is one of the core problems in
modern peephole logic optimization algorithms. Given a target
function and a set of existing functions, logic resynthesis asks for
a circuit reusing some of the existing functions and generating
the target. While exact methods such as enumeration and SAT-
based synthesis guarantee optimal solutions, limitations on the
problem size are inevitable due to scalability concerns. In this
work, we propose heuristic resynthesis algorithms for AND-
based, majority-based, and multiplexer-based circuits, which
are scalable in all aspects. Used as the core of high-effort
optimization, our heuristic resynthesis algorithms play a key role
in enabling 2-3% further size reduction on benchmarks that are
already processed by state-of-the-art optimization flows.

Index Terms—Logic synthesis, combinational circuit, peephole
optimization, resynthesis, Boolean resubstitution

I. INTRODUCTION

LOGIC synthesis plays an important role in modern
electronic design automation flows, optimizing gate-

level netlists and removing redundant logic in them [1]–
[3]. Peephole optimization is a divide-and-conquer strategy to
maintain scalability of logic synthesis algorithms, where small
portions of a circuit, often referred to as windows or cuts,
are extracted, optimized independently, and substituted back.
With the large scale of designs nowadays, most logic synthesis
algorithms, such as rewriting [4]–[7], resubstitution [4], [8]–
[10], refactoring [4], [9], [11], etc., fall into the category of
peephole optimizations.

One of the important steps in any peephole optimization
algorithm is re-synthesizing the extracted sub-circuit into a
better one. In this work, we define the logic resynthesis
problem as a generalized formulation of this step: The problem
is given a target function, which is usually the root of a cut
or the output(s) of a window, and some divisor functions,
which are existing functions from neighboring nodes in the
network. The resynthesis problem asks for a dependency
circuit, computing a dependency function, that takes as inputs
a subset of divisor functions and generates the target function
at the output. If the solution is better than the original sub-
network in the predefined cost metric, then it can be used to
substitute the targeted node.

Various resynthesis strategies are adopted by different logic
synthesis algorithms. For example, in cut rewriting, the divisor
functions are always the projection (identity) functions and

This research was supported by the SNF grant “Supercool: Design methods
and tools for superconducting electronics”, 200021 1920981.

Siang-Yun Lee and Giovanni De Micheli are with the Integrated Systems
Laboratory, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne,
Switzerland.

the target function has a small number of inputs (usually 4),
thus the optimal dependency circuit can be looked up from
a pre-computed database [4], [5] or be synthesized by SAT
solving [6], [7]. As another example, in refactoring, the divisor
functions are also the projection functions, but the dependency
circuit is synthesized by two-level logic optimization [4], [9].
In contrast, in resubstitution, divisor functions other than only
the projection functions are collected and used as stepping
stones to construct the target function. As the number of all
possible sets of divisor functions is very large, a resubstitution
algorithm has to investigate the divisor functions and resynthe-
size the dependency circuit on the fly. Previous resubstitution
works mostly attempt to enumerate small dependency circuits
and compare them to the target function [4], [9], [10]. The
drawback of this approach is that the dependency circuit is
limited to a small size, as otherwise the search space becomes
too big.

With the introduction of the simulation-guided logic syn-
thesis paradigm [12], where simulation signatures are used to
approximate global logic functions, it becomes affordable to
extend the window sizes in peephole optimization. Craving
for better optimization effort, resynthesis methods capable
of optimizing more complex functions, which require larger
dependency circuits, are in need. In a highly-optimized net-
work where rewriting with a small cut size cannot make any
further optimization, there may still be hidden optimization
opportunities requiring the involvement of a larger portion of
the network. In some cases, not only a larger cut (and thus a
larger window) needs to be considered, but the resynthesized
sub-networks should also not be limited to small ones.

In this paper, we research on the problem of logic resyn-
thesis and propose resynthesis algorithms for networks based
on AND, MAJ, or MUX gates, targeting size optimization.1

The proposed algorithms share the following characteristics:

• Support for incomplete functions and don’t cares: The
divisor and target functions may be given as completely-
specified Boolean functions or partial simulation sig-
natures [12]. The algorithms resynthesize dependency
circuits satisfying the given parts of functions and make
no assumption on the uninformed parts. Moreover, don’t
cares of the target function may be given, and the algo-
rithms take advantage of this information to resynthesize
smaller dependency circuits.

1This manuscript is an extension to and summary of two of the authors’
previous works: AND-based resynthesis was first proposed in [13] and MAJ-
based resynthesis was first proposed in [14], whereas MUX-based resynthesis
is new in this manuscript.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3256341

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

• Heuristic but unlimited: Optimality may only be guaran-
teed when the optimal solution is small. It is also not
guaranteed that a solution is always found. Nevertheless,
there is no limit on the possible solution size. When a
small-sized solution does not exist, the heuristic may still
find a bigger solution which exact methods can never find
within reasonable runtime.

• Top-down decomposition: Although the three proposed
algorithms are designed differently, they all start from
choosing “good” divisors based on some evaluation cri-
teria involving the target function. Then, if the target
cannot be realized within a few gates, it is decomposed
into easier-to-realize targets by a gate on top.

The proposed heuristic resynthesis algorithms have better
complexities comparing to existing exact algorithms, while
compromising with little overhead in the quality of result
comparing to optimal solutions. With their high efficiency
and unlimited problem size, heuristic resynthesis is the only
practical candidate to serve as the core of high-effort peephole
optimization. Experimental results show that our proposed
techniques enable 2-3% additional size reduction on bench-
marks which are already highly-optimized by state-of-the-art
flows, achieved within less than 50% runtime of the state-of-
the-art flows.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Boolean Functions and Truth Tables

A Boolean variable is a variable taking values in the
Boolean domain B = {0, 1}, and a Boolean function is a
function of Boolean variables. Unless otherwise specified, all
functions in the remaining of this paper are single-output
Boolean functions.

There are several possible representations of Boolean func-
tions, such as propositional formulas, Boolean chains [15],
binary decision diagrams [16], and truth tables. We use the
conventional Boolean operators when writing propositional
formulas (¬ for NOT, ∧ for AND, ∨ for OR, ⊕ for XOR, and
↔ for XNOR). In this paper, the truth table T [f] of a k-input
Boolean function f : Bk → B is a bit-string u = u1 · · ·ul,
i.e., a sequence of bits, of length l = 2k. The bit ui ∈ B at
the i-th position (0 ≤ i < l), denoted as T [f]i, is equal to
the output of f under the input assignment a⃗ = (a1, . . . , ak),
where

2k−1 · ak + . . .+ 20 · a1 = i. (1)

The assignment a⃗ ∈ Bk is also called a minterm in the input
space of f . If T [f]i = f (⃗a) = 1, a⃗ is said to be an onset
minterm; otherwise, if T [f]i = f (⃗a) = 0, a⃗ is said to be an
offset minterm.

We use

ONES(f) =

l−1∑
i=0

T [f]i (2)

to denote the number of 1-bits in the truth table of f , which
is also the number of onset minterms, or the size of the onset.

Truth tables are manipulated by carrying out the usual
Boolean operations on all of their bits. Suppose that u =
u1 · · ·ul and v = v1 · · · vl are two truth tables of length l,

and α : B → B and β : B2 → B are, respectively, unary
and binary Boolean operations, then α(u) = α(u1) · · ·α(ul)
and β(u, v) = β(u1, v1) · · ·β(ul, vl). Such truth table ma-
nipulations can be highly-efficiently implemented with the
bit-parallel operations supported by modern CPUs [17]. The
bits of the truth tables are split into buckets of 32- or 64-bit
machine words and each bucket is processed in one machine
instruction.

B. Logic Resynthesis

Logic resynthesis (or simply resynthesis) is the problem of
re-expressing a function in terms of other functions.

Problem Formulation II-B (Resynthesis). Given a target
function (or simply target) f : Bk → B over k Boolean
variables x⃗ = (x1, . . . , xk) and a collection G = {g1, . . . , gn}
of n divisor functions (or simply divisors) gi : Bk →
B, 1 ≤ i ≤ n over the same variables, find a dependency
function h : Bn → B satisfying

f(x⃗) = h(g1(x⃗), . . . , gn(x⃗)), ∀x⃗ ∈ Bk. (3)

In this formulation, variables x1, . . . , xk are not inputs of
the function h, but any subset of them may be embedded
as divisors by defining, for example, g1(x⃗) = x1. Also, the
expression of h does not necessarily depend on all of its
n inputs. In practice, a resynthesis problem may be further
restricted by, for example, a set of logic operations or the
number of operations allowed to be used in the expression of
the dependency function. This will be further introduced in
Section II-D.

Example 1 (Unrestricted resynthesis). Given the target func-
tion

f(x1, x2, x3) = (x1 ∧ x2) ∨ (¬x2 ∧ ¬x3) (4)

and the divisor set

G = {g1(x1, x2, x3) = x1 ∧ ¬x2,

g2(x1, x2, x3) = ¬x2 ∧ x3,

g3(x1, x2, x3) = x3,

g4(x1, x2, x3) = x1 ↔ x2}, (5)

one possible dependency function is

h(g1, g2, g3, g4) = (g1 ∨ g4) ∧ ¬g2. (6)

Notice that Equation (3) is satisfied because

h = ((x1 ∧ ¬x2) ∨ (x1 ↔ x2)) ∧ ¬(¬x2 ∧ x3)

= (x1 ∧ x2) ∨ (¬x2 ∧ ¬x3) = f. (7)

The resynthesis problem can be seen as a generalization of
the classical logic synthesis problem, where an expression or
realization of h over the same variables x1, . . . , xk as f is
sought for, i.e., G is restricted to {g1 = x1, . . . , gk = xk}.
Logic resynthesis is different from logic decomposition [18],
[19] or functional decomposition [20], [21], where the problem
is not limited to a given divisor collection G, but involves
identifying the needed divisors. In contrast, solving resynthesis
problems can be seen as the core step in a resubstitution
algorithm [4], [8]–[10].

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3256341

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

C. Logic Networks

Logic networks, or simply networks, are gate-level rep-
resentations of digital circuits commonly used as the data
structure during logic optimization. Networks are directed
acyclic graphs (DAGs), where nodes model logic gates chosen
from a predefined set, and edges model interconnecting wires.
Edges may optionally be tagged as being complemented,
representing an inverter on the wire. Incoming edges of a node
are called fanins, whereas outgoing edges are called fanouts.
For convenience, nodes having fanouts pointing to a common
node (i.e., fanin nodes of a node) are said to be siblings of each
other. The size of a network is determined by its number of
nodes, whereas inverters are, in this paper, not counted towards
the network size.

Prominent examples of logic networks include And-Inverter
Graphs (AIGs), where each node represents a two-input AND
gate, and Majority-Inverter Graphs (MIGs) [22], where each
node represents a three-input majority (MAJ) gate. The MAJ
gate computes the majority function M of its fanins [23], i.e.,

M(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x1 ∧ x3). (8)

Extending the gate library with XOR gates, the Xor-And-
Inverter Graph (XAG) is a logic network where nodes can
be either a two-input AND gate or a two-input XOR gate.
Another interesting type of networks is the Multiplexer-
Inverter Graph (MuxIG), where each node represents a 2-
to-1 multiplexer (MUX) gate. The MUX gate has three non-
symmetric inputs: the S-input as the selection (“if”) signal,
the T-input as the “then” signal, and the E-input as the “else”
signal. The function computed by a MUX gate can be written
as

MUX(s, t, e) = (s ∧ t) ∨ (¬s ∧ e). (9)

D. Peephole Optimization

Peephole optimization is a class of logic optimization algo-
rithms that repeatedly select a small sub-network, optimize
it, and replace the sub-network with an optimized one. A
number of well-known logic optimization algorithms fall into
this category, such as cut rewriting [5], [7], resubstitution [8],
[9], [12], and window rewriting [13]. Logic resynthesis can
be used in the second step of peephole optimization, i.e.,
optimizing the selected sub-network by resynthesizing the
output function(s) of the sub-network. For details in the other
steps, such as cut computation, windowing, collecting divisors,
and evaluation of candidate replacement sub-networks, we
refer the interested readers to the literature cited above. In
this work, we focus on the resynthesis problem for AND-
based, MAJ-based, and MUX-based circuits targeting size
optimization. That is, the dependency function h is represented
by an AIG, XAG, MIG, or MuxIG, called the dependency
circuit, and the optimization goal is minimizing its size.

Example 2 (MIG resynthesis targeting size optimization).
Given the target function

f(x1, x2, x3) = x1 ⊕ x2 ⊕ x3 (10)

and the divisor set

G = {g1(x1, x2, x3) = x1,

g2(x1, x2, x3) = x2,

g3(x1, x2, x3) = x3,

g4(x1, x2, x3) = M(¬x1, x2, x3),

g5(x1, x2, x3) = M(¬x1,¬x2, x3)} (11)

extracted from an MIG by a peephole optimization algorithm.
The resynthesis problem is restricted to use only majority gates
and inverters, and solutions with fewer gates are preferred. One
possible dependency function is

h(g1, g2, g3, g4) = M(¬g2, g4,¬g5), (12)

whose corresponding dependency circuit has the least possible
size of 1.

E. Don’t-Care-Based Optimization

Most modern logic optimization algorithms place emphasis
on the computation and utilization of don’t cares, which are
flexibilities in logic functions [24]. The peephole optimization
algorithms mentioned in Section II-D are all examples of
don’t-care-based optimization [5], [7]–[9], [12], [13]. When
solving the resynthesis problem as part of peephole opti-
mization, it is important to take the computed don’t cares
into account. Although don’t cares may come from different
sources, namely satisfiability don’t cares and observability
don’t cares, they can be treated the same when formulating the
resynthesis problem. Formally, the don’t-care set of a single-
output Boolean function is defined as the set of minterms (i.e.,
input value assignments) for which the output value is allowed
to be either 0 or 1.

Problem Formulation II-E (Resynthesis with don’t cares).
Given a target function f : Bk → B over k Boolean variables
x⃗ = (x1, . . . , xk), a don’t-care set D ⊆ Bk, and a collection
G = {g1, . . . , gn} of n divisor functions gi : Bk → B, 1 ≤
i ≤ n over the same variables, find a dependency function
h : Bn → B satisfying

f(x⃗) = h(g1(x⃗), . . . , gn(x⃗)), ∀x⃗ ∈ Bk\D. (13)

For convenience, we define the care set C = Bk\D and the
care function c : Bk → B, where

c(x⃗) =

{
1 x⃗ ∈ C,

0 x⃗ ∈ D.
(14)

Thus, Equation (13) is equivalent to

f(x⃗) = h(g1(x⃗), . . . , gn(x⃗)), ∀x⃗ ∈ Bk s.t. c(x⃗) = 1. (15)

Moreover, if we define the target onset function fon = f ∧ c
and the offset function foff = ¬f ∧ c, then Equation (13) is
also equivalent to

h
(
fg1(x⃗), . . . , fgn(x⃗)

)
=⇒ ¬foff(x⃗) and

fon(x⃗) =⇒ h
(
fg1(x⃗), . . . , fgn(x⃗)

)
,∀x⃗ ∈ Bk. (16)

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3256341

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

Example 3 (Resynthesis with nonempty don’t-care set). Sup-
pose we have the same target function f and divisor set G as in
Example 1 (Equations (4) and (5), respectively). Additionally,
we are now given the care function

c(x1, x2, x3) = x2 ∨ (x1 ↔ x3).

In other words, the don’t-care set D = {(1, 0, 0), (0, 0, 1)} is
nonempty. For this relaxed problem, one possible dependency
function is

h(g1, g2, g3, g4) = g4, (17)

which is simpler than Equation (6) thanks to the provided
don’t cares. Notice that Equation (13) is satisfied because the
difference between f and h (f⊕h = {(1, 0, 0), (0, 0, 1)}) does
not intersect with the care set.

F. Simulation-Guided Logic Synthesis

The simulation-guided paradigm [12] is a logic synthesis
and verification model where partial simulation signatures
are used to approximate the global functions of nodes in a
network. In this paradigm, a non-exhaustive set of simulation
patterns (i.e., value assignments to primary inputs) is generated
and used to simulate the network. The simulated values,
called simulation signatures, at each node in the network are
approximations of their global function and can be used to
resynthesize dependency circuits.

The resynthesis algorithms proposed in this paper are com-
patible with the simulation-guided paradigm. In this case, the
target and divisor functions are represented by the simulation
signatures of the corresponding nodes in the network and
partial truth tables are used as the data structure. A partial
truth table is a truth table of arbitrary length l, representing
a partially-specified, incomplete function f : X → B, where
X ⊆ Bk and k is the number of primary inputs of the network.
The i-th bit T [f]i is the output of f under the i-th simulation
pattern in the set. What the pattern actually is is not important
for the resynthesis problem. It is only required that the partial
truth tables of the target and divisors use the same ordered set
of simulation patterns.

Problem Formulation II-F (Resynthesis with incomplete-
ly-specified functions). Given a target function f : X → B
and a collection G = {g1, . . . , gn} of n divisor functions
gi : X → B, 1 ≤ i ≤ n defined over the same input space
X ⊆ Bk, k ∈ N+, find a dependency function h : Bn → B
satisfying

f(x⃗) = h(g1(x⃗), . . . , gn(x⃗)), ∀x⃗ ∈ X. (18)

Optionally and similarly to the problem formulation in Sec-
tion II-E, a don’t-care set D ⊆ X may be given. The care set
is then C = X\D, and the care function c : X → B is defined
the same as in Equation (22).

A resynthesis algorithm receiving target and divisor func-
tions as truth tables does not distinguish the case where
functions are incompletely-specified from where they are
completely-specified. A solution given by the algorithm fulfills
Equation (18), and it is up to the simulation-guided framework
to validate the dependency circuit in the context of the network

and add more bits into the partial truth tables to block invalid
solutions [12].

III. RELATED WORKS

In this section, we introduce previous works dealing with
the same or similar problems.

A. Functional Dependency by Interpolation

In [25], a method to find functional dependency using
interpolation was proposed. The problem of finding functional
dependency is essentially the same as the unrestricted logic
resynthesis problem (Problem Formulation II-B), where the
goal is only to find a dependency function without a particular
focus on (minimizing) the corresponding dependency circuit.
In [25], given a target function f and a set of base functions G
(i.e., divisor functions in our terminology), it is first checked if
f functionally depends on G, i.e., if a dependency function h
exists. This is done by solving a satisfiability (SAT) problem
consisting of two copies of the circuit representation of f
and G and additional constraints that the outputs of G are
the same, but one copy outputs f = 0 and the other outputs
f = 1. Intuitively, the SAT problem encodes that there exists
a pair of offset x⃗0 and onset x⃗1 minterms of f , such that
gi(x⃗0) = gi(x⃗1) for all gi ∈ G. A dependency function h
exists if and only if the SAT instance is unsatisfiable, and
such h can be computed by deriving the interpolant from the
refutation proof given by the SAT solver.

The interpolation-based method was later used in [8] as part
of resubstitution for Look-Up Table (LUT) networks. Because
the dependency function is implemented as a LUT node, it
is not needed to construct a dependency circuit. However,
for resubstitution algorithms for AIGs, XAGs, or MIGs, etc.,
the size of the dependency circuit is crucial for the opti-
mization quality. Thus, the interpolation-based method is not
applicable there. Also, as the procedure involves constructing
CNF clauses of a circuit computing f and G, it cannot solve
the resynthesis problem with incomplete simulation signatures
(Problem Formulation II-F).

B. SAT-Based Exact Synthesis

SAT solving can also be used to find the smallest de-
pendency circuit, instead of just some feasible dependency
function. SAT-based exact synthesis of Boolean chains encodes
the following question into a conjunctive normal form (CNF)
formula: “Does there exist a Boolean chain which implements
the given function f with exactly r steps2?” A solution
Boolean chain can be interpreted from a satisfiable assignment
to the encoded CNF formula, whereas an unsatisfiable result
means a solution of r steps is impossible. By solving such
SAT problem iteratively with different values of r, the smallest
feasible r can be found [15]. While SAT-based exact synthesis
was originally described to synthesize a Boolean chain com-
puting a given function at its output(s) in terms of its input

2Using the terminology in this paper, a Boolean chain with r steps is a
logic network with r nodes, where each node models an arbitrary logic gate.
Additional clauses may be added to the CNF formula to constrain possible
gate types to a predefined set.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3256341

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

variables, i.e., it solves a subset of the resynthesis problem
where divisors are projection functions, it can be modified
and extended to solve the general resynthesis problem where
divisors can be any functions and don’t cares are supported [7].
In [26], different CNF encodings of the problem were analyzed
and compared. However, although it is possible to reduce the
number of variables involved in the SAT instance, it is done at
the cost of more clauses in the CNF formula. As the intrinsic
complexity of the problem is exponential, the scalability of an
exact algorithm is always limited.

C. Enumeration-Based Resubstitution

Resubstitution is a logic optimization technique which sub-
stitutes a node in the network with another existing node,
or with newly-created nodes constructed upon other existing
nodes [3]. Resubstitution for AIG size minimization was first
proposed in [4], where windows of no more than 16 inputs
are constructed to collect structurally-proximate divisor nodes
and to perform complete local simulation. Small sub-networks
of up to three AND gates and taking divisors as inputs are
enumerated, simulated and compared to the target function. If
the composed function is the same as (or compatible subject
to the care set) the target, a viable dependency circuit is
found. Such search for resubstitutions is essentially the AIG
resynthesis problem with size awareness. The complexity of
the enumeration-based resynthesis approach is O(|G||H|+1),
where |G| is the number of divisors and |H| is the size of
possible dependency circuit. Thus, |G| is limited to at most
150 and |H| is limited to at most 2 in [4].

In [9], enumeration-based resynthesis was extended to larger
dependency circuits, but still limited to some predefined struc-
tures such as AND-XOR, MUX, MUX-XOR, etc. A Boolean
filtering rule was proposed to filter out useless divisors, so
that the search space was reduced. Overall, eight types of
dependency circuit structures are tried in the increasing order
of their size, and for each structure, filtered set of divisors are
enumerated at the inputs similarly to [4].

An enumeration-based resubstitution for MIGs was first
proposed in [10]. The algorithm enumerates dependency cir-
cuits of up to two MAJ gates. Two efficiency enhancement
techniques were proposed: (1) A filtering rule derived from
the majority law is applied:

if x ̸= y and ∃z,M(x, y, z) = f, then M(x, y, f) = f (19)

(2) As a preprocessing step, the truth tables are normalized to
have the first bit always 1, such that the number of inversion
cases to investigate is reduced. Truth tables having a 0 as the
first bit are complemented and the inversion is recorded.

In addition to enumerating small dependency circuits, a
special type of node replacement, called R-resubstitution,
is explored. R-resubstitution exploits the relevance rule of
majority gates [22]:

M(x, y, z) = M(xy/z̄, y, z), (20)

where xy/z̄ is obtained by replacing all occurrences of y with
¬z in x. Instead of substituting the root node with a depen-
dency circuit in the classical resubstitution, R-resubstitution

substitutes a fanin node x of the root r = M(x, y, z) with a
divisor d if (x⊕ d)(y⊕ z) = 0 and r is the only fanout of x.
Unfortunately, finding R-resubstitution cannot be formulated
as a resynthesis problem, thus it is not considered in the rest
of this paper.

The core problem resubstitution algorithms solve is logic
resynthesis. Existing works on resubstitution are based on
enumeration, thus there exist small upper bounds on the size
of dependency circuits they can find. In contrast, the heuristic
resynthesis algorithms proposed in this work are unlimited in
this respect.

D. Akers’ Majority Synthesis

Akers’ majority synthesis algorithm was the earliest work
on heuristic synthesis of MIGs [27]. It is a bottom-up approach
that builds new gates using the constructed ones. In [27],
Akers’ Algorithm was presented to synthesize an MIG for
any given function from primary inputs, but the algorithm can
actually also solve the MIG resynthesis problem. First, the
truth tables of the primary inputs are normalized by taking
their XNOR with the target function, such that the goal of
the algorithm becomes building the constant 1 function. The
main data structure in Akers’ Algorithm, called the unitized
table, is a collection of the normalized truth tables of primary
inputs (and their negations) and of the outputs of MAJ gates
created throughout the algorithm. Each column of the unitized
table corresponds to a node (a PI or a gate) that can be
used to build the next gate, and each row corresponds to a
value assignment to the PIs (i.e., a minterm). The algorithm
iteratively reduces the unitized table, by removing redundant
columns and dominated rows, and expands the unitized table,
by choosing three columns to build a new MAJ gate and
adding a new column. The procedure repeats until there is only
one column of all 1s left, or until the resource limit exceeds.
The choice on using which columns to build new gates is
heuristic, so the algorithm does not guarantee to always find
a solution.

IV. HEURISTIC AND-BASED RESYNTHESIS

In this section, we introduce the heuristic AND-based
resynthesis algorithm which resynthesizes an AIG or an XAG.
The algorithm primarily considers AND gates (and cost-free
inverters), but it may be extended to consider XOR gates as
well, although in a limited way. The algorithm is based on
(a) classification of divisors and (b) recursive decomposition.
The former idea has been practically adopted in enumeration-
based resubstitution [4], but rarely described in the literature.
In Section IV-A, we give the definition of the unateness of
divisors and explain why it is useful in reducing the search
space of resynthesis. On top of that, in Section IV-C, we
propose the recursive decomposition, which is key for our
resynthesis algorithm being unbounded by the solution size.

We use figures to illustrate essential concepts in this section.
In Figures 1 to 3, a rectangle marks the Boolean space under
which the target and divisor functions are defined (Bk in
Problem Formulations II-B and II-E or X in Problem Formula-
tion II-F). Black dots in the rectangle represent onset minterms

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3256341

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

g1 ¬g1

(a) Literal g1 is positive
unate.

g2 ¬g2

(b) Literal ¬g2 is negative
unate.

g3 ¬g3

(c) g3 is a binate divisor.

g3 ¬g3

¬g4

g4

(d) AND-pair g3 ∧ ¬g4 is
positive unate.

g5 ¬g5

¬g6

g6

(e) XOR-pair g5 ⊕ g6 is
negative unate.

Fig. 1: Illustration of unate literals and binate divisors.

of the target and white dots represent offset minterms. In
the space where no dots are present, there can be don’t-
care minterms. For clearer illustration, don’t-care minterms
are plotted as gray dashed dots in Figure 3.

A divisor function g separates the Boolean space into two
halves, the region where g = 1 and the region where g =
0 (or equivalently, ¬g = 1). We refer to a divisor with or
without negation as a literal, i.e., a literal is either a divisor
g or a negated divisor ¬g, corresponding respectively to the
two halves of the Boolean space.

A. Classification of Divisors

Any composition of some divisor functions is also a function
defined over the same Boolean space, thus also separates the
space into two halves. For example, composing two literals
l1, l2 with an AND gate results in a separation where the region
l1∧ l2 = 1 is the intersection of the regions l1 = 1 and l2 = 1,
and the region l1 ∧ l2 = 0 is the union of the regions l1 = 0
and l2 = 0. The goal of the resynthesis algorithm is to find
a composition whose resulting function separates the Boolean
space into a half containing only onset minterms of the target
and a half containing only offset minterms.

We observe that, if two literals l1, l2 are to be composed
using an AND gate and realizing the target, then the regions
l1 = 0 and l2 = 0 must not contain any onset minterm of the
target. Similarly, if two literals l3, l4 are to be composed using
an OR gate (equivalent to an AND gate with input and output
negations) and realizing the target, then the regions l3 = 1
and l4 = 1 must not contain any offset minterm of the target
because the resulting region l3 ∨ l4 = 1 is the union of the
regions l3 = 1 and l4 = 1. We call such property unateness.

A literal l is said to be positive unate if l ∧ foff = 0. For
example, in Figure 1 (a), g1 is positive unate. Similarly, a
literal l is said to be negative unate if l∧fon = 0. For example,
in Figure 1 (b), ¬g2 is negative unate. In contrast to unate
literals, binateness is defined for divisors. Given a divisor g, if
both g and ¬g are neither positive nor negative unate, then g is
said to be a binate divisor. For example, in Figure 1 (c), g3 is
a binate divisor. Note that unateness is defined for literals and
binateness is defined for divisors. A (non-binate) divisor g may
have one of its literals being unate, but the other literal being
neither positive nor negative unate, such as g1 in Figure 1 (a)
and g2 in Figure 1 (b). Also note that these definitions are
different from the unateness of a Boolean function with respect
to a variable [28].

Only unate literals can be used to construct the target func-
tion using one gate. Thus, by classifying divisors, the number

¬g7 g7

(a) ¬g7 is a 0-resyn.

g8 ¬g8

¬g9

g9

(b) g8 ∨ ¬g9 is a 1-resyn.

g10 ¬g10

¬g11

g11

(c) g10 ∧ ¬g11 is a 1-resyn.

g5 ¬g5

¬g6

g6

g12 ¬g12

(d) g12 ∧¬(g5⊕ g6) is a 2-resyn.

Fig. 2: Illustration of composing simple dependency circuits.

of comparisons required to identify dependency circuits of no
more than one gate is reduced. Nevertheless, binate divisors
are not totally useless. Two binate divisors may be composed
with a gate and become unate. Thus, the definitions of positive
and negative unateness are extended for pairs of literals. A
pair p of two literals l1, l2 obtained from (optionally negating)
two binate divisors is said to be a positive unate AND-pair if
(l1 ∧ l2) ∧ foff = 0. For example, in Figure 1 (d), (g3,¬g4)
is a positive unate AND-pair. Similarly, it is negative unate if
(l1 ∧ l2) ∧ fon = 0. When finding unate pairs, we investigate
all pairs of two binate divisors and all of the four possible
inverter configurations, corresponding to the four regions of
the Boolean space divided by the two divisor functions. There
is no need to try an OR-pair because composing two binate
divisors with an OR gate (i.e., taking the union) will never lead
to a unate function. If XOR gates are allowed, we additionally
try to find unate XOR-pairs. For example, in Figure 1 (e),
(g5, g6) is a negative unate XOR-pair.

B. Simple Dependency Circuits

Simple dependency circuits of no more than three gates are
identified similarly to the enumeration-based method. First, if
the target onset or offset is empty, then it can be realized with
a constant (lines 1-2 in Algorithm 1). After classifying divisors
and collecting unate literals as described in Section IV-A (lines
4-6), we first check if there exists a literal that realizes the
target without extra gates. That is, if a literal l is positive
unate and its negation ¬l is negative unate, then l realizes the
target (line 8). We call this a 0-resyn because it has 0 gates in
the dependency circuit. For example, in Figure 2 (a), ¬g7 is
positive unate and g7 is negative unate, thus ¬g7 is a 0-resyn.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3256341

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

Input: target onset fon, target offset foff, divisors
G = {g1, . . . , gn}

Output: dependency circuit H
1 if fon = 0 then return Constant 0
2 if foff = 0 then return Constant 1
3
4 Up ← positive unate(G, foff)
5 Un ← negative unate(G, fon)
6 B ← binate(G,Up, Un)
7
8 if u ← find 0resyn(Up, Un) then return u
9

10 Up ← sort(Up, fon)
11 Un ← sort(Un, foff)
12
13 if u, v ← find 1resyn(Up, fon) then return u ∨ v
14 if u, v ← find 1resyn(Un, foff) then return ¬u ∧ ¬v
15
16 Pp ← positive unate pair(B, foff); Pp ← sort(Pp, fon)
17 Pn ← negative unate pair(B, fon); Pn ← sort(Pn, foff)
18
19 if p, u ← find 2resyn(Pp, Up, fon) then
20 return (p1 ◦p p2) ∨ u
21 if p, u ← find 2resyn(Pn, Un, foff) then
22 return ¬(p1 ◦p p2) ∧ ¬u
23 if p, q ← find 3resyn(Pp, fon) then
24 return (p1 ◦p p2) ∨ (q1 ◦q q2)
25 if p, q ← find 3resyn(Pn, foff) then
26 return ¬(p1 ◦p p2) ∧ ¬(q1 ◦q q2)
27
28 u ← choose top(Up, Un, Pp, Pn)
29 f ′

on ← new target(u, fon)
30 f ′

off ← new target(u, foff)
31 Hr ← resynthesize(f ′

on, f
′
off, G)

32 return u ◦u Hr

Algorithm 1: Heuristic AND-based resynthesis algorithm.

To find dependency circuits with one gate, called 1-resyn,
we try to compose two positive unate literals with an OR gate,
or to compose two negative unate literals with an AND gate
(lines 13-14). For each pair l1, l2 of positive unate literals, we
check if their union contains all of the onset minterms. That
is, if ¬(l1∨ l2)∧fon = 0, or equivalently, ¬l1∧¬l2∧fon = 0.
We do not need to check for offset minterms thanks to the
definition of positive unate literals. For example, Figure 2 (b)
is an OR-type 1-resyn because there is no more onset minterms
in the white region. Similarly, two negative unate literals l3, l4
form an AND-type 1-resyn if their union contains all of the
offset minterms. That is, ¬l3 ∧¬l4 realizes the target if ¬l3 ∧
¬l4 ∧ foff = 0, such as Figure 2 (c). As the condition to
be checked in this step is whether the union of two literals
contains all onset (for positive unate) or offset (for negative
unate) minterms, we first sort the literals based on how many
onset or offset minterms they contain (lines 10-11). This way,
we may terminate the investigation earlier when we know the
remaining pairs of literals all have a total number of onset
(or offset) minterms less than the number of onset (or offset)
minterms of the target.

If a dependency circuit of size no more than one cannot be
found, we proceed to collect unate pairs (lines 16-17) and try
to find a 2-resyn (lines 19-22) or 3-resyn (lines 23-26). A
2-resyn is composed of a unate literal and a unate pair. The

g1 ¬g1

(a) Decompose fon with a positive
unate literal g1.

g13 ¬g13

¬g14

g14

(b) f ′
on can be more easily realized

by ¬g13 ∧ ¬g14.

Fig. 3: Illustration of the recursive decomposition.

conditions to be checked are similar to those for 1-resyn. For
example, in Figure 2 (d), a negative unate literal ¬g12 and a
negative unate XOR-pair (g5, g6) (taken from Figure 1 (e))
forms an AND-type 2-resyn. Similarly, a 3-resyn is composed
of two unate pairs. In Algorithm 1, we use ◦ to denote an
unspecified gate type depending on the pair noted as the
subscript, and we use p1, p2 to denote the two elements of
a pair p.

C. Recursive Decomposition

When the target cannot be realized within three gates, the
algorithm heuristically chooses an unate literal or an unate pair
to decompose the target function (lines 28-32). If a positive
unate literal l1 is chosen, a new target onset f ′

on = fon ∧ ¬l1
with fewer minterms is derived by constructing the dependency
circuit with an OR gate on top, having l1 as one of its fanins.
Then, Algorithm 1 is recursively called on the new onset f ′

on
and the same offset f ′

off = foff (line 31) to construct the
remaining circuit as the other fanin of the top OR gate. For
example, in Figure 3 (a), we decompose fon with a positive
unate literal g1 (taken from Figure 1 (a)), resulting in f ′

on
in Figure 3 (b). The new f ′

on has only one onset minterm
remaining and is more easily realized by ¬g13 ∧ ¬g14, which
were both binate before decomposition. The original target
function is thus realized by g1 ∨ (¬g13 ∧ ¬g14).3 In contrast,
if a negative unate literal l2 is chosen, the target onset stays
the same, whereas a new offset f ′

on = foff ∧ ¬l2 is derived.
The dependency circuit is then constructed with an AND gate
with negated fanins on top.

The choice on which literal or pair to use to decompose
(line 28) is made by comparing the number of onset (for
positive unate literals or pairs) or offset (for negative unate)
minterms they contain. The one containing the most minterms
is preferred. However, a pair is only chosen if it contains
more than twice the number of minterms than the winning
literal because choosing a pair leads to one more gate in the
dependency circuit.

D. Summary

Algorithm 1 summarizes the AND-based resynthesis algo-
rithm. In Algorithm 1, lines 1-26 are similar to enumeration-
based resubstitution, which resynthesizes dependency circuits

3The example is made simple for easier understanding. This solution can
actually be found as a 2-resyn without the recursive decomposition. To give a
real example where recursive decomposition is needed, for example, g13 and
g14 could be pairs instead of divisors, which only become unate with respect
to the new onset f ′

on.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3256341

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

of at most 3 gates. Lines 28-32 are the key for the algorithm
to resynthesize larger dependency circuits, where line 31 calls
the resynthesis algorithm recursively.

It is neglected in the pseudocode, but in practice an
additional parameter size limit is passed to the algorithm.
Before each step, the size limit is checked and the algorithm
terminates without a solution if the limit is reached. For
example, before find 3resyn, if size limit is 2, the algorithm
returns no solution. In line 31, the size limit being passed
to the recursive call is the current size limit minus 1 (when
decomposing with a literal) or 2 (when decomposing with a
pair). When the algorithm returns no solution, it is possible that
a solution larger than size limit exists and can be found if size
limit were set larger, or that the given problem is infeasible. It
is also possible that a solution exists, but cannot be found by
the algorithm because it is heuristic, irrelevant to size limit.
The same early-termination mechanism also applies to the
following MAJ-based and MUX-based resynthesis algorithms.

V. HEURISTIC MAJ-BASED RESYNTHESIS

We introduce the heuristic MAJ-based resynthesis algorithm
in this section, based on the following key ideas:

• Normalization: Divisor functions are normalized to sim-
plify the algorithm and reduce the number of bitwise
operations needed. This step is done only once in the
beginning. (Section V-A)

• Covering the care function: We introduce the notion of
care functions at any position in the dependency circuit
under construction. The goal of the algorithm is to cover
more uncovered bits in the care function by modifying
the current dependency circuit until all bits are covered.
(Section V-B)

• Heuristic choice of divisors: The algorithm repeatedly
chooses three divisors to form a new majority gate.
Divisors are chosen according to their evaluation on a
heuristic weight function with respect to the current care
function. (Section V-C)

• Expansion to a tree-like circuit: The algorithm constructs
the dependency circuit by repeatedly expanding on a leaf
of the circuit. It chooses a fanin of a gate which is
connected to a divisor, takes out the divisor, and replaces
it with a newly-constructed gate. The resulting circuits
thus have tree-like structures. (Section V-D)

A. Normalization

Given the target f and the set of divisors G = {g1, . . . , gn},
the divisors are normalized by computing their XNOR with the
target. By doing so, the logic of the algorithm is simplified—
comparing the output function of the dependency circuit
against the target simplifies to testing if the output function
is a tautology. Moreover, due to the self-duality property of
the majority function [23], inverters can always be pushed to
the primary inputs. Hence, we limit our search to dependency
circuits without internal inverters and consider inverters only
at the inputs by supplementing the divisor set with negated

literals. The set N of normalized literals to be chosen from as
inputs to the dependency circuit is computed by

N = {l2i−1 = gi ↔ f, l2i = ¬gi ↔ f | 1 ≤ i ≤ n}. (21)

B. The Care Function

Consider a MAJ gate with function y = M(x1, x2, x3) and
a certain bit position p in its truth table. In order to have
T [y]p = 1, we must have

T [xi]p = T [xj]p = 1, where i, j ∈ {1, 2, 3} and i ̸= j.

If the functions x1 and x2 have been decided but x3 is still
flexible, then we require T [x3]p = 1 only if T [x1]p = 0 or
T [x2]p = 0. In such case, we say that p is a care bit for the
third fanin of the gate under construction.

care: cn = c

n

ni

function: y = M(x1, x2, x3)
care: cni = cn,i = (¬s1∨¬s2)∧cn

s1 s2

x1 x2 x3

care: cni,3 = (¬x1 ∨ ¬x2) ∧ cni

i

Fig. 4: Illustration of the care functions.

Generalizing and extending to all bit positions, we define
the care function ci of a fanin i to a node n as

cn,i = (¬s1 ∨ ¬s2) ∧ cn, (22)

where s1 and s2 are the other two fanin functions of n
(i.e., siblings of i) and cn is the care function of n. If n is
the topmost node of the dependency circuit, as in Figure 4,
then its care function cn is the care function c of the target,
given as input to the resynthesis problem. Otherwise, as our
dependency circuits are tree-like, the node n must have exactly
one fanout (parent) node, and its care function is derived using
Equation (22) according to its parent’s care function and its
siblings’ functions. For example, the care function cni

of node
ni in Figure 4 is the care function of the fanin i to node n.

A care bit in a care function is said to be covered if the
function presented at the node (or at the fanin edge) indeed
provides 1 at this bit. For example, for a care bit in cni,3 to
be covered, the function x3 needs to be 1 at this bit. If the
care function of a node (for example, cni in Figure 4) is of
interest, then we need at least two fanin functions of the node
(for example, x1 and x3) to cover the bit by having 1’s.

C. Choosing Divisors

Given the care function cn of a node n, a heuristic selection
is used to choose three literals l1, l2, l3 from N to construct a

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3256341

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

MAJ gate, aiming at maximizing ONES(M(l1, l2, l3) ∧ cn):

l1 = argmax
l∈N

(ONES(l ∧ cn))

l2 = argmax
l∈N2

(ONES(l1 ∧ l ∧ cn) + 2 · ONES(¬l1 ∧ l ∧ cn))

l3 = argmax
l∈N3

(ONES((l1 ⊕ l2) ∧ l ∧ cn)

+ 2 · ONES((¬l1 ∧ ¬l2) ∧ l ∧ cn)

where N2 =N\{l1,¬l1}, N3 = N2\{l2,¬l2} (23)

The first literal is chosen to cover most care bits. When
choosing the second literal, the care bits covered by the first
literal still need to be covered again, thus we acknowledge
more ONES(l1 ∧ l ∧ cn). But more importantly, we are more
eager to cover the care bits that are not covered by the first
literal, thus the weight for ONES(¬l1∧ l∧ cn) is doubled. For
the last literal, the care bits that are already covered twice can
be ignored; the care bits covered only once ((l1⊕ l2)∧ l∧ cn)
seek to be covered again; the care bits that are never covered
before ((¬l1 ∧ ¬l2) ∧ l ∧ cn) appear to be more difficult to
cover than the other bits and they are thus doubly weighed.
In the last case, it may seem counter-intuitive to cover these
bits with the last literal because covering them only once is
not enough. However, the first two literals may be replaced
by new nodes later on in the algorithm, so it is still useful to
cover them at least once in this stage.

This evaluation step will be repeatedly incurred throughout
the algorithm. The computational complexity is linear to the
number of divisors, which can be large. We observe that the
resulting choice depends solely on the care function cn. To
speed up the computation, a computed table can be used to
cache the results. This is implemented as a hash table mapping
from a care function to three divisors.

D. Expansion

When all care bits of the three fanins of the topmost node
are covered, the constant 1 function is successfully derived at
its output and the algorithm terminates. After constructing the
first node with three literals, we choose one of the fanins with
uncovered care bits, if any, and try to cover more care bits by
replacing the literal with a new gate. This process is called an
expansion.

To expand a fanin, the original literal is temporarily taken
away. Then, three literals are chosen as the fanins of the new
gate using Equation (23). After an expansion, the function
at the expanded fanin is different, thus the functions of its
transitive fanouts, as well as the care functions of its siblings,
are updated accordingly. Until the constant 1 is derived at
the output of the topmost node by covering all the care
bits, the algorithm proceeds by choosing another position to
expand. An expansion position is a fanin of any node which
is connected to a literal and whose care function is not fully
covered. Heuristically, we choose the position with the least
uncovered care bits to be expanded first because it is closest
to be fully covered.

It is possible that the majority output of the three chosen
literals does not cover more care bits than the original literal.
Hence, the new gate is only constructed and used to replace

Input: target function f , care function c, divisor functions
G = {g1, . . . , gn}

Output: dependency circuit H
1 N ← normalize(G, f)
2 n0 ← choose literals(N, c)
3 H ← {n0}
4 while n0.output ̸= 1 do
5 (np, i) ← choose expansion position(H)
6 n ← choose literals(N , np.fanin(i).care)
7 if accept expansion(np, i, n) then
8 np.fanin(i) ← n
9 update(H)

10 else
11 mark visited(np, i)
12 return H

Algorithm 2: Heuristic MAJ-based resynthesis algorithm.

the original literal if the number of covered care bits increases.
When an expansion position is tried but the coverage of care
bits does not increase, the new gate is discarded and the
position is marked as visited to avoid trying it again. However,
if its care function is updated because of an update in the
function of one of its siblings, the visited flag is reset and the
expansion position may be tried again. To avoid constructing
gates using the same literals repeatedly as a chain, when the
care function of a node is the same as one of its fanins, the
expansion position at this fanin is directly marked as visited
without trying to expand it.

E. Summary and Example

Algorithm 2 summarizes the heuristic MAJ-based resyn-
thesis algorithm. First, the set of divisors is normalized and
supplemented using Equation (21) (line 1). Then, the top node
n0 is constructed by choosing three literals using Equation (23)
and added into the dependency circuit as the first node (lines
2-3). If the output function of n0 is not constant 1 (line 4),
we choose an expansion position (the i-th fanin of a parent
node np) which is currently connected to a literal (line 5). The
care function of the position is computed by Equation (22) and
used to choose three literals to construct a new gate (line 6).
If replacing the original literal with the new gate increases
the number of covered care bits, the expansion is accepted
and the dependency circuit is updated (lines 7-9); otherwise,
the position is marked as visited (lines 10-11). The expansion
procedure is repeated until the constant 1 function is obtained
at the output of the topmost node.

An example execution of the algorithm is illustrated in
Figure 5, where the target function is

f(x⃗) = x1 ⊕ x2 ⊕ x3, (24)

the care function c = 1, and the set G of divisors consists of

G = {g1(x⃗) = x1, g2(x⃗) = x2, g3(x⃗) = x3, g4(x⃗) = 0}.
(25)

The normalized set N of literals, computed according to
Equation (21), is listed in their truth table representations in
the box in Figure 5 (a). The yellow-shaded parts Figure 5
are the truth tables being updated after expansions. First, in
Figure 5 (a), given the care function c = 1, three literals

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3256341

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

n0

n0 = 1110 0001

c = 1111 1111

l7 = 0110 1001

c0,1 = 0111 1110

l1 = 1100 0011

c0,2 = 1101 1110

l3 = 1010 0101

c0,3 = 1011 1110

f = 0110 1001

l1 = 1100 0011

l2 = 0011 1100

l3 = 1010 0101

l4 = 0101 1010

l5 = 1001 1001

l6 = 0110 0110

l7 = 0110 1001

l8 = 1001 0110

(a) The topmost node n0.

n0

n1

n0 = 1110 0111

c = 1111 1111

n1 = 0111 1110

c0,1 = 0111 1110

l1 = 1100 0011

c0,2 = 1101 1011

l3 = 1010 0101

c0,3 = 1011 1101

l2 = 0011 1100

l4 = 0101 1010

l6 = 0110 0110

(b) Expand at (n0, 1) with n1 = M(l2, l4, l6).

n0

n1

n2

n0 = 1111 1111

c = 1111 1111

n1 = 0111 1110

c0,1 = 0111 1110

n2 = 1101 1011

c0,2 = 1101 1011

l3 = 1010 0101

c0,3 = 1010 0101

l2 = 0011 1100

l4 = 0101 1010

l6 = 0110 0110

l1 = 1100 0011

l4 = 0101 1010

l5 = 1001 1001

(c) Expand at (n0, 2) with n2 = M(l1, l4, l5).

Fig. 5: Example of MAJ-based resynthesis.

l7, l1, l3 are chosen according to Equation (23) to form the
topmost node n0, computing the function at its output n0 =
M(l7, l1, l3). Care functions of each fanin c0,i are computed
according to Equation (22). Then, in Figure 5 (b), the first
fanin of n0 is chosen to be expanded with a new node n1.
According to its care function c0,1, three literals l2, l4, l6 are
chosen. The function at the expanded fanin is updated with
n1 = M(l2, l4, l6). Following which, the care functions at its
siblings c0,2 and c0,3, as well as the output function n0 are
also updated. After the expansion, all care bits of the first fanin
of n0 have been covered by the function of n1, but there are
still two care bits in each of the updated c0,2 and c0,3 not yet
covered. So, in Figure 5 (c), the second fanin of n0 is expanded
with another new node n2. Similarly, according to its care
function c0,2, three literals l1, l4, l5 are chosen, and the node
functions n2 and n0, as well as the sibling’s care function c0,3,
are updated. Now, all care bits in c0,2 and also c0,3 are covered,
and the output function of n0 is constant 1. The resynthesis has
thus been completed. The final solution is h(g1, g2, g3, g4) =
M(M(¬g1,¬g2,¬g3),M(g1,¬g2, g3), g2).

VI. HEURISTIC MUX-BASED RESYNTHESIS

Although rarely researched on, MuxIGs may be a practical
data structure for some technologies where MUX gates are of
similar cost as AND and XOR gates, such as memristors [29],
quantum-dot cellular automata (QCA) [30], and pass transistor
logic [31]. Although the MUX gate itself is functionally
complete without inverters, we still use complemented edges
to represent cost-free inverters in the network to be more
memory-efficient. This can be disabled (i.e., ¬x has to be
implemented as MUX(x, 0, 1)) and the MUX-based resynthe-
sis algorithm can also be adjusted accordingly, if desired. A
MUX gate can implement the 2-input AND, OR, and XOR
functions, thus MuxIGs are more compact than XAGs. Though
conceptually similar, MuxIGs are different from BDDs [16].
In BDDs, S-inputs can only be primary variables, whereas
in MuxIGs, S-inputs can be connected to the output of any
other MUX gates in the network. Thus, MuxIGs are more
general than BDDs. In this section, we propose a MUX-based
resynthesis algorithm that can be used to optimize MuxIGs.

Input: target function f , care function c, divisor functions
G = {g1, . . . , gn}

Output: dependency circuit H
1 N ← normalize(G, f)
2 return resynthesize(c)
3
4 Function resynthesize(care c) :
5 t ← argmaxl∈N ONES(l ∧ c)
6 if ONES(¬t ∧ c) = 0 then
7 return t
8 S ← argminl∈{g,¬g:g∈G} ONES(¬t ∧ l ∧ c)
9 s ← argminl∈S ONES(¬l ∧ c)

10 if ONES(¬s ∧ c) = 0 then
11 e ← 0
12 else
13 e ← argmaxl∈N ONES(l ∧ ¬s ∧ c)
14 if ONES(¬e ∧ ¬s ∧ c) > 0 then
15 e ← resynthesize(¬s ∧ c)
16 if ONES(¬t ∧ s ∧ c) > 0 then
17 t ← resynthesize(s ∧ c)
18 return MUX(s, t, e)

Algorithm 3: Heuristic MUX-based resynthesis algorithm.

Due to the natural characteristics of the MUX gate, our
MUX-based resynthesis algorithm is designed with a combina-
tion of ideas from AND- and MAJ-based resynthesis. Firstly,
we observe that, similar to resynthesizing with MAJ gates,
we seek to select or construct functions resembling the target
to be placed at the T- and E-inputs of a MUX gate, subject
to a care function depending on the function at its S-input.
Thus, we also normalize divisor functions and adopt the bit-
counting-based ranking and selection of divisors as in MAJ-
based resynthesis. Secondly, when there are some care bits not
covered, unlike MAJ-based resynthesis, the expansions on the
T- and E-inputs are independent of each other. For a MUX
gate with care function c, once the S-input s is selected, the
care function at the T-input is ct = c∧s and the care function
at the E-input is ce = c ∧ ¬s. Thus, we adopt the recursive
decomposition similar to that in AND-based resynthesis to
expand on T- or E-inputs until all care bits are covered. To
avoid re-normalizing divisors and to simplify the computation,
we do not expand on the S-input once it is selected.

Algorithm 3 illustrates the MUX-based resynthesis algo-

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3256341

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

rithm. First, the set N of normalized divisors is derived using
Equation (21) (line 1). The unchanged set N is then available
and used throughout the algorithm along with the original set
of divisors G. The recursive algorithm starts with the given
top-level care function c (line 2). In line 5, a literal t covering
the most care bits is chosen from N as the T-input. If all
care bits are covered by t, then it is a 0-resyn and is returned
(lines 5-6). Otherwise, we continue to choose a literal s from
G as the S-input using two criteria: Literals S whose (cared)
1-bits overlap the least with the 0-bits of t are prioritized (line
8). If there are more than one literal in S, then the literal
with the least 0 in the cares bits is chosen (line 9). The first
criterion aims at reducing uncovered care bits at the T-input,
whereas the second criterion aims at reducing the care bits to
be covered at the E-input. If the selected s has no cared 0-bit,
then the function at the E-input does not matter and we choose
constant 0 as the E-input, assuming it has the lowest cost (lines
10-11). Otherwise, similar to choosing t, a literal e covering
the most care bits is chosen as the E-input (line 13). Although
the philosophy behind the choice of t and the choice of e
is the same, there is a difference in their evaluations: When
choosing t, the S-input is not selected yet, thus only the care
function c for the gate is considered. However, when choosing
e, the S-input s is already decided, thus the more precise care
function at the E-input ce = c∧¬s is considered. Finally, we
check if the care bits at the T- and E-inputs are all covered
by t and e, respectively, and recursively expand on the inputs
using their care functions if not so (lines 16-17 and 14-15,
respectively).

VII. EXPERIMENTAL RESULTS

The three resynthesis algorithms are implemented in C++
as part of the logic synthesis library mockturtle4 [32]. In this
section, we test the performance and efficiency of the proposed
resynthesis algorithms on sets of real resynthesis problems
extracted from the EPFL benchmarks [33] by resubstitution
(Section VII-A). We also demonstrate in Section VII-B the
effectiveness of using resynthesis as the core of an high-effort
optimization to further optimize highly-optimized benchmarks.
The experiments were conducted on a laptop with Apple M1
Pro chip and 32 GB RAM.

A. Extracted Resynthesis Problems

As the core of peephole optimization, it is more mean-
ingful to compare different resynthesis approaches using real
resynthesis problems in their general form, with arbitrary
divisor functions coming into play. In this section, we test our
heuristic resynthesis algorithm on sets of resynthesis problems
extracted from the EPFL benchmark suite. The benchmarks
are preprocessed by running the script compress2rs in
ABC [34] once to rule out most optimizations that are easier
to identify. To extract resynthesis problems, for each node
(root) in the benchmarks, a reconvergence-driven cut [4] of
size k = 4 or 6 is computed and used as the basis to obtain
local functions of nodes supported by the cut. The function

4Available: https://github.com/lsils/mockturtle

TABLE I: Comparison of AIG resynthesis algorithms.

1) k = 4, 2) k = 6, 3) k = 6,
maxm ≥ 1 all problems maxm ≥ 4

#Probs 128312 337155 22691
Avg. n 6.55 14.16 7.18
Avg. maxm 1.53 0.70 4.18

SAT Ours Enum. Ours SAT Ours

#Sols 920 990 1248 1589 522 465
Avg. m 1.72 1.71 1.97 2.61 4.17 4.38

Avg. overhead – 0.00 – 0.05 – 0.16
– (0%) – (1%) – (3%)

Tot. time (s) 43.12 0.11 0.28 0.34 638.21 0.10

of the root node is the target of the resynthesis problem and
the functions of all nodes supported by the cut, including the
cut leaves, are divisors. The care set is derived by computing
(local) satisfiability don’t cares from a larger cut of size 12. A
size limit maxm is given along with the resynthesis problem,
determined by the size of the root’s maximum fanout-free
cone (MFFC) [35] minus 1.

Three sets of AIG resynthesis problems are considered in
Table I:

1) First big column: A subset of problems extracted using
cut size k = 4 (thus truth table length l = 2k = 16)
where the size limit is at least 1.

2) Second big column: A subset of problems extracted us-
ing cut size k = 6 (thus truth table length l = 2k = 64)
where the size limit is at most 3.

3) Third big column: A subset of problems extracted using
cut size k = 6 where the size limit is at least 4.

The total number of resynthesis problems (“#Probs”), the
average number of divisors per problem (“Avg. n”), and
the average size limit (“Avg. maxm”) are listed for each
set in the upper half of Table I. We compare our AND-
based heuristic resynthesis (“Ours”) against SAT-based exact
synthesis [26] (“SAT”, Section III-B, conflict limit = 10000)
and enumeration-based method [4] (“Enum.”, Section III-C,
up to 3 gates). The number of solutions found within the size
limit (“#Sols”), the average number of gates in the dependency
circuits found (“Avg. m”), the average overhead comparing to
the optima (“Avg. overhead”), and the total runtime in seconds
(“Tot. time”) are listed for each method.

We observe from this experiment that resynthesis problems
requiring larger dependency circuits do exist in real bench-
marks. Both SAT and enumeration are exact algorithms, mean-
ing that the solutions they give, if any, are always optimal.
However, the optimality of SAT-based exact synthesis comes
with the cost of a much higher runtime, and enumeration,
although being fast, can only solve problems with small
solutions. In 2), the 341 more problems solved by our heuristic
than enumeration are cases where a solution cannot be found
within three gates and the recursive decomposition described
in Section IV-C is necessary. The quality degradation of our
heuristic is zero for smaller dependency circuits (m ≤ 3), and
is still very small (3%) for medium-sized dependency circuits
for which SAT-based synthesis needs a long time to find the
optimal solution.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3256341

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

TABLE II: AND-based heuristic resynthesis as the core of
simulation-guided resubstitution applied on highly-optimized
AIG benchmarks.

AIG: O = Original, A = compress2rs ×1, B = compress2rs ×∞

Benchmark O → A A → Ours A → B B → Ours

Name Size Red. Time Red. Time Red. Red. Time
(#gates) (%) (s) (%) (s) (%) (%) (s)

adder 1020 12.55 0.08 0.00 0.00 0.00 0.00 0.00
bar 3336 5.85 0.27 2.58 0.04 0.00 2.58 0.04
div 57247 63.80 3.64 0.89 0.23 1.05 0.00 0.63
hyp 214335 4.57 30.03 0.15 14.93 0.16 0.05 14.44
log2 32060 8.95 5.08 1.73 5.41 0.56 1.54 6.10
max 2865 1.15 0.18 0.00 0.01 0.28 0.00 0.02
multiplier 27062 10.07 3.53 0.10 0.28 0.09 0.01 0.27
sin 5416 7.33 0.97 1.35 0.44 1.00 1.19 0.58
sqrt 24618 25.85 2.87 0.30 4.39 0.01 0.26 4.39
square 18484 14.03 2.61 0.66 0.13 0.57 0.09 0.06
arbiter 11839 0.00 1.42 0.00 0.15 0.00 0.00 0.28
cavlc 693 8.37 0.19 4.25 0.09 2.20 3.06 0.16
ctrl 174 48.28 0.04 0.00 0.00 0.00 0.00 0.00
dec 304 0.00 0.06 0.00 0.00 0.00 0.00 0.00
i2c 1342 20.34 0.12 2.90 0.02 5.05 2.17 0.02
int2float 260 19.62 0.05 0.96 0.03 0.96 0.48 0.06
mem ctrl 46836 6.22 5.21 15.95 1.76 12.13 14.09 2.03
priority 978 52.35 0.07 0.64 0.00 8.15 0.23 0.01
router 257 28.79 0.04 20.77 0.00 20.77 9.66 0.00
voter 13758 42.24 1.58 0.18 0.02 0.13 0.08 0.05

Average 19.02 2.90 2.67 1.40 2.66 1.77 1.46
Total gain 71402 8460 6360 6257

B. Resynthesis as the Core of High-Effort Optimization

To demonstrate the practical application of the proposed
heuristic resynthesis algorithms in high-effort optimization,
we use them as the core component in the simulation-guided
resubstitution framework [12] and perform experiments on
benchmarks that are already optimized by state-of-the-art size
optimization flows. The resubstitution framework computes,
for each target node as the root, a reconvergence-driven cut of
at most 8 nodes to collect up to 150 divisors supported by the
cut. Functions of the target and divisor nodes are estimated by
global simulation using about 1000 simulation patterns.

1) AIG: For AIG size optimization, the script
compress2rs in ABC [34] is considered as the state-of-the-
art flow, which comprises 18 commands including balancing,
resubstitution, rewriting, and refactoring with different
hyper-parameters. In Table II, after listing the benchmark
names and their original size, the size reduction in terms of
percentage number of gates (“Red.”) and runtime (“Time”)
of four optimization settings are presented: Column “O →
A” applies compress2rs once on the original benchmarks;
we call the resulting set of optimized benchmarks A. Column
“A → Ours” applies simulation-guided resubstitution using
our heuristic AND-based resynthesis on the benchmark set
A. Column “A → B” applies more times of compress2rs
on A until no more size reduction is observed for at least 5
consecutive times; we call this set of benchmarks B. Column
“B → Ours” applies our resubstitution on the benchmark
set B. In the last row, “Total gain” lists the total number of
reduced gates, summed over all benchmarks.

Comparing “A → Ours” and “A → B”, we can observe
that, on top of the benchmark set A that is already optimized,

our high-effort optimization achieves similar “leftover” size re-
duction as the best compress2rs can do. Moreover, column
“B → Ours” shows that our approach can still squeeze 1.78%
more size reduction out of the highly-optimized benchmark set
B. In both “A → Ours” and “B → Ours”, the runtime of our
high-effort optimization is comparable with compress2rs.

Experiments on XAG, MIG and MuxIG optimization all use
the optimized benchmark set A as the starting point (column
“AIG” in Table III). Besides size reduction percentage (“Red.”)
and total runtime (“Time”; for Columns XAG and MIG, time
for compress2rs is excluded), the runtime spent by our
heuristic algorithms in solving the resynthesis problems is also
listed (“Tresyn”).

2) XAG: For XAG optimization, we first apply the LUT
mapping command &if in ABC with K (number of inputs
per LUT) set to 2, followed by the interpolation-based LUT
resubstitution command &mfs [8] to obtain XAG benchmarks
(column “XAG” in Table III; note that a 2-LUT network
is essentially an XAG). Then, in column “XAG → Ours”
we apply simulation-guided resubstitution using our AND-
based resynthesis with XOR enabled, and 2.86% size reduction
is obtained from the set of optimized XAGs within similar
runtime as optimizing and transforming into XAGs.

3) MIG: As the state-of-the-art MIG optimization flow, we
apply three times graph (re-)mapping [36] from the optimized
AIGs, followed by enumeration-based MIG resubstitution [10]
repeated until no more size reduction is observed (column
“MIG” in Table III). Then, similarly, simulation-guided resub-
stitution using our MAJ-based resynthesis is applied, which
obtains 2.45% size reduction on top of highly-optimized
benchmarks within a faster runtime (column “MIG → Ours”
in Table III).

4) MuxIG: Finally, as there is not yet much research
on MuxIG, we transform the optimized AIGs directly into
MuxIGs by replacing AND gates with MUX gates with a
constant input. Then, in column “MuxIG, ours”, simulation-
guided resubstitution using our MUX-based resynthesis suc-
cessfully reduces the sizes of these MuxIGs by 20.24% by
identifying MUX functions in the networks. It is worth noting
that although the runtime for the largest benchmark hyp seems
to be long, the time spent in the resynthesis algorithm takes
only 1% and most of the time is spent in proving the validity
of the identified optimization choices.

VIII. CONCLUSIONS

In this paper, three heuristic resynthesis algorithms are
proposed, targeting networks based on AND, MAJ, and MUX
gates. The common characteristic of the proposed algorithms is
that they are efficient heuristics without superlinear scalability
concerns. Table IV compares the proposed heuristics with
other existing methods. All methods compared solve the resyn-
thesis problem with incompletely-specified functions (Prob-
lem Formulation II-F), except for looking up in an optimal
database, which only solves a subset of resynthesis problems
where divisors are projection functions and all functions
are completely-specified. All algorithms are sound, but only
database look-up, SAT-based exact synthesis, and enumeration

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3256341

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

TABLE III: Heuristic resynthesis as the core of simulation-guided resubstitution applied on highly-optimized benchmarks.

AIG = compress2rs, XAG = compress2rs; &if -K 2; &mfs, MIG = compress2rs + map ×3 + resub ×∞

AIG XAG XAG → Ours MIG MIG → Ours MuxIG, ours

Benchmark Size Size Time Red. Time Tresyn Size Time Red. Time Tresyn Red. Time Tresyn
(#gates) (#gates) (s) (%) (s) (s) (#gates) (s) (%) (s) (s) (%) (s) (s)

adder 892 637 0.04 0.00 0.00 0.00 384 0.11 0.00 0.00 0.00 28.48 0.03 0.01
bar 3141 3141 1.16 2.10 0.04 0.03 2594 0.29 0.23 0.03 0.03 43.36 0.07 0.02
div 20725 16791 0.13 0.40 0.63 0.06 12565 0.93 0.26 0.32 0.11 39.24 2.64 0.10
hyp 204533 160201 72.60 5.03 47.55 0.46 127877 13.01 2.89 9.10 0.86 21.56 104.69 1.05
log2 29192 23966 19.58 1.55 2.15 0.22 23643 3.00 2.26 6.41 0.34 14.92 21.23 0.24
max 2832 2832 0.12 0.00 0.02 0.01 2210 0.32 0.00 0.03 0.03 28.32 0.08 0.02
multiplier 24337 18571 10.59 0.12 0.23 0.13 18700 1.76 1.39 0.34 0.20 19.13 4.51 0.20
sin 5019 4263 11.37 2.18 0.54 0.04 4018 0.81 1.27 0.19 0.07 15.06 0.77 0.05
sqrt 18255 14381 0.13 12.79 3.41 0.05 12513 1.09 0.72 3.25 0.16 20.36 4.35 0.11
square 15891 12450 9.80 0.10 0.07 0.04 9573 1.03 0.78 0.08 0.05 30.87 1.06 0.08
arbiter 11839 11839 29.94 0.00 0.34 0.13 6866 1.38 2.14 0.17 0.14 1.08 0.42 0.33
cavlc 635 634 0.12 5.21 0.23 0.22 541 0.83 1.48 0.02 0.02 14.02 0.02 0.01
ctrl 90 90 0.01 4.44 0.00 0.00 80 0.21 1.25 0.01 0.01 15.56 0.00 0.00
dec 304 304 0.01 0.00 0.00 0.00 304 0.09 0.00 0.01 0.01 0.00 0.01 0.01
i2c 1069 1062 0.08 3.48 0.03 0.02 951 0.12 2.00 0.02 0.02 19.36 0.02 0.01
int2float 209 208 0.02 2.88 0.05 0.04 190 0.09 4.74 0.01 0.01 12.44 0.00 0.00
mem ctrl 43924 38241 61.50 10.11 2.28 1.04 38179 3.86 8.91 2.24 1.24 23.23 2.78 0.97
priority 466 443 0.07 1.13 0.02 0.01 449 0.10 4.01 0.01 0.01 13.30 0.01 0.00
router 183 143 0.01 5.59 0.01 0.00 170 0.07 11.18 0.00 0.00 21.86 0.00 0.00
voter 7946 5717 4.23 0.12 0.53 0.02 4729 0.53 3.55 0.05 0.03 22.73 0.29 0.04

Average 11.08 2.86 2.91 0.13 4.38 2.45 1.11 0.17 20.24 7.15 0.16

TABLE IV: Comparisons of existing and proposed resynthesis algorithms.

Database SAT-based (SSV encoding) Enumeration Akers’ Proposed heuristics

[5] [7], [26] [4], [9], [10] [27]

Support of divisors no yes yes yes yes

Support of incomplete functions no yes yes yes yes

Soundness yes yes yes yes yes

Completeness yes yes yes no no

Optimality yes yes (if solved iteratively) yes no no

Complexity O(1)
#vars: O(m((n+m)κ + l))

O(n(κ−1)m+1l) O(n2ml2)
AND-based: O(n2ml)

#clauses: O(m(n+m)κ) MAJ- and MUX-based: O(nml)

Practical limits n = k ≤ 4 n+m ≤ 10, k ≤ 6 m ≤ 3 unknown no limit

n: number of divisors, m: number of gates in dependency circuit, k: number of variables of target and divisor functions, l = 2k: length of truth tables,
κ: number of fanins per gate (κ = 2 for AIG and XAG; κ = 3 for MIG and MuxIG)

are complete and guarantee optimality. As a compromise,
these exact methods have a rather high complexity (except for
database) and are practically limited by the number of divisors
(n), the size of dependency circuit (m), and/or the truth table
length (l). In contrast, although the proposed heuristics do
not guarantee optimality, their complexities are linear in all
variables (or only quadratic in n for AND-based resynthesis)
and are thus practically unlimited.

Experimental results show that the proposed heuristic resyn-
thesis serve as an important component in high-effort peephole
optimization, achieving, on average, about 2-3% more size
reduction on benchmarks that are already highly-optimized,
within manageable runtime. The key to finding these hidden
optimization opportunities is the heuristics’ capability to solve
resynthesis problems with more divisors (scalability in n),
having larger solutions (scalability in m), and where functions

are given as longer simulation signatures (scalability in l).

ACKNOWLEDGEMENT

The authors would like to thank Dr. Heinz Riener and Dr.
Alan Mishchenko for their valuable discussions.

REFERENCES

[1] J. A. Darringer and W. H. Joyner Jr., “A new look at logic synthesis,”
in Proceedings of the 17th Design Automation Conference, DAC 1980,
E. B. Hassler Jr., Ed., 1980, pp. 543–549.

[2] J. A. Darringer, W. H. Joyner Jr., C. L. Berman, and L. Trevillyan,
“Logic synthesis through local transformations,” IBM J. Res. Dev.,
vol. 25, no. 4, pp. 272–280, 1981.

[3] R. K. Brayton, R. L. Rudell, A. L. Sangiovanni-Vincentelli, and A. R.
Wang, “MIS: A multiple-level logic optimization system,” IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., vol. 6, no. 6, pp. 1062–1081,
1987.

[4] A. Mishchenko and R. K. Brayton, “Scalable logic synthesis using a
simple circuit structure,” in Proceedings of IWLS, 2006.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3256341

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

[5] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis,” in Proceedings
of the 43rd Design Automation Conference, DAC 2006, E. Sentovich,
Ed., 2006, pp. 532–535.

[6] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and M. Soeken,
“On-the-fly and DAG-aware: Rewriting Boolean networks with exact
synthesis,” in Design, Automation & Test in Europe Conference &
Exhibition, DATE 2019, J. Teich and F. Fummi, Eds., 2019, pp. 1649–
1654.

[7] H. Riener, A. Mishchenko, and M. Soeken, “Exact DAG-aware rewrit-
ing,” in 2020 Design, Automation & Test in Europe Conference &
Exhibition, DATE 2020, 2020, pp. 732–737.

[8] A. Mishchenko, R. K. Brayton, J.-H. R. Jiang, and S. Jang, “Scalable
don’t-care-based logic optimization and resynthesis,” ACM Trans. Re-
configurable Technol. Syst., vol. 4, no. 4, pp. 34:1–34:23, 2011.

[9] L. G. Amarù, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, J. Olson,
R. K. Brayton, and G. De Micheli, “Improvements to Boolean resyn-
thesis,” in 2018 Design, Automation & Test in Europe Conference &
Exhibition, DATE 2018, J. Madsen and A. K. Coskun, Eds., 2018, pp.
755–760.

[10] H. Riener, E. Testa, L. G. Amarù, M. Soeken, and G. De Micheli,
“Size optimization of MIGs with an application to QCA and STMG
technologies,” in Proceedings of the 14th IEEE/ACM International
Symposium on Nanoscale Architectures, NANOARCH 2018, 2018, pp.
157–162.

[11] W. Haaswijk, L. G. Amarù, P. Vuillod, J. Luo, M. Soeken, and
G. De Micheli, “Integrated ESOP refactoring for industrial designs,”
in 25th IEEE International Conference on Electronics, Circuits and
Systems, ICECS 2018, 2018, pp. 369–372.

[12] S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De Micheli,
“A simulation-guided paradigm for logic synthesis and verification,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 41, no. 8,
pp. 2573–2586, 2022.

[13] H. Riener, S.-Y. Lee, A. Mishchenko, and G. De Micheli, “Boolean
rewriting strikes back: Reconvergence-driven windowing meets resyn-
thesis,” in 27th Asia and South Pacific Design Automation Conference,
ASP-DAC 2022, 2022, pp. 395–402.

[14] S.-Y. Lee, H. Riener, and G. De Micheli, “Logic resynthesis of majority-
based circuits by top-down decomposition,” in 24th International Sym-
posium on Design and Diagnostics of Electronic Circuits & Systems,
DDECS 2021, 2021, pp. 105–110.

[15] D. E. Knuth, The art of computer programming, volume 4A: combina-
torial algorithms, part 1. Addison-Wesley, 2011.

[16] S. B. Akers Jr., “Binary decision diagrams,” IEEE Trans. Computers,
vol. 27, no. 6, pp. 509–516, 1978.

[17] D. E. Culler, J. P. Singh, and A. Gupta, Parallel computer architecture
- a hardware / software approach, 1999.

[18] V. Bertacco and M. Damiani, “The disjunctive decomposition of logic
functions,” in Proceedings of the 1997 IEEE/ACM International Confer-
ence on Computer-Aided Design, ICCAD 1997, R. H. J. M. Otten and
H. Yasuura, Eds., 1997, pp. 78–82.

[19] A. Mishchenko, B. Steinbach, and M. Perkowski, “An algorithm for bi-
decomposition of logic functions,” in Proceedings of DAC, 2001, pp.
103–108.

[20] Z. Chu, M. Soeken, Y. Xia, and G. De Micheli, “Functional decompo-
sition using majority,” in Proceedings of ASP-DAC. IEEE, 2018, pp.
676–681.

[21] Y.-T. Lai, K.-R. Pan, and M. Pedram, “OBDD-based function de-
composition: Algorithms and implementation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 15,
no. 8, pp. 977–990, 1996.

[22] L. G. Amarù, P. Gaillardon, and G. De Micheli, “Majority-inverter
graph: A new paradigm for logic optimization,” IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., vol. 35, no. 5, pp. 806–819, 2016.

[23] S. Muroga, I. Toda, and S. Takasu, “Theory of majority decision
elements,” Journal of the Franklin Institute, vol. 271, no. 5, pp. 376–418,
1961.

[24] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R.
Morrison, R. L. Rudell, A. L. Sangiovanni-Vincentelli, and A. R. Wang,
“Multi-level logic minimization using implicit don’t cares,” IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., vol. 7, no. 6, pp. 723–740,
1988.

[25] C.-C. Lee, J.-H. R. Jiang, C.-Y. Huang, and A. Mishchenko, “Scalable
exploration of functional dependency by interpolation and incremental
SAT solving,” in 2007 International Conference on Computer-Aided
Design, ICCAD 2007, 2007, pp. 227–233.

[26] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, “SAT-
based exact synthesis: Encodings, topology families, and parallelism,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 39, no. 4,
pp. 871–884, 2020.

[27] S. B. Akers Jr., “Synthesis of combinational logic using three-input
majority gates,” in 3rd Annual Symposium on Switching Circuit Theory
and Logical Design, 1962, pp. 149–157.

[28] R. McNaughton, “Unate truth functions,” IRE Trans. Electron. Comput.,
vol. 10, no. 1, pp. 1–6, 1961.

[29] H. Owlia, P. Keshavarzi, and A. Rezai, “A novel digital logic im-
plementation approach on nanocrossbar arrays using memristor-based
multiplexers,” Microelectron. J., vol. 45, no. 6, pp. 597–603, 2014.

[30] A. Khan and R. Arya, “Design and energy dissipation analysis of simple
QCA multiplexer for nanocomputing,” J. Supercomput., vol. 78, no. 6,
pp. 8430–8444, 2022.

[31] C. Scholl and B. Becker, “On the generation of multiplexer circuits for
pass transistor logic,” in 2000 Design, Automation and Test in Europe
DATE 2000, 2000, pp. 372–378.

[32] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, S.-Y. Lee, A. Tempia Calvino, D. S. Marakkalage, and
G. De Micheli, “The EPFL logic synthesis libraries,” 2022. [Online].
Available: http://arxiv.org/abs/1805.05121

[33] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The EPFL combina-
tional benchmark suite,” in Proceedings of IWLS, 2015.

[34] R. K. Brayton and A. Mishchenko, “ABC: An academic industrial-
strength verification tool,” in Computer Aided Verification, 22nd Inter-
national Conference, CAV 2010, 2010, pp. 24–40.

[35] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA
technology mapping,” IEEE Trans. Very Large Scale Integr. Syst., vol. 2,
no. 2, pp. 137–148, 1994.

[36] A. Tempia Calvino, H. Riener, S. Rai, A. Kumar, and G. De Micheli, “A
versatile mapping approach for technology mapping and graph optimiza-
tion,” in 27th Asia and South Pacific Design Automation Conference,
ASP-DAC 2022, 2022, pp. 410–416.

Siang-Yun Lee received the B.Sc. degree from
the Department of Electrical Engineering, National
Taiwan University (NTU), Taipei, Taiwan, in 2019.
She is currently pursuing the Ph.D. degree with
Integrated Systems Laboratory, EPFL, Lausanne,
Switzerland, led by Prof. G. De Micheli. In NTU,
she worked with Prof. J.-H. R. Jiang on threshold
logic synthesis. She is currently a maintainer of
the EPFL logic synthesis library mockturtle. Her
research interests include logic synthesis and design
automation for emerging technologies.

Giovanni De Micheli is Professor and Director of
the Integrated Systems Laboratory at EPFL Lau-
sanne, Switzerland. Previously, he was Professor of
Electrical Engineering at Stanford University.

He is a Fellow of ACM, AAAS and IEEE, a
member of the Academia Europaea and an Interna-
tional Honorary member of the American Academy
of Arts and Sciences. His current research interests
include several aspects of design technologies for
integrated circuits and systems, such as synthesis
for emerging technologies. He is member of the

Scientific Advisory Board of IMEC (Leuven, B) and STMicroelectronics.
Prof. De Micheli is the recipient of the 2022 ESDA-IEEE/CEDA Phil

Kaufman Award, the 2019 ACM/SIGDA Pioneering Achievement Award, and
several other awards.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3256341

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

