
1

Fanout-Bounded Logic Synthesis for Emerging
Technologies

Dewmini Sudara Marakkalage, Graduate Student Member IEEE, and Giovanni De Micheli, Life Fellow IEEE

Abstract—In logic circuits, the number of fanouts a gate can
drive is limited, and such limits are tighter in emerging tech-
nologies such as superconducting electronic circuits. Moreover,
some such technologies, e.g., adiabatic quantum-flux-parametron
(AQFP), pose additional constraints such as the need for balanced
input-to-output paths to ensure proper signal propagation. In this
work, targeting emerging technologies, we study the problem of
re-synthesizing a logic network with bounded-fanout gates while
minimizing area for a given depth. Namely, we 1) formulate the
fanout-bounded synthesis (FBS) problem for a fixed target logic
depth as an integer linear program (ILP), 2) propose a scalable
top-down approach to construct a feasible solution to the ILP,
and 3) extend both the exact and the heuristic approaches to
the setting of path-balanced networks. Using our ILP, we obtain
the global optimum solutions for a number of benchmarks that
serve as ground truth for evaluating heuristic algorithms in
both general and path-balanced FBS. Our heuristic algorithm
for general FBS achieves an 11.82% better area than the state
of the art with matching or better delays while attaining the
optimum/near-optimum area for several considered benchmarks.
For the path-balanced setting, our heuristic approach achieves
8.76% better delay on average with an average area improvement
of 0.5% when using AQFP as the exemplar technology, while
achieving more than 17% better delays on several benchmarks.

Index Terms—Fanout-bounded synthesis, Integer linear pro-
gram, Emerging technologies, AQFP.

I. INTRODUCTION

IN digital electronics, the ability to have multiple fanouts per
gate allows for compact implementations of complex logic

functions. However, increasing the number of fanouts of a gate
can negatively impact delay performance, and the maximum
number of fanouts a gate can support is typically limited.
Therefore, it is important to develop synthesis algorithms that
effectively utilize fanouts.

In conventional CMOS technology, fanout optimization has
been well-studied, both as a means of improving the critical
path delay [1]–[5], and as a method of optimizing special high-
fanout nets such as clock and reset signals [6]. However, the
techniques developed for CMOS technology are not generally
transferable to emerging technologies such as superconduct-
ing electronics (e.g., AQFP [7], RQL [8], RSFQ [9]), field-
coupled nano-computing technologies (e.g., QCA [10]), and
spintronics [11], which generally have tight, explicit fanout
bounds and/or significantly different timing models (e.g.,
clocked gates). Thus the allowed circuit transformations in
such technologies can be fundamentally different.

This research was supported by the SNF grant “Supercool: Design methods
and tools for superconducting electronics”, 200021 1920981.

D. S. Marakkalage and G. De Micheli are with the Integrated Systems
Laboratory, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne,
Switzerland.

For instance, in CMOS technology, the delay increase
caused by a high number of fanouts can be mitigated by
techniques such as transistor sizing. However, this option is
not available for post-CMOS technologies. Instead, when de-
signing for emerging technologies that have globally imposed,
hard fanout limits, fanout-bounding is achieved through a
combination of gate duplications and buffer insertions. This
procedure tends to consume a significant portion of resources
as compared to CMOS, so it is typically considered relatively
early in the synthesis process, e.g., in the logic synthesis stage.

Motivated by the aforementioned differences from CMOS,
we first consider the following general fanout-bounded syn-
thesis (FBS) problem in the unit-delay model: Given an input
logic network and the fanout bounds and area costs of different
gate types/buffers, re-synthesize the logic network by means
of gate duplications and buffer insertions such that each gate
meets its respective fanout bound while the total area is
minimized. Note that the unit-delay model encompasses many
emerging technologies that have clocked gates (e.g., AQFP,
QCA). Zhang and Jiang [12] recently studied this general
FBS problem (in the same unit-delay model) and presented
an algorithm composed of several heuristics, where the main
idea was to duplicate gates if doing so locally reduces the
number of buffers (see Section III for more details).

In this work1, we revisit the FBS problem by taking a
rigorous approach: namely, we present the first known inte-
ger linear programming (ILP) formulation of this problem
for a fixed target delay and use it to obtain optimum area
FBS solutions for a number of EPFL [14] benchmarks and
benchmarks of [15]. Our ILP uses the number of copies and
buffers associated with different gates and levels as variables,
and has constraints to ensure that there are sufficiently many
gate copies and buffers to support all fanouts subject to fanout
bounds. As we see in Section IV, this formulation is versatile
and can be extended, for example, to facilitate different types
of gates and buffers as well as different fanout constraints for
primary inputs.

We then present a scalable top-down synthesis algorithm
for the general FBS problem based on a heuristic different
than that of [12], where we give preference to adding buffers
over duplicating gates. Specifically, the main idea of the new
approach is to duplicate gates only if the critical path delay
would be increased otherwise. As we explain in Section III,
our heuristic exploits several improvement opportunities we

1This manuscript is an extension to a previous work by the authors on
general FBS [13]. This work provides more detailed explanations of our
techniques and extends both the exact and heuristic approaches to consider
additional design constraints such as path balancing.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3339440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2

identified in the algorithm of [12]. We also present an ad-
ditional optimization step on top of the proposed top-down
approach which can be used as a high-effort optimization step
to obtain even better results. Our basic top-down heuristic
achieves a 10.9% better area as compared to the state of
the art [12] while the top-down approach with the additional
optimization step allows an 11.82% improvement on average.
Notably, the critical path delays of the resulting output net-
works of our top-down approaches are less than or equal to
those obtained by the state of the art because they retain the
same logic depth as the original fanout-unbounded network2.

Next, we consider the FBS with the additional requirement
of path-balancing, which is a crucial constraint of several
emerging technologies such as AQFP and QCA. In these tech-
nologies, gates can only drive at most one fanout, and special
branching cells called splitters are required to support multiple
fanouts. By considering the splitters as buffers with a fanout
capacity of at least two, synthesizing for such technologies
can be considered a special case of FBS. However, what
makes synthesizing for these technologies more challenging
is the constraints on the arrival times of fanins of a gate. For
example, in AQFP technology, the signal propagation between
gates is facilitated by a multi-phase clocking scheme, which
requires all fanins of a gate to be clocked in the same phase
(see Section II for details). One way to ensure this same-phase-
fanins constraint is to require that all fanins of a gate be at the
same logic level by adding extra buffers as necessary, which
is referred to as path-balancing in the literature.

For FBS in the path-balanced case, we first adapt the afore-
mentioned general-case-ILP to account for the path-balancing
constraints considering both scenarios where gate duplications
are enabled and disabled. (The latter setting has been studied
as the AQFP splitter/buffer insertion problem in a series of
research work [15]–[18] as we describe in Section III.)

Then, as with the general FBS problem, we present a
scalable heuristic algorithm for path-balanced FBS focusing
on AQFP technology. This algorithm starts with a top-down
approach resembling our heuristic for the general setting (with
some differences to avoid excessively duplicating gates) to
determine initial gate/buffer counts, and then follows on with
additional optimizations to mitigate the overhead of path-
balancing buffers. Remarkably, as compared to the optimum
delays in the setting without gate duplications, our heuristic
with gate duplications achieves 8.76% better delays on average
together with a 0.5% average area improvement.

In the rest of the paper, we first summarize some concepts
useful to better understand our work including the logic net-
work structures we use, timing and node equivalence concepts,
and a brief introduction to AQFP technology (Section II). Then
we discuss some prior work on general FBS as well as splitter-
buffer insertion for AQFP technology (Section III). Next, in
Section IV, we describe our ILP formulation for the general
FBS, and in Section V, we present our scalable top-down
algorithm and related further optimizations. Following that,
in Section VI, we extend our approaches from Section IV and

2Note that, to have a fair comparison with [12], we assume the primary
inputs have unbounded fanout capacity.

Section V to facilitate the path-balancing constraints. Finally,
in Section VII, we present our experimental results, and in
Section VIII, we conclude with a brief discussion on the results
and possible future directions.

II. BACKGROUND

In this section, we first introduce two representations of
logic that we use in our algorithms, namely and-inverter
graphs (AIGs) and majority-inverter graphs (MIGs). Next, we
describe the notion of static timing analysis for the unit delay
model and the concept of node equivalence. Finally, we briefly
introduce the AQFP technology on which we demonstrate our
FBS approaches for the path-balanced setting.

A. And-Inverter Graphs / Majority-Inverter Graphs

The and-inverter graph (AIG) is a directed acyclic graph
(DAG) representation of logic where nodes represent either
primary inputs or 2-input AND gates which respectively have
in-degree zero or two. AIGs have two possible types of
directed edges, representing non-inverted or inverted fanins.
The AIG is a universal logic representation, meaning that
an AIG can represent an arbitrary logic function, and is
supported by numerous logic synthesis tools and libraries such
as ABC [19] and mockturtle [20], owing to its simplicity and
wider compatibility with many logic synthesis algorithms. At
the same time, structural hashing can be easily implemented
in AIGs, enabling efficient collapsing of logically equivalent
nodes. We use AIG as the preferred logic representation in
Section IV and Section V.

The majority-inverter graph (MIG) is defined similarly to
the AIG; the only differences are that the internal nodes
represent 3-input majority gates and have in-degree three. The
3-input majority gate outputs 1 if and only if at least two of
the inputs are 1. When one input is tied to constant 0 or 1,
the majority gate acts as a 2-input AND gate or a 2-input OR
gate. Thus, MIG is also a universal logic representation.

The use of majority gates in logic synthesis has been studied
extensively in the past [21]–[23]. Recently Amarù et al. [24],
[25] proposed MIG as a new paradigm for logic synthesis. Due
to the majority gate being the natural gate in several supercon-
ducting technologies (as we see in Section II-D), it is prefer-
able to consider a majority-gate-based logic representation
when synthesizing for such technologies. Consequently, we
use MIG as the preferred logic representation in Section VI.

B. Static Timing Analysis

In this work, we use the unit-delay model which assumes
that a signal incurs a unit delay when it passes through a gate.
The arrival time of a node n, denoted by tarrn is defined as
follows: If n is a primary input, tarrn = 0. Otherwise tarrn =
1 + maxm∈FI(n) t

arr
m , where FI(n) denotes the set of fanin

nodes of n. Note that the arrival time of a node is equal to
the maximum length of a path from the node to any primary
input. Hence, we sometimes use the term level to refer to the
arrival time. The overall circuit delay (depth of the circuit) is
defined as the maximum arrival time of any primary output.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3339440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

For a given target delay D, the required time treqn of a
node n is defined as follows: If n has no fanout nodes which
are internal to the logic network (i.e., all fanouts are primary
outputs), treqn = D. Otherwise, treqn = minm∈FO(n) t

req
m − 1,

where FO(n) denote the set of fanout nodes of node n.
A critical path in a network is an input-to-output path of

nodes where each node n on the path satisfies treqn = tarrn . We
say a node is critical if it lies on at least one critical path.

C. Node Equivalence

In general, we say two nodes m and n in a logic network
are equivalent if their outputs are equal under all possible
value combinations of primary inputs. If the input graph
contains two or more equivalent nodes, their fanouts can
be re-distributed among themselves at the discretion of a
synthesis algorithm without altering the overall output of the
circuit. However, for a network with many primary inputs, the
computation needed to identify all sets of equivalent nodes can
be prohibitively expensive. Thus, a more practical approach is
to find equivalent nodes by considering a node’s function with
respect to a small cut, i.e., a set of nodes that separates the
considered node from primary inputs. An example of this type
of weaker equivalence checking is structural hashing which
was originally used in IBM CAD tools [26]; For AIGs, a
widely used structural hashing technique is to identify each
gate with a signature consisting of the gate’s fanins and flags
denoting which fanins are inverted.

In this work, we do not explicitly check for equivalent
nodes; instead, we allow the AIG data structure to internally
use structural hashing to collapse any equivalent nodes. For the
output logic network, our algorithms may explicitly duplicate
some gates, hence we disable structural hashing for the output.

D. AQFP Logic Circuits

Adiabatic quantum-flux-parametron (AQFP) is a supercon-
ducting electronics technology with very low power consump-
tion due to adiabatic operations. In AQFP, logic gates are
constructed using superconductive inductors and Josephson
Junctions (JJs) which are based on the Josephson effect [27].
The number of JJs in an AQFP circuit is commonly used as
a proxy for the area cost.

For AQFP, Takeuchi et al. [28] proposed a simple cell library
based on four primitive cells—buffer, inverter, constant, and
branch—where a gate is created using an array of primitive
cells together with a branch while a splitter is constructed
using a buffer and a branch. The majority-3 gate consists
of three buffer cells together with a branch. The different
fanin inverted versions of a majority-3 gate are constructed
by substituting a subset of buffer cells with inverter cells [28].
Analogously, 2-input AND and OR gates are constructed by
substituting a buffer cell with a constant 0 or 1 cell. Each of
the three primitive cells, buffer, inverter, and constant, consists
of two JJs, and hence a splitter also uses 2 JJs. All gates—
majority-3, AND-2, and OR-2—as well as all their input-
inverted versions use 6 JJs each.

In AQFP logic, the majority-3 gate is the elementary gate as
other gates AND and OR are derived from it. Moreover, these

derived gates all have the same area as the original majority-3
gate. As such, Cai et al. [29] proposed that majority-gate-
based logic synthesis is more suitable when optimizing logic
networks for the AQFP technology.

The output signals of AQFP gates are rather weak and
unable to drive more than one fanouts. Instead, when driving
multiple fanouts, splitters (or a tree of splitters) must be used
to boost the output signal. Depending on the implementation
details, a splitter’s branching capacity can vary (usually three
or four [28], [30]), and in our logic synthesis experiments for
AQFP, we assume it is four.

As with many superconducting technologies, AQFP gates
are clocked. The logic values are propagated between consec-
utive gates when their active periods overlap. This overlap is
achieved by ensuring that, for each gate n, all fanins of n
are clocked by the same phase and n itself is clocked by the
next available phase (e.g., for a 4-phase clocking scheme, if
fanins of n are activated by a clock in some phase ϕ, then n
is activated by a clock in phase ϕ+π/4.) To achieve this kind
of overlap throughout the network, the usual practice is

1) to ensure all fanins of a gate are in the same logic level,
2) map consecutive logic levels to consecutive rows of

gates/buffers in the physical circuit, and
3) activate consecutive rows of gates by clock signals in

consecutive phases.
We remark that, in general, it is not mandatory to have all
fanins exactly in the same logic level, but it is sufficient to
have them in the same logic level modulo the number of clock
phases. Even this requirement can be eliminated by using a
more elaborate clocking scheme where non-consecutive clock
phases can also overlap [31]. To keep things simple and allow
comparisons with recent work on AQFP logic synthesis, in
this work, we work in the former setting.

Depending on the design of registers and the clocking mech-
anism used, there can be different requirements on whether
splitters are needed for primary inputs, whether path balancing
is needed for primary inputs, and if path balancing is needed
for primary outputs [32]. In our proposed FBS approaches for
the path-balanced setting, we assume that splitters are needed
for primary inputs (which is a notable difference from the
general FBS setting where we assume primary inputs have
unbounded fanout capacity to be consistent with [12]) and
that path-balancing is needed for primary inputs and primary
outputs (i.e., all primary outputs are at the same level).

To illustrate synthesis for AQFP under fanout and path-
balancing constraints, consider the example logic network on
the left of Fig. 1 and two of its fanout-bounded, path-balanced
versions in the middle and on the right. The one in the middle
does not have any duplicated gates while the one on the right
has one gate duplication. In this example, duplicating gates
benefits both the area and the delay; the delay is reduced by
one logic level and the area is reduced by two JJs.

III. RELATED WORK

In this section, we first discuss some notable work related
to FBS and briefly explain how our approach differs from
the existing methods. Then, we also discuss some work

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3339440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

ℓ = 5

∨

maj

∧

i1 i2 i3

o1 o2

∨

maj

∧

i1 i2 i3

o1 o2

∨ ∨

maj

∧

i1 i2 i3

o1 o2

Fig. 1. Example logic network (left) and two of its possible fanout-bounded, path-balanced versions targeting AQFP technology assuming a fanout capacity
of 1 for gates and 3 for splitters. (Buffers and splitters are shown by triangles.) The version in the middle does not use any gate duplication whereas the
version on the right allows gate duplication resulting in a reduction in both the overall number of logic levels as well as the total area.

related to the AQFP splitter/buffer insertion problem which
can be viewed as a special case of FBS with path-balancing
constraints.

A. General Fanout-Bounded Synthesis

An early theoretical work on general FBS using gate
duplications and buffers by Hoover et al. [33] presented an
algorithm that limits the number of fanouts of each gate by
any given constant c ≥ 2 at the expense of a constant factor
increase in both the total number of gates and the depth3. Their
algorithm assumes the natural setting that the input consists
of bounded-fanin gates.

A vital ingredient of their work that is pertinent to FBS
in general is the minimum-size minimum-height buffer tree
construction. Namely, given the levels of fanouts of a gate,
construct a tree consisting of the gate and a set of buffers such
that 1) the gate is at the root, 2) the total number of buffers is
minimized, and 3), the height of the tree is minimized. In the
case where the gates and buffers have the same fanout bound
t ≥ 2, Golumbic [34] showed how to construct such a tree
using a slightly modified Huffman-coding-like algorithm [35].

Recently, Zhang and Jiang [12] studied the problem of
general FBS in the unit delay model and proposed an algorithm
consisting of several heuristic optimizations. The main idea
of their work is to duplicate gates if that results in a buffer
reduction in the local neighborhood without significantly af-
fecting the critical path delay. To this end, they proposed a
recursive evaluation procedure to determine the number of
duplicates for each gate. After the duplicate count for each gate
has been determined, for each node in the reverse topological
order, their algorithm constructs “skewed” buffer trees using
an algorithm similar to [35]. Finally, for each set of equivalent
nodes, their buffer trees are considered together and the load is
re-distributed. This step does not alter the levels of the nodes
but may remove some redundant equivalent nodes.

3The depth increase allows for an additive O(logc(# primary outputs))-
term, which is unavoidable under constant-factor size increase considering a
network with a single gate that feeds to a large number of primary outputs.

After further analyzing the algorithm of Zhang and Jiang,
we identify the following optimization opportunities:

1) The computed numbers of gate duplicates in the recur-
sive evaluation step do not guarantee that the fanout-
bounded version achieves the same minimum possible
logic depth as the original, fanout-unbounded network.
(Note that the original depth is always achievable using
gate duplicates under the assumption that the number of
fanouts for a primary input is unbounded.)

2) The priority-queue-based method used in [12] for
skewed buffer tree construction, although achieves the
best possible size for the buffer tree, is not guaranteed to
achieve the best possible level for the root node unless
the fanout bound is two. However, for fanout bounds
≥ 3, it is always possible to obtain the best size for the
buffer tree as well as the optimal level for the root node
using the method proposed by Golumbic [34].

3) In [12], it is not stated how the fanouts are initially
assigned to the duplicated copies prior to the skewed
buffer tree construction or how their initial levels are
determined. For instance, if all copies of a gate are
naively placed at the same level when it is possible to
place some copies at higher levels, the critical path delay
can be adversely affected. However, it is difficult for
an algorithm to make such decisions unless it already
knows the levels of the fanouts.

4) The buffer forest re-balancing step does not guarantee
that we get the minimum possible duplicate count (even
locally for a considered set of equivalent nodes). This
is because the re-balancing step is run only after fixing
the levels of the duplicated nodes.

In our scalable algorithm for general FBS, we capitalize on all
these optimization opportunities. Specifically, by reconstruct-
ing the network in the reverse topological order, our algorithm
has the full knowledge of the levels of fanouts of a gate,
before the gate itself is synthesized. In Section V, we describe
in detail how our top-down approach enables exploiting each
aforementioned opportunity.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3339440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5

B. Path-Balanced Fanout-Bounded Synthesis

As for the path-balanced setting, there is a line of work
on satisfying fanout and path-balancing constraints for the
AQFP technology (e.g., [16]–[18]), but these works mainly
consider doing so without gate duplications. In literature,
this problem is often referred to as the AQFP splitter/buffer
insertion problem, and it is a special case of the path-balanced
FBS.

In early work on AQFP splitter/buffer insertion, the main
idea was to optimize individual fanout nets using different
approaches such as dynamic programming and local retiming-
like methods for pushing buffers from fanins to fanouts. The
work of Lee et al. [16] took a rigorous approach where
they presented an exact formulation of the problem as a
satisfiability modulo theory (SMT) problem using the theory
of integer linear arithmetic. Namely, they use the logic depth
of each gate as an SMT variable and, for each fanout net,
they consider constraints that must be satisfied by any valid
splitter/buffer insertion. In contrast, our proposed method uses
an ILP to encode the problem and uses the number of gate
copies/buffers of each fanout net in each level as variables,
which supports gate duplications.

The work in [16] also presented a more elaborate retiming
algorithm where an initial splitter/buffer inserted network
is further optimized by identifying collections of tightly-
connected gates (chunks) where buffers can be pushed forward
(from inputs to outputs) or vice-versa to reduce the buffer
count. This retiming technique was later used in [17] for area
recovery in delay optimal AQFP synthesis. More recently, Fu
et al. [18] presented a dynamic programming approach to
globally optimize splitters and buffers in AQFP synthesis and
an ILP-based solution to approximate the optimum solution.

As a final remark, we emphasize the lack of gate duplica-
tions in the existing work on splitter/buffer insertion. However,
duplicating gates is an important option that warrants increased
attention because it can reduce both the area and the delay as
we see in the example of Fig. 1.

IV. GLOBALLY OPTIMUM GENERAL FANOUT-BOUNDED
SYNTHESIS

In this section, we present our ILP formulation of FBS in the
unit-delay model. Given an input logic network, a predefined
target logic depth D, the gate and buffer costs (e.g., area),
and their respective fanout bounds, the proposed ILP finds the
minimum cost logic network that meets all fanout bounds, has
logic depth at most D, and is functionally equivalent to the
input logic network.

We remark that we do not aim to make any logic restruc-
turing; instead, our ILP determines how to duplicate gates and
add buffers to the input logic network. For instance, consider
the logic network shown on the left of Fig. 2 where the primary
inputs (i1, . . . , i4) are shown on the bottom and the primary
outputs (o1, . . . , o5) are at the top. If we assume gates and
buffers both have fanout capacity 2, then one possible solution
to the FBS problem is the network shown on the right, where
we have two gates duplications (n1 and n3) and added two
buffers (shown in blue triangles.)

To derive the ILP, we start with the following notation:
Let I be the set of all primary inputs of the input network,
let G be the set of all gates, and let N = I ∪ G be
the set of all nodes. For example, in the example network
shown in Fig. 2, I = {i1, . . . , i4}, G = {n1, n2, . . . , n7}
and N = {i1, . . . , i4, n1, . . . , n7}. For a node n ∈ N , let
FO(n) be the collection of fanout nodes of n. Let kn be
the number of primary outputs directly connected to node
n. Thus, for example, for the network in Fig. 2, we have
FO(n1) = {n3, n4} and FO(n3) = {n4, n5, n6}, and kn2

=
kn4 = kn5 = kn6 = kn7 = 1.

Let cgate be the cost (area) of a gate (we assume the network
is homogeneous, but our ILP can easily be generalized to
support different types of gates), let cbuff be the cost of a
buffer, let fgate be the fanout capacity of a gate, and let fbuff
be the fanout capacity of a buffer.

For example, the setting studied in [12] for FBS assumed
gates and buffers each have fanout capacity 2 and considered
the optimization of the total node count. For this case, we thus
have fgate = fbuff = 2 and cgate = cbuff = 1.

Let n ∈ N be a node in the original graph. We say a node
m in a fanout-bounded circuit is n-equivalent if one of the
following holds:

1) n is a primary input and m is the corresponding primary
input in the fanout-bounded version.

2) n is a gate with fanins n1, n2 and m is a gate with
fanins m1,m2 such that m1 is n1-equivalent and m2 is
n2-equivalent.

3) m is a buffer such that its fanin m1 is n-equivalent.

Note that by the third criterion, any buffer in a buffer tree
rooted at an n-equivalent gate is also n-equivalent. According
to this definition, in the example fanout-bounded network
(assuming fgate = fbuff = 2) shown on the right of Fig. 2,
there are two n1-equivalent gates and two n2-equivalent gates.
Moreover, the two buffers represented as blue triangles in
level 2 are n2-equivalent.

1) Variables: We use two kinds of integer variables. For
each node n ∈ N and for each level ℓ ∈ {1, . . . , D}, we
introduce variables gn,ℓ to denote the number of gate copies
in level ℓ in the fanout-bounded circuit that are n-equivalent.
Similarly, we introduce variables bn,ℓ to denote the number
of buffers in level ℓ in the fanout-bounded circuit that are
n-equivalent. For example, for the logic network shown in
Fig. 2, the introduced variables take the following values:
gn1,1 = 2, gn2,1 = 1, gn3,2 = 2, gn4,3 = 1, gn5,3 = 1, gn6,3 =
1, gn7,3 = 1, bn2,2 = 2 and gn,ℓ = 0 for all unspecified
variables gnq,ℓ with q ≤ 7 and ℓ ≤ 3.

2) Constraints: Next, we introduce constraints to ensure
that the values of variables indeed correspond to a valid fanout-
bounded logic network that is equivalent to the input network.
To this end, we first have that gn,0 = 0 and bn,0 = 0 for
all n ∈ N since there cannot be any gates or buffers in the
same level as the primary inputs. (In fact, these variables are
redundant and we can write the ILP without them, but having
these variables with the above constraint makes it easier to
specify the remaining constraints in a concise manner.) Next,
consider a fixed level ℓ ∈ {1, . . . , D} and a fixed gate n ∈ G.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3339440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6

ℓ = 1

ℓ = 2

ℓ = 3

n1 n2

n3

n4 n5 n6 n7

ℓ = 1

ℓ = 2

ℓ = 3

i1 i2 i3 i4

o1 o2 o3 o4 o5

n1 n1 n2

n3 n3

n4 n5 n6 n7

i1 i2 i3 i4

o1 o2 o3 o4 o5

Fig. 2. Example logic network (left) and a possible fanout-bounded version assuming a fanout limit of 2 (right).

We denote by avl(n, ℓ), which stands for “availability of n-
equivalent signals by level ℓ,” the total fanout capacity of all
n-equivalent gates/buffers that are placed in levels strictly less
than ℓ. Note that

avl(n, ℓ) =
ℓ−1∑
ℓ′=0

(fbuff · bn,ℓ′ + fgate · gn,ℓ′),

which is a linear function of the ILP variables. We denote by
req(n, ℓ), which stands for the “requirement of n-equivalent
signals by level ℓ,” the total fanout requirement of n-equivalent
gates/buffers by all gates and buffers in level ℓ or below. Note
that each copy of a fanout of an n-equivalent gate increases
the fanout requirement by one, and each n-equivalent buffer
also increases the fanout requirement by one. Namely, we can
write

req(n, ℓ) =

ℓ∑
ℓ′=1

bn,ℓ′ +
∑

m∈FO(n)

gm,ℓ′

 ,

which is again a linear function of the ILP variables.
Now, observe that, in any variable assignment that cor-

responds to a valid fanout-bounded network with depth D,
it must hold that avl(n, ℓ) ≥ req(n, ℓ) for all n ∈ G and
ℓ ∈ 1, . . . , D. To see this, consider any valid depth-D fanout-
bounded version of the input network, and let gn,ℓ, bn,ℓ be
the corresponding ILP variable values. Fix any gate n ∈ G
and let ℓ = 1. Note that for any gate m ∈ FO(n), gm,1

must be 0. Otherwise, there must be a copy of n at level
0, which is a contradiction as n is not a primary input.
Similarly, there cannot be any n-equivalent buffer at level 1
either. Thus it must hold that avl(n, 1) = 0 ≥ 0 = req(n, 1).
Now, suppose that avl(n, ℓ) ≥ req(n, ℓ) must hold for any
valid depth-D fanout-bounded version. We inductively show
that avl(n, ℓ + 1) ≥ req(n, ℓ + 1) must also hold. Observe
that the total number of connections between n-equivalent
gates/buffers and their fanouts that must cross the boundary
between level ℓ and ℓ+1 is at least

∑
m∈FO(n) gm,ℓ+1+bn,ℓ+1.

The total remaining capacity of n-equivalent gates/buffers
that are at levels below ℓ is avl(n, ℓ) − req(n, ℓ). Thus the
additional capacity needed to support all crossing connections
must be provided by n-equivalent gates/buffer that are at level

ℓ. Namely, we must have

fgate · gn,ℓ + fbuff · bn,ℓ ≥
∑

m∈FO(n)

gm,ℓ+1 + bn,ℓ+1

− (avl(n, ℓ)− req(n, ℓ)),

which yields

avl(n, ℓ) + fgate · gn,ℓ + fbuff · bn,ℓ
≥ req(n, ℓ) +

∑
m∈FO(n)

gm,ℓ+1 + bn,ℓ+1,

or equivalently, avl(n, ℓ+1) ≥ req(n, ℓ+1) after re-arranging.
Finally, we ensure that we have enough capacity remaining

in n-equivalent gates/buffers to support the respective primary
outputs (if any). Namely, for all n, it must hold that

avl(n,D + 1)− req(n,D) ≥ kn.

The same can be achieved by viewing all fanouts connected
to a gate n as n-equivalent buffers placed at level D+1, and
simply adding the constraint avl(n,D + 1) ≥ req(n,D + 1).

We thus get the following ILP formulation for FBS under
a predetermined depth bound D, where the objective function
is to minimize the total area.

Minimize
∑

n∈G

∑D
ℓ=1(cgate · gn,ℓ + cbuff · bn,ℓ),

Subject to

avl(n, ℓ)− req(n, ℓ) ≥ 0 ∀n ∈ N, 1 ≤ ℓ ≤ D,

avl(n,D + 1)− req(n,D) ≥ kn ∀n ∈ N,

gn,0 = 0 n ∈ G,

bn,0 = 0 n ∈ N,

gn,ℓ, bn,ℓ ∈ Z ∀n ∈ N, 1 ≤ ℓ ≤ D.

Let OPT be the optimum area of a fanout-bounded version
of the input network with maximum depth D. Since any such
valid network corresponds to a feasible solution for the ILP,
it is clear that the value of ILP is at most OPT. We now
give an algorithm (Algorithm 1) to transform any feasible ILP
solution to a fanout-bounded network of maximum depth D,
which is equivalent to the original network, thus showing that
our ILP in fact finds the optimum area.

The algorithm first sorts all variables gn,ℓ, bn,ℓ in the in-
creasing order of ℓ. Then, considering the variable values in

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3339440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



7

Algorithm 1: Algorithm for constructing a fanout-
bounded network using a feasible solution to the ILP.

input : Input network ntk, parameters fgate, fbuff , and a
feasible ILP solution gn,ℓ, bn,ℓ for n ∈ N and
0 ≤ ℓ ≤ D.

output: A fanout-bounded version of ntk.
1 Let newsig be a map from nodes in ntk to a queue of pairs

(new node, remaining capacity)
2 for all p ∈ primary inputs of ntk do
3 newsig[p].push((newntk.create pi(),∞))

4 Let data be an empty list.
5 for all nonzero gn,ℓ do Add (ℓ, n, “gate”) to data
6 for all nonzero bn,ℓ do Add (ℓ, n, “buff”) to data
7 Sort data in the ascending order of levels.
8 for all (ℓ,m, t) ∈ data in the ascending order of levels do
9 if t = “gate” then

10 Look up fanins of m in newsig.
11 newgate ← Create a new gate by choosing the first

available equivalent fanins in newsig.
12 Decrement remaining capacity for used fanin nodes

and remove them from the queue if remaining
capacity reach zero.

13 newsig[m].push((newgate, fgate))

14 else
15 newbuff ← Create a new buffer by choosing the first

available equivalent node in newsig[m].
16 Decrement remaining capacity for the used fanin.
17 Pop from newsig[m] if remaining capacity is zero.
18 newsig[m].push((newbuff, fbuff))

19 return the constructed network.

that order, construct the gn,ℓ gate copies or bn,ℓ buffers in a
new network. To facilitate this construction, for each n ∈ N ,
the algorithm maintains a queue of currently constructed n-
equivalent gates/buffers together with their remaining fanout
capacities. Each time it uses such a gate/buffer, it decrements
the count; once the count reaches zero, the corresponding
gate/buffer instance is removed from the queue. Since the algo-
rithms construct gates/buffers in a level-by-level fashion using
a feasible variable assignment, we can see that the algorithm
always has sufficient equivalent signals in the corresponding
queues when executing Line 11 and Line 15.

V. TOP-DOWN HEURISTIC APPROACH FOR GENERAL
FANOUT-BOUNDED SYNTHESIS PROBLEM

In this section, we first present our scalable top-down
heuristic algorithm that greedily finds a feasible solution to
the derived ILP. We then propose an additional optimization
step that we can integrate with the top-down approach that
allows further area reductions in certain cases.

Although solving the ILP introduced in Section IV gives
the optimum solution, solving it optimally for large networks
which we often encounter in practice is a prohibitively expen-
sive computation, and hence not a viable approach in many
practical settings. On the other hand, the top-down approach
we propose in this section is scalable to very large networks
as it runs in O(S logS) time where S is the size of the
input network (i.e., the number of wires in the network).
Although this approach is not optimum in general, we note

that it achieves optimum or near-optimum areas for several
considered benchmarks in our experiments.

In the proposed approach, we consider the gates n ∈ G in
the reverse topological order, and for each n in this order,
determine values for variables gn,ℓ and bn,ℓ such that the
constraints avl(n, ℓ) − req(n, ℓ) ≥ 0 and avl(n,D + 1) −
req(n,D) ≥ kn are satisfied. Since we consider the nodes in
the reverse topological order, when we consider a node n,
we already know the levels of all fanouts of n-equivalent
gates/buffers except for those fanouts that arise due to fanins
of n-equivalent buffers. We call those fanouts external fanouts
of n-equivalent gates/buffers.

When determining the values for gn,ℓ and bn,ℓ, we prefer
minimizing the number of gate duplicates by utilizing buffers
as much as possible to support the fanout requirement. This
decision is motivated by the following facts: First, duplicating
a gate will increase the fanout requirement of other nodes:
For example, suppose that n’s fanins are m1 and m2. Then,
duplicating a n-equivalent gate increases the fanout load of m1

and m2-equivalent gates/buffers. This is in contrast to adding a
buffer which only increases the fanout load by one. Secondly,
it is natural to assume that the area of a buffer is not more than
that of a gate, and the fanout capacity of a buffer is usually
more than that of a gate. Thus, in terms of area, replacing a
gate copy with a buffer is always beneficial.

However, we cannot completely eliminate gate duplication
because the addition of buffers can increase the number of
logic levels (i.e., the critical path length). Recall that tarrn is the
minimum level node n can be at even if we assume unbounded
fanout capacities. Thus, for any ℓ < tarrn , setting gn,ℓ to a
non-zero value makes the solution infeasible. Similarly, for
any ℓ ≤ tarrn (note the inclusion of equality), setting bn,ℓ to a
non-zero value also makes the solution infeasible.

For given levels of external fanouts of n-equivalent
gates/buffers and the minimum possible level (i.e., tarrn ) for
an n-equivalent gate, we use Algorithm 2 to determine the
values of gn,ℓ and bn,ℓ variables by considering each node
in the reverse topological order. We then use Algorithm 1 to
construct the corresponding fanout-bounded logic network.

We remark that our top-down approach is fundamentally dif-
ferent from the work of Zhang and Jiang [12]. In [12], a set of
n-equivalent gates and their corresponding levels are already
determined when the buffer-forest re-balancing algorithm is
run in order to reduce the number of gate duplicates. This can
lead to some redundant gate copies that remain in the network
even after re-balancing is performed. In contrast, our algorithm
uses Algorithm 2 to decide the set of n-equivalent gates that
we absolutely need along with their levels, thus redundant
gate copies are never created. Moreover, in the “skewed buffer
tree construction” and “buffer-forest re-balancing” algorithms
of [12], there can be situations where it does not construct the
best buffer tree/forest when fgate, fbuff > 2 and cgate > cbuff .
To see this, suppose that fgate = fbuff = 3 and cgate > cbuff
and consider the fanout net shown in Fig. 3 (a). The algorithm
of [12] may either decide to duplicate node n and produce the
forest shown in Fig. 3 (b) which has a cost of 2 · cgate or
it may construct the skewed buffer tree shown in Fig. 3 (c)
where the node n is placed at level 4. However, the buffer

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3339440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8

Algorithm 2: Algorithm for determining gn,ℓ and bn,ℓ
values for a node n ∈ N , given ℓmin

n and the levels of
all external fanouts of n-equivalent gates/buffers.

input : Input network ntk, parameters fgate, fbuff , a node
n, tarrn , and a list folevn of levels of n’s fanouts.

output: Values of gn,ℓ, bn,ℓ variables for ℓ = 1, . . . , D.
1 Set gn,ℓ, bn,ℓ = 0 for all ℓ
2 for t = 1 to length(folevn) do
3 Let rem← length(folevn)− t · fgate
4 if rem ≤ 0 then
5 for i = 1 to length(folevn) in steps of fgate do
6 Increment gn,folevn[i]−1.
7 return variable values

8 s← rem mod (fbuff − 1)
9 if s > 0 then

10 Add fbuff − s many copies of ∞ to folevn (i.e.,
dummy fanouts with unbounded required time).

11 Use the skewed buffer tree construction from [12] until
we have t buffer trees.

12 if the root levels of all buffer trees are at least tarrn then
13 Set gn,ℓ and bn,ℓ according to the construction.
14 return variable values

tree shown in Fig. 3 (d) is better than both the options; it
has a lower area than the one in Fig. 3 (b) and gives a better
placement for node n than the one in Fig. 3 (c). In contrast
to [12], our algorithm always constructs the optimum buffer
forest for given levels of external fanouts and tarrn . Namely, for
r = 1, 2, . . ., we consider r copies for the root gate, employ a
modified version of the algorithm of Golumbic [34] to derive
r buffer trees, and find the minimum value of r such that roots
of all trees meet the arrival time requirement.

A. Improved Top-Down Approach with Over-Duplication

Recall that in our vanilla top-down approach, for each fanout
net, we find the smallest buffer forest that does not increase
the overall critical path length. The intuition behind settling
for the smallest buffer forest is to minimize duplication of
gates, and hence avoid unnecessarily increasing the load on
the fanins of those gates.

One potential drawback of this frugal approach is the
following: Consider a scenario where we may have the option
of placing two copies of a node n at level tarrn +1. However, we
may end up placing a single copy of n at level tarrn instead, thus
forcing more duplications for n’s fanin nodes as their fanout

nets do not have enough slack to add buffers. To illustrate
this point, assuming that fgate = fbuff = 3 and cgate > cbuff ,
consider the time our algorithm processes the fanout net of
node n in the setting shown on top in Fig. 4 where the levels
are already decided for all nodes except n, n1 and n2. Since
the naive top-down approach greedily tries to minimize the
number of duplicates for n, it will be placed at level 2 (no
duplication) with one buffer at level 3 as shown in the middle
of Fig. 4. This forces both n1 and n2 to be duplicated (unless
the critical path length is to be increased) which results in an
overall cost of 5 · cgate + cbuff for the fanout nets of n, n1,
and n2. However, if we allow the locally suboptimal choice of
duplicating n, it is possible to place two copies of n in level
3. This allows more room for fanout nets of n1 and n2 to have
buffers, resulting in the outcome shown at the bottom of Fig. 4
with an overall cost of 4 · cgate + 2 · cbuff (which is strictly
a better cost when cgate > cbuff ). As such, allowing more
duplicates than absolutely necessary (i.e., over-duplication)
can be good if that provides more room for the fanins to have
buffers and prevents them from being duplicated.

In an improved version of our top-down approach, we
incorporate this idea of over-duplication as follows: For the
fanout net of a considered node n, instead of stopping the
algorithm at minimum possible number of trees t, we continue
increasing t and construct the corresponding buffer forests. For
each such buffer forest, we consider the overall area incurred
by the fanout net of the considered node and the fanout nets of
its fanin nodes, assuming that we do not use over-duplication
for those fanin nodes. Then for node n, we choose the buffer
forest that gives the minimum overall area computed in the
above step.

There are two issues with this approach: First, due to the
top-down implementation, when considering node n, all levels
of its fanouts (including their potential copies) are known.
However, for a fanin m of n, there can be some fanouts that
are yet to be considered by the algorithm, and hence their final
levels are not known. Secondly, suppose that a node m has
k fanouts. For each of those fanouts, the cost of the fanout
net of m will be re-evaluated multiple times. I.e., the fanout
net of m is evaluated at least k-times. Since each evaluation
also takes time at least linear in k, the total work involved
in evaluating a node’s fanout net can be very expensive for
high-fanout nodes.

To circumvent the first issue, we propose to use a proxy
level for the so-far unconsidered nodes; namely, we use their
maximum possible level (i.e., the required time) as the proxy

n n

n

n

n

ℓ = 4

ℓ = 5

ℓ = 6

ℓ = 7

(a) (b) (c) (d)

Fig. 3. A fanout net for a node n with levels of fanouts already decided (a), two possible outcomes for the fanout net of n if the algorithm of [12] is used
(b and c), and the optimum buffer tree for n (d) when fbuff = fgate = 3 and cgate > cbuff .

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3339440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

n1 n2

n

i1 i2 i3 i4

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

n1 n2n1 n2

n

i1 i2 i3 i4

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

n1 n2

n n

i1 i2 i3 i4

Fig. 4. An intermediate step of fanout-bounded synthesis with levels decided
for all nodes except n, n1, n2 (top), the synthesized fanout nets by the
algorithm described in naive top-down approach (middle), and the synthesized
fanout nets if over-duplication allowed (bottom) when fbuff = fgate = 3
and cgate > cbuff .

level. To mitigate the effects of the second issue, we set a
constant bound Fmax (e.g., 10) and ignore nodes with more
than Fmax fanouts when computing the overall area impact.

VI. PATH-BALANCED FANOUT-BOUNDED SYNTHESIS

In this section, we focus on FBS with the additional
requirement of path-balancing.

A. ILP Formulation for the Global Optimum

Recall that the path-balancing constraint states that all input-
to-output paths are of the same length. Equivalently, for a gate
in level ℓ, all of its fanins must be in level ℓ− 1. Thus for a
gate or primary input n in the input network and for a level
ℓ in the output network, it must hold the following: The total
available fanout capacity of all n-equivalent nodes in level
ℓ−1 must be at least the total required number of n-equivalent
signals by nodes in level ℓ. We can easily incorporate this
constraint into the ILP of Section IV by simply redefining
avl(n, ℓ) and req(n, ℓ) as

avl(n, ℓ) = fbuff · bn,ℓ + fgate · gn,ℓ,

and
req(n, ℓ) = bn,ℓ +

∑
m∈FO(n)

gm,ℓ.

As discussed in Section II, the FBS with path-balancing
constraints is a generalization of splitter/buffer insertion for

AQFP technology, and AQFP technology can have different
assumptions on the need for buffers/splitters on primary inputs
and primary outputs. In particular, the requirement that all
input-to-output paths must be of the same length falls under
the assumption that both primary inputs and primary outputs
need path-balancing.

However, our ILP is versatile as it can be adapted to
different AQFP-technology-specific assumptions. For example,
we can remove the path-balancing requirement on primary
inputs by retaining the definitions of avl(n, ℓ) and req(n, ℓ)
from Section IV for nodes n ∈ I , i.e., the primary inputs.
Similarly, we can remove the path-balancing requirement on
primary outputs by retaining those definitions only in the
constraint avl(n,D + 1) − req(n,D) ≥ kn. Moreover, if
we need to also enforce that primary inputs need splitters
to support multiple fanouts, we can add constraints dictating
gn,0 = 1 and gn,ℓ = 0 for all n ∈ I and ℓ > 0. (In the ILP
for the general fanout-bounded setting with no fanout limit
on primary inputs, we simply omitted these constraints. This
allows the ILP solver to place as many copies of primary
inputs anywhere in the network, which is effectively equal to
assuming unbounded fanout capacity.)

In addition to supporting the different AQFP-specific as-
sumptions, we can also change the ILP to match the original
splitter/buffer insertion problem where duplicating gates is not
an option. To this end, we simply have to introduce a new
constraint that

∑
1≤ℓ≤D gn,ℓ = 1 for all gates g ∈ G.

B. Scalable Heuristic Approach

In the path-balanced setting, we need buffers not only to
support multiple fanouts, but also to ensure that all input-to-
output paths are of the same length. If we naively use the
same top-down approach from the general FBS for the path-
balanced setting, it can unnecessarily increase the area due to
path-balancing buffers. To see this, suppose that we have a gate
n whose arrival time is 1, but its only fanout is determined
to be in level 3 by our top-down algorithm. In this case,
the algorithm prefers to keep n in level 2 (as opposed to 1)
because the main idea of the algorithm from Section V was to
keep gates in the highest level possible to give sufficient room
for its fanins to have buffers. Now suppose that n’s fanins
have no other fanouts, in which case, we will need two path-
balancing buffers at n’s fanins. However, if we placed n in
level 1 instead, we could only use one path-balancing buffer
at n’s output. In general, the situation can be much worse: for
example, we could have a block of logic that has k1 outputs
and k2 inputs in place of n. If k1 < k2, moving the whole
logic block down by 1 level can save k2 − k1 buffers. On the
other hand, if k2 < k1, then the algorithm’s choice to keep
the logic block in the highest possible level is meaningful.

Taking such scenarios into account, for the path-balanced
setting, we start with a top-down approach similar to Section V
to determine initial gate/buffer counts in different levels (i.e.,
values for variables gn,ℓ and bn,ℓ), but we then perform an
additional optimization to modify these gate/buffer counts to
further reduce the area. To this end, we first identify (gate,
level)-pairs that may correspond to potential path-balancing

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3339440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

buffers. If all fanins of a gate are path-balancing buffers, we
can push the buffers towards the output of the gate. In general,
this can be done on blocks of logic whose inputs all correspond
to path-balancing buffers.

This kind of retiming techniques have already been con-
sidered in the past [16], [17], but they work on existing
AQFP netlists. Our proposed method is more general and
works on gate/buffer counts in each level, before constructing
the netlist, and hence it is able to capture more retiming
opportunities. To illustrate, consider the part of a netlist shown
in Fig. 5 (b), where we assume that splitter fanout capacity is
2 for the sake of simplicity. The existing retiming techniques
can optimize this by moving node a one level down to obtain
the configuration in Fig. 5 (c), saving one buffer in the process.
However, these algorithms fail to identify an optimization
opportunity in for the configuration in Fig. 5 (a) because one
of the fanins of node a is not a path-balancing buffer but
a splitter. Our approach, instead works on gate/buffer counts
in each level and hence is able to identify the optimization
opportunity in both scenarios. Namely, for each fanin x of
node a, we check if we have a potential path-balancing buffer
by checking

1) if we have x-equivalent buffers in the lower level,
2) and if we can isolate one path-balancing buffer (a buffer

with fanout one) from those.
To check the first condition for a fanin x of node a in level ℓ,
we check if bx,ℓ−1 > 0. For the second condition, we check
whether the remaining x-equivalent nodes in level ℓ − 1 can
still satisfy the requirement of remaining fanouts of x in level ℓ
after dedicating a single x-equivalent buffer to supply node a’s
fanin; namely, we check if avl(x, ℓ− 1)− fbuff ≥ req(x, ℓ)−
1. After optimizing the gate/buffer counts with this improved
retiming step, we construct an AQFP netlist using Algorithm 1.
Then we also run the state-of-the-art retiming from [17] on the
constructed circuit to further optimize buffer counts.

In addition to the retiming, our initial top-down heuristic
has some minor differences with respect to Section V. Namely,
when computing the arrival times for signals, if the originating
gate of a signal has more than one fanout, we assume a delay
of 2 (instead of 1) accounting for an additional splitter at
the output of that gate. This is an AQFP-specific setting: in
AQFP, the gates can only support one fanout, and if we always
assume a delay of 1 for a gate, the top-down algorithm can
end up excessively duplicating gates to meet this delay bound.
However, if a gate is in the critical path, has only two fanouts,
and if its fanins will have splitters added at their outputs (i.e.,
they have multiple fanouts), then it is likely that we may be
able to duplicate the gate with only a small additional cost.
So for such gates, we take the delay to be 1 when computing
the arrival time.

VII. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
from our ILP formulations and heuristic FBS algorithms for
both the general and path-balanced settings. All our experi-
ments were run on a MacBook Pro M1 with 10 cores of CPU,
16 cores of GPU, and 32 GB of RAM.

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

(a)

a b c

d

e

f

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

(b)

a b c

d

e

f

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

(c)
a

b c

d

e

f

Fig. 5. Two possibilities for a part of an AQFP netlist and their retimed
version.

Note that in all our experiments for the general FBS setting,
the benchmarks are preprocessed with a single round of resyn2
command in ABC [19], to do a fair comparison with prior
work [12]. No such preprocessing was done in experiments
for the path-balanced FBS setting.

A. Global Optimum for General Fanout-Bounded Synthesis

First, for a set of small benchmarks, we use the ILP to find
the global optimum solutions; Namely, using the minimum
possible circuit delay as the delay bound, we write the ILP
introduced in Section IV, and then solve it using the Gurobi
optimizer [36]. In the ILP formulation, we use the same setting
as [12] where we have fanout capacity 2 and unit-area for both
AND gates and buffers.

The results are shown in Table I where the first 8
benchmarks are from the EPFL logic synthesis benchmarks
suite [14] and the rest of the benchmarks are a subset of those
used in [15].

B. Heuristics for General Fanout-Bounded Synthesis

Next, we evaluate our top-down FBS approaches on the
benchmarks of [15] and on EPFL benchmarks [14].

For benchmarks of [15], we present the results in Table II.
As we see, our initial top-down approach already achieves the
optimum on several benchmarks. Our top-down approach with
over-duplication performs even better and achieves results that
are optimum or closer to optimum on some additional bench-
marks. We recall that both our approaches do not increase the
number of logic levels of the input network (computed with
no restrictions on the fanout capacity of gates).

For EPFL benchmarks, we present the results in Table III
together with the results of [12] for a comparison. We remark

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3339440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



11

TABLE I
THE GLOBAL OPTIMUMS FOR GENERAL FANOUT-BOUNDED SYNTHESIS.

Input network Output network

Benchmark And
gates Levels And

gates Buffers
Total
gates

(Area)
Levels Time(s)

adder 1019 255 1021 126 1147 255 8538.26
bar 3141 12 3901 0 3901 12 242.97
cavlc 662 16 733 13 746 16 12.14
ctrl 108 8 123 3 126 8 0.24
dec 304 3 768 0 768 3 0.21
i2c 1162 15 1255 113 1368 15 59.27
int2float 214 15 224 7 231 15 2.76
router 177 19 180 5 185 19 1.52

adder1 7 4 7 0 7 4 0.01
adder8 77 17 78 7 85 17 0.37
mult8 439 35 447 13 460 35 1129.73
counter16 49 13 55 4 59 13 0.10
counter32 125 19 139 11 150 19 2.55
counter64 285 25 311 28 339 25 11.71
counter128 613 31 650 76 726 31 67.21
c17 6 3 6 0 6 3 0.03
c432 121 26 136 6 142 26 1.92
c499 387 18 410 42 452 18 8.15
c880 306 27 322 28 350 27 16.84
c1355 388 17 412 44 456 17 3.92
c1908 286 21 318 32 350 21 6.31
c2670 169 9 178 9 187 9 0.33
c3540 789 32 905 127 1032 32 3521.49
c5315 1294 26 1403 118 1521 26 553.95
c7552 1385 33 1562 192 1754 33 1335.10
sorter32 480 15 512 0 512 15 4.31
sorter48 984 25 984 64 1048 25 68.47

that the measure of quality of results (QoR) used in [12]
is slightly different, and if we were to use their QoR mea-
sure on our results, our approach would score even higher.
Namely, the QoR measure used in [12] is size(G)/size(G′)+
depth(G)/depth(G′) where G is the original input network
and G′ is the fanout-bounded version produced by the algo-
rithm. In our approach, the depths of G and G′ are always
equal, whereas in [12], depth(G) ≤ depth(G′) with strict
inequality for some benchmarks (e.g., see the results for
benchmark “sqrt”).

In our top-down approach without over-duplication, the
average improvement over all standard EPFL benchmarks is
10.93%. However, for the benchmark “bar”, our algorithm’s
result is 12.2% worse. Remarkably, combining the top-down
algorithm with the over-duplication step from Section V-A
achieves the same results as [12] for that benchmark, while in-
creasing the average improvement over all EPFL benchmarks
to 11.82%. Notably, our method results in fanout-bounded
circuits that are much closer to the optimum results on several
benchmarks (e.g., adder, cavlc, int2float, and router).

C. Global Optimum Splitter/Buffer Insertion for AQFP

In this section, we present the results of our ILP-based
global optimization algorithm for the FBS in the path-balanced
setting targeting the AQFP technology. To this end, we set
fbuff = 4 and fgate = 1 to capture the fanout constraints
commonly used in prior work on the AQFP technology. We
use the number of JJs as the area cost, and hence we set

TABLE II
RESULTS OF THE TOP-DOWN FANOUT-BOUNDED SYNTHESIS ON

BENCHMARKS OF [15].

Top-down approach Top-down approach with
over-duplication

Benchmark And
gates Buffers

Total
gates

(Area)

And
gates Buffers

Total
gates

(Area)

adder1 7 0 7 7 0 7
adder8 77 8 85 77 8 85
mult8 441 19 460 441 19 460
counter16 52 7 59 52 7 59
counter32 130 20 150 130 20 150
counter64 298 41 339 298 41 339
counter128 638 88 726 638 88 726
c17 6 0 6 6 0 6
c432 132 13 145 134 9 143
c499 409 44 453 410 42 452
c880 306 47 353 306 47 353
c1355 412 44 456 414 42 456
c1908 314 44 358 314 44 358
c2670 172 18 190 172 18 190
c3540 819 256 1075 825 237 1062
c5315 1311 288 1599 1378 153 1531
c6288 1903 7 1910 1903 7 1910
c7552 1393 420 1813 1422 364 1786
sorter32 512 0 512 512 0 512
sorter48 984 64 1048 984 64 1048
alu32 1512 434 1946 1513 432 1945

cgate = 6 and cbuff = 2. Recall that, according to the ILP
formulation, the global optimum means the minimum area for
a fixed depth.

In our experiments, we consider two scenarios: one without
gate duplications and one with gate duplications. To the best
of our knowledge, no prior work on AQFP splitter/buffer
insertion considers gate duplications.

In Table IV, we present our optimum results on the same
benchmarks used by [15] for the case with no gate duplicates
and compare them with the results of four prior work [15]–[18]
in the same setting. In this experiment, we use the minimum
achievable delay without duplicating gates as the target depth
bound. In the table, the optimum area for the target depth is
shown in blue. The term “opt” in the last columns means that
the ILP solver was able to find the optimum solution. On the
other hand, the term “tle” (time-limit-exceeded) means that the
solver failed to find the optimum solution within a given time
limit of 300 seconds, so the presented results for ”tle” rows are
based on a tentative feasible solution found by the solver. Note
that having the global optimum results in this setting allows
for an objective evaluation of other heuristic algorithms.

In Table V, we present the optimum results obtained consid-
ering different target logic depths on the same benchmarks for
the setting with gate duplicates, which can be used to evaluate
future algorithms in this setting. To obtain these results,
we start with the minimum delay achievable without gate
duplications as the target delay, and proceed with gradually
decreasing the target delay. In the table, for each benchmark,
the minimum observed is shown in blue where the ties are
broken using the overall delay. Note that these results serve as
a proof-of-concept that allowing gates duplications can help
improve both the area and delay in AQFP synthesis.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3339440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



12

TABLE III
RESULTS OF THE TOP-DOWN FANOUT-BOUNDED SYNTHESIS ALGORITHM ON EPFL BENCHMARKS.

Input network Output of [12] Output (top-down approach) Output (top-down approach with over-duplication)

Benchmark And gates Levels Total gates
(Area) Levels And gates Buffers Total gates

(Area)
Area

Impr.%
Time

(s) And gates Buffers Total gates
(Area)

Area
Impr.%

Time
(s)

adder 1019 255 1273 255 1020 128 1148 9.82 0.00 1020 128 1148 9.82 0.08
arbiter 11839 87 22911 87 11839 10176 22015 3.91 0.01 11839 10176 22015 3.91 0.04
bar 3141 12 3901 12 3425 952 4377 -12.20 0.00 3901 0 3901 0.00 0.01
cavlc 662 16 840 16 663 128 791 5.83 0.00 677 100 777 7.50 0.00
ctrl 108 8 147 8 108 26 134 8.84 0.00 114 14 128 12.93 0.00
dec 304 3 768 3 768 0 768 0.00 0.00 768 0 768 0.00 0.00
div 40772 4361 79413 4365 41087 12126 53213 32.99 0.04 41131 12038 53169 33.05 1.72
hyp 211330 24794 332744 24817 211458 45199 256657 22.87 0.20 212237 43641 255878 23.10 41.01
i2c 1162 15 1530 15 1162 264 1426 6.80 0.00 1171 247 1418 7.32 0.01
int2float 214 15 251 15 214 23 237 5.58 0.00 216 19 235 6.37 0.00
log2 29370 376 56617 376 29893 15018 44911 20.68 0.03 29857 15045 44902 20.69 1.08
max 2834 204 4157 206 3094 997 4091 1.59 0.00 3096 993 4089 1.64 0.09
mem ctrl 45614 110 63788 110 45662 15326 60988 4.39 0.04 46140 14642 60782 4.71 2.18
multiplier 24556 262 31930 262 24567 7011 31578 1.10 0.02 24618 6909 31527 1.26 0.90
priority 676 203 795 203 676 59 735 7.55 0.00 676 59 735 7.55 0.05
router 177 19 222 19 177 8 185 16.67 0.00 177 8 185 16.67 0.00
sin 5039 177 10329 178 5415 2747 8162 20.98 0.01 5431 2677 8108 21.50 0.13
sqrt 19437 4968 32141 5449 20152 9432 29584 7.96 0.02 20152 9432 29584 7.96 0.65
square 16623 248 27556 248 16625 1533 18158 34.11 0.01 16720 1343 18063 34.45 1.44
voter 9756 57 13158 58 9810 1185 10995 16.44 0.01 9810 1185 10995 16.44 0.06
sixteen 11976864 99 24461292 99 11976864 9510308 21487172 12.16 23.61 12084231 9443891 21528122 11.99 527.31
twenty 15317374 86 31481612 86 15317374 12493285 27810659 11.66 29.84 15460597 12411371 27871968 11.47 520.78
twentythree 17168790 94 35358029 94 17168790 14056097 31224887 11.69 32.97 17316727 13968865 31285592 11.52 655.45

Average 10.93 11.82

D. Heuristic Splitter/Buffer Insertion for AQFP

Finally, we run our scalable heuristic algorithm for path-
balanced FBS on the same benchmarks used by [15] and
compare our results with the latest scalable algorithm for
AQFP splitter/buffer insertion [17] in Table VI. For all bench-
marks, our approach achieves the same or significantly better
delays as compared to the optimum delay achieved by the
method in [17]. For some benchmarks with significant delay

improvements, there is a considerable area overhead which is
likely caused by duplicated gates. However, some other bench-
marks with higher delay improvements show considerable area
improvements as well, which can be attributed to the decrease
in path-balancing buffers. The average delay improvement of
our approach is 8.76% while the average area improvement
is 0.5%. Notably, our heuristic algorithm achieves more than
17% delay improvements on several benchmarks.

TABLE IV
RESULTS OF AQFP SPLITTER/BUFFER INSERTION WITHOUT GATE DUPLICATION.

Input network ICCAD’21 [15] DAC’22 [16] ASP-DAC’23 [17] ASP-DAC’23 [18] Global optimum

Benchmark Area Levels #B/S #JJ Levels #B/S #JJ Levels #B/S #JJ Levels #B/S #JJ Levels #B/S #JJ Levels opt/tle

adder1 7 4 16 74 8 16 74 8 16 74 8 - - - 16 74 8 opt
adder8 77 17 371 1204 33 371 1204 33 372 1206 33 - - - 371 1204 33 opt
mult8 439 35 1833 6300 70 1869 6372 71 1688 6010 70 1681 5996 70 1724 6082 70 tle
counter16 29 9 82 338 17 65 304 17 65 304 17 66 306 17 65 304 17 opt
counter32 82 13 189 912 23 155 802 23 154 800 23 156 804 23 154 800 23 opt
counter64 195 17 419 2134 30 352 1874 30 347 1864 30 351 1872 30 347 1864 30 opt
counter128 428 22 895 4652 38 760 4088 38 747 4062 38 755 4078 38 747 4062 38 opt
c17 6 3 12 60 5 12 60 5 12 60 5 - - - 12 60 5 opt
c432 121 26 837 2406 37 874 2474 38 839 2404 37 829 2384 37 829 2384 37 opt
c499 387 18 1251 4858 30 1275 4872 31 1173 4668 29 1173 4668 29 1173 4668 29 opt
c880 306 27 1723 5296 40 1703 5242 41 1511 4858 40 1536 4908 40 - - - tle
c1355 389 18 1216 4784 29 1290 4914 31 1184 4702 29 1186 4706 29 1178 4690 29 opt
c1908 289 21 1505 4810 35 1298 4330 35 1236 4206 34 1253 4240 34 1232 4198 34 opt
c2670 368 21 2055 7392 27 2132 6472 30 1932 6072 28 1869 5954 28 1794 5796 28 opt
c3540 794 32 2395 9610 53 2266 9296 55 1972 8708 52 1963 8690 52 1926 8516 52 tle
c5315 1302 26 6447 20854 41 6026 19864 42 5646 19104 40 5505 18942 40 6260 20332 42 tle
c6288 1870 89 9297 29814 179 9893 31006 180 9009 29238 179 8832 28884 179 - - - tle
c7552 1394 33 8342 25140 59 8759 25882 66 7505 23374 56 6768 21908 58 - - - tle
sorter32 480 15 480 3840 30 480 3840 30 480 3840 30 - - - 480 3840 30 opt
sorter48 880 20 880 7040 35 880 7040 35 880 7040 35 - - - 880 7040 35 opt
alu32 1513 100 17178 43574 170 14655 38388 171 13837 36752 169 13976 37030 169 - - - tle

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3339440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



13

TABLE V
RESULTS OF AQFP SPLITTER/BUFFER INSERTION WITH GATE

DUPLICATION.

Benchmark Gates Buffers #JJ Levels Time (s) opt/tle

adder1 7 16 74 8 0.04 opt
adder1 8 13 74 7 0.03 opt
adder1 9 10 74 6 0.03 opt

adder8 82 352 1196 33 305.20 tle
adder8 81 347 1180 32 304.82 tle
adder8 81 337 1160 31 304.61 tle
adder8 81 328 1142 30 304.28 tle
adder8 81 320 1126 29 304.01 tle

counter16 29 65 304 17 21.47 opt
counter16 31 57 300 16 17.46 opt
counter16 32 53 298 15 6.48 opt
counter16 34 47 298 14 1.28 opt
counter16 36 45 306 13 0.95 opt

counter32 82 154 800 23 303.32 tle
counter32 84 149 802 22 303.12 tle
counter32 88 133 794 21 302.83 tle
counter32 92 121 794 20 302.58 tle
counter32 99 116 826 19 302.34 tle

counter64 195 347 1864 30 328.99 tle
counter64 198 335 1858 29 327.17 tle
counter64 203 323 1864 28 325.26 tle
counter64 209 299 1852 27 323.59 tle
counter64 225 284 1918 26 321.81 tle

counter128 431 742 4070 38 515.67 tle
counter128 439 730 4094 37 505.04 tle
counter128 440 706 4052 36 494.14 tle
counter128 455 662 4054 35 483.08 tle
counter128 458 651 4050 34 474.59 tle

c17 6 12 60 5 0.04 opt
c17 7 8 58 4 0.02 opt

c432 122 822 2376 37 316.69 tle
c432 122 793 2318 36 315.87 tle
c432 123 784 2306 35 314.97 tle
c432 130 775 2330 34 314.12 tle
c432 135 757 2324 33 313.41 tle

c499 396 1123 4622 29 386.41 tle
c499 398 1086 4560 28 380.61 tle
c499 400 1051 4502 27 375.08 tle
c499 403 1007 4432 26 369.49 tle
c499 444 962 4588 25 364.10 tle

c2670 370 1825 5870 28 398.12 tle
c2670 372 1793 5818 27 391.00 tle
c2670 378 1749 5766 26 384.23 tle
c2670 382 1699 5690 25 378.11 tle

sorter32 566 481 4358 30 435.07 tle
sorter32 534 450 4104 29 426.82 tle
sorter32 553 417 4152 28 420.74 tle
sorter32 576 384 4224 27 410.68 tle
sorter32 608 352 4352 26 402.67 tle

sorter48 896 896 7168 35 913.68 tle
sorter48 896 848 7072 34 875.92 tle
sorter48 944 816 7296 33 841.85 tle
sorter48 960 756 7272 32 807.86 tle
sorter48 1008 704 7456 31 778.18 tle

VIII. CONCLUSION

In this work, we took a rigorous approach for the FBS of
circuits in the unit-delay model. To this end, we formulated the
problem of FBS for fixed target delay as an ILP and obtained
the global optimum solutions for a number of benchmarks.

TABLE VI
RESULTS OF SCALABLE HEURISTIC APPROACH FOR AQFP.

Benchmark Gates Buffers #JJ LevelsTime (s) Area
Impr. %

Delay
Impr.%

adder1 9 10 74 6 0 0.00 25.00
adder8 84 285 1074 26 0.01 10.95 21.21
mult8 469 1543 5900 58 0.06 1.83 17.14
counter16 29 65 304 17 0 0.00 0.00
counter32 82 154 800 23 0.01 0.00 0.00
counter64 195 347 1864 30 0.01 0.00 0.00
counter128 428 747 4062 38 0.03 0.00 0.00
c17 6 12 60 5 0 0.00 0.00
c432 139 821 2476 36 0.02 -3.00 2.70
c499 391 1131 4608 28 0.04 1.29 3.45
c880 306 1545 4926 40 0.08 -1.40 0.00
c1355 392 1151 4654 28 0.03 1.02 3.45
c1908 293 1176 4110 32 0.05 2.28 5.88
c2670 371 2172 6570 27 0.09 -8.20 3.57
c3540 797 1930 8642 50 0.15 0.76 3.85
c5315 1302 5710 19232 40 0.23 -0.67 0.00
c6288 1908 8468 28384 163 0.31 2.92 8.94
c7552 1400 9163 26726 54 0.61 -14.34 3.57
sorter32 704 256 4736 23 0.01 -23.33 23.33
sorter48 912 816 7104 33 0.04 -0.91 5.71
alu32 1543 11459 32176 139 0.65 12.45 17.75

Weighted average compared to [17] 0.51 8.76

We then showed how to find a feasible solution to the ILP
using a scalable top-down approach while mitigating some
shortcomings of earlier work. As compared to the known best
results for this problem, our algorithm produced an 11.82%
improved area while achieving matching or better delays.

As we see in Section VII, the over-duplication heuristic with
a local cost function improved the area reduction. It will be
interesting to find a more elaborate but efficiently computable
cost function for evaluating heuristic choices such as the one
we introduced in Section V-A. We also believe that a deeper
analysis of the benchmark “bar” might hint at what kind of
real-world circuit patterns benefit more from such heuristics.

We extended both our optimum and heuristic approaches
to the setting with path-balancing constraints and demon-
strated their effectiveness considering the splitter/buffer inser-
tion problem in the AQFP technology. Our globally optimum
results considering different target depths for the setting with
gate duplications show that there exists a large gap in existing
AQFP splitter/buffer insertion techniques. Remarkably, our
scalable heuristic algorithm for this setting was able to exploit
many optimization opportunities by considering the duplica-
tion of gates on critical paths. In particular, several benchmarks
showed over 17% delay improvements under our method
including two benchmarks (adder8, alu32) that also showed
over 10% area improvements. However, comparing the results
of our heuristic with the globally optimum solutions, it is clear
that there are many opportunities for further improvements.

Considering these promising findings, we envision that
FBS will have a bigger role to play in logic synthesis for
emerging technologies with unconventional design constraints,
and we hope that our work will motivate more research in this
direction that would ultimately lead to better heuristics. The
globally optimum solutions presented in this work can serve
as the ground truth for evaluating such heuristics.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3339440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



14

REFERENCES

[1] R. Murgai, “On the Global Fanout Optimization Problem,” in Int’l Conf.
on Computer-Aided Design, 1999, p. 511–515.

[2] A. Srivastava, R. Kastner, and M. Sarrafzadeh, “Timing driven gate du-
plication: complexity issues and algorithms,” in Int’l Conf. on Computer-
Aided Design, 2000, pp. 447–450.

[3] D. Baneres, J. Cortadella, and M. Kishinevsky, “Layout-Aware Gate
Duplication and Buffer Insertion,” in Design, Automation & Test in
Europe Conf. & Exhibit., 2007, pp. 1–6.

[4] Z. Li, D. A. Papa, C. J. Alpert, S. Hu, W. Shi, C. Sze, and Y. Zhou,
“Ultra-Fast Interconnect Driven Cell Cloning for Minimizing Critical
Path Delay,” in Proc. 19th Int’l Symposium on Physical Design, New
York, NY, USA, 2010, p. 75–82.

[5] D. A. Papa, I. L. Markov, D. A. Papa, and I. L. Markov, “Physically-
driven logic restructuring,” Multi-Objective Optimization in Physical
Synthesis of Integrated Circuits, pp. 83–103, 2013.

[6] J.-L. Tsai, L. Zhang, and C. C.-P. Chen, “Statistical timing analy-
sis driven post-silicon-tunable clock-tree synthesis,” in Int’l Conf. on
Computer-Aided Design, 2005, pp. 575–581.

[7] N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adi-
abatic quantum flux parametron as an ultra-low-power logic device,”
Superconductor Science and Technology, vol. 26, no. 3, 2013.

[8] A. L. Braun and D. C. Harms, “RQL majority gates, and gates, and or
gates,” Sep. 25 2018, US Patent 10,084,454.

[9] K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: a new
Josephson-junction technology for sub-terahertz-clock-frequency digital
systems,” IEEE Trans. on Applied Superconductivity, vol. 1, no. 1, pp.
3–28, 1991.

[10] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum
Cellular Automata,” Nanotechnology, vol. 4, no. 1, p. 49, 1993.

[11] V. Calayir, D. E. Nikonov, S. Manipatruni, and I. A. Young, “Static and
Clocked Spintronic Circuit Design and Simulation With Performance
Analysis Relative to CMOS,” IEEE Trans. on Circuits and Systems I:
Regular Papers, vol. 61, no. 2, pp. 393–406, 2014.

[12] H.-T. Zhang and J.-H. R. Jiang, “SFO: A Scalable Approach to Fanout-
Bounded Logic Synthesis for Emerging Technologies,” in Design Au-
tomation Conference, 2020, pp. 1–6.

[13] D. S. Marakkalage and G. De Micheli, “Fanout-Bounded Logic Syn-
thesis for Emerging Technologies - A Top-Down Approach,” in Design,
Automation & Test in Europe Conf. & Exhibit., 2023, pp. 1–6.

[14] L. Amarù, P.-E. Gaillardon, and G. De Micheli, “The EPFL Combina-
tional Benchmark Suite,” in Proc. IWLS, 2015.

[15] C.-Y. Huang, Y.-C. Chang, M.-J. Tsai, and T.-Y. Ho, “An Optimal
Algorithm for Splitter and Buffer Insertion in Adiabatic Quantum-Flux-
Parametron Circuits,” in Int’l Conf. on Computer-Aided Design, 2021,
p. 1–8.

[16] S.-Y. Lee, H. Riener, and G. De Micheli, “Beyond Local Optimality of
Buffer and Splitter Insertion for AQFP Circuits,” in Design Automation
Conference, 2022, p. 445–450.

[17] A. T. Calvino and G. De Micheli, “Depth-Optimal Buffer and Splitter
Insertion and Optimization in AQFP Circuits,” in Asia and South Pacific
Design Automation Conference, 2023, p. 152–158.

[18] R. Fu, M. Wang, Y. Kan, N. Yoshikawa, T.-Y. Ho, and O. Chen,
“A Global Optimization Algorithm for Buffer and Splitter Insertion in
Adiabatic Quantum-Flux-Parametron Circuits,” in Asia and South Pacific
Design Automation Conference, 2023, p. 769–774.

[19] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-Strength
Verification Tool,” in Computer Aided Verification, 2010, pp. 24–40.

[20] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, S.-Y. Lee, A. T. Calvino, and D. S. Marakkalage, “The
EPFL logic synthesis libraries,” arXiv preprint arXiv:1805.05121, 2018.

[21] S. B. Akers, “Synthesis of combinational logic using three-input majority
gates,” in 3rd Annual Symposium on Switching Circuit Theory and
Logical Design, 1962, pp. 149–158.

[22] H. S. Miller and R. O. Winder, “Majority-Logic Synthesis by Geometric
Methods,” IRE Trans. on Electronic Computers, vol. EC-11, no. 1, pp.
89–90, 1962.

[23] S. Amarel, G. Cooke, and R. O. Winder, “Majority Gate Networks,”
IEEE Trans. on Electronic Computers, vol. EC-13, no. 1, pp. 4–13,
1964.

[24] L. Amarú, P. Gaillardon, and G. De Micheli, “Majority-Inverter Graph:
A New Paradigm for Logic Optimization,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 35, no. 5, pp. 806–819, 2016.

[25] L. Amarù, P. Gaillardon, and G. De Micheli, “Majority-Inverter Graph:
A novel data-structure and algorithms for efficient logic optimization,”
in Design Automation Conference, 2014, pp. 1–6.

[26] G. L. Smith, R. J. Bahnsen, and H. Halliwell, “Boolean comparison of
hardware and flowcharts,” IBM Journal of Research and Development,
vol. 26, no. 1, pp. 106–116, 1982.

[27] D. S. Holmes, A. L. Ripple, and M. A. Manheimer, “Energy-efficient
superconducting computing—Power budgets and requirements,” IEEE
Trans. on Applied Superconductivity, vol. 23, no. 3, 2013.

[28] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-
parametron cell library adopting minimalist design,” Journal of Applied
Physics, vol. 117, no. 17, 2015.

[29] R. Cai, O. Chen, A. Ren, N. Liu, C. Ding, N. Yoshikawa, and Y. Wang,
“A majority logic synthesis framework for adiabatic quantum-flux-
parametron superconducting circuits,” in ACM Great Lakes Symposium
on VLSI, 2019, pp. 189–194.

[30] R. Cai, O. Chen, A. Ren, N. Liu, N. Yoshikawa, and Y. Wang, “A buffer
and splitter insertion framework for adiabatic quantum-flux-parametron
superconducting circuits,” in Int’l Conf. on Computer Design, 2019, pp.
429–436.

[31] R. Saito, C. L. Ayala, and N. Yoshikawa, “Buffer Reduction Via N-Phase
Clocking in Adiabatic Quantum-Flux-Parametron Benchmark Circuits,”
IEEE Trans. on Applied Superconductivity, vol. 31, no. 6, pp. 1–8, 2021.

[32] R. Saito, C. L. Ayala, O. Chen, T. Tanaka, T. Tamura, and N. Yoshikawa,
“Logic Synthesis of Sequential Logic Circuits for Adiabatic Quantum-
Flux-Parametron Logic,” IEEE Trans. on Applied Superconductivity,
vol. 31, no. 5, pp. 1–5, 2021.

[33] H. J. Hoover, M. M. Klawe, and N. J. Pippenger, “Bounding fan-out
in logical networks,” Journal of the ACM (JACM), vol. 31, no. 1, pp.
13–18, 1984.

[34] M. Golumbic, “Combinatorial Merging,” IEEE Trans. on Computers,
vol. 25, no. 11, pp. 1164–1167, 1976.

[35] D. A. Huffman, “A Method for the Construction of Minimum-
Redundancy Codes,” Proc. IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[36] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2022. [Online]. Available: https://www.gurobi.com

Dewmini Sudara Marakkalage is a Ph.D. stu-
dent at the Integrated Systems Laboratory, EPFL,
Lausanne, Switzerland. She received a B.Sc. in
Engineering from the Department of Electronic
and Telecommunication Engineering, University of
Moratuwa, Sri Lanka, in 2016 and a M.Sc. in
Computer Science from the School of Computer and
Communication Sciences, EPFL, Lausanne, Switzer-
land, in 2020. Her research interests include logic
synthesis and design automation for emerging tech-
nologies.

Giovanni De Micheli is a research scientist in elec-
tronics and computer science. He is credited for the
invention of the Network on Chip design automation
paradigm and for the creation of algorithms and de-
sign tools for Electronic Design Automation (EDA).
He is a Professor and Director of the Integrated Sys-
tems Laboratory at EPFL Lausanne, Switzerland.

Prof. De Micheli is a Fellow of ACM, AAAS,
and IEEE, a member of the Academia Europaea, and
an International Honorary member of the American
Academy of Arts and Sciences. His current research

interests include several aspects of design technologies for integrated circuits
and systems, such as synthesis for emerging technologies. He is the author of
Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994, co-author
and/or co-editor of ten other books, and of over 900 technical publications.
His citation h-index is above 100 according to Google Scholar. He is a
member of the Scientific Advisory Board of IMEC (Leuven, Belgium) and
STMicroelectronics.

Prof. De Micheli is the recipient of the 2022 ESDA-IEEE/CEDA Phil
Kaufman Award, the 2019 ACM/SIGDA Pioneering Achievement Award, and
several other awards.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3339440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.gurobi.com

	Introduction
	Background
	And-Inverter Graphs / Majority-Inverter Graphs
	Static Timing Analysis
	Node Equivalence
	AQFP Logic Circuits

	Related Work
	General Fanout-Bounded Synthesis
	Path-Balanced Fanout-Bounded Synthesis

	Globally Optimum General Fanout-Bounded Synthesis
	Variables
	Constraints


	Top-Down Heuristic Approach for General Fanout-Bounded Synthesis Problem
	Improved Top-Down Approach with Over-Duplication

	Path-Balanced Fanout-bounded Synthesis
	ILP Formulation for the Global Optimum
	Scalable Heuristic Approach

	Experimental Results
	Global Optimum for General Fanout-Bounded Synthesis
	Heuristics for General Fanout-Bounded Synthesis
	Global Optimum Splitter/Buffer Insertion for AQFP
	Heuristic Splitter/Buffer Insertion for AQFP

	Conclusion
	References
	Biographies
	Dewmini Sudara Marakkalage
	Giovanni De Micheli


