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Abstract: Garbled circuit (GC) is one of the few promising protocols to realize general-purpose
secure computation. The target computation is represented by a Boolean circuit that is subsequently
transformed into a network of encrypted tables for execution. The need for distributing GCs among
parties, however, requires excessive data communication, called garbling cost, which bottlenecks
system performance. Due to the zero garbling cost of XOR operations, existing works reduce garbling
cost by representing the target computation as the XOR-AND graph (XAG) with minimal structural
multiplicative complexity (MC). Starting with a thorough study of the cipher-text efficiency of
different types of logic primitives, for the first time, we propose XOR-OneHot graph (X1G) as a
suitable logic representation for the generation of low-cost GCs. Our contribution includes (a) an
exact algorithm to synthesize garbling-cost-optimal X1G implementations for small-scale functions
and (b) a set of logic optimization algorithms customized for X1Gs, which together form a robust
optimization flow that delivers high-quality X1Gs for practical functions. The effectiveness of the
proposals is evidenced by comprehensive evaluations: compared with the state of the art, 7.34%,
26.14%, 13.51%, and 4.34% reductions in garbling costs are achieved on average for the involved
benchmark suites, respectively, with reasonable runtime overheads.

Keywords: garbled circuits; logic synthesis; secure multiparty computation

1. Introduction

Secure computation, also known as secure multiparty computation (MPC), refers to
the process of computing a joint function on private inputs from multiple parties in a
way that ensures the privacy and security of the inputs. This feature enables parties to
collaborate in a privacy-preserving way and provides an ideal solution to many scenarios
where privacy and security are paramount, such as financial transactionsSt. Alban-Anlage
66, CH-4052 Basel, Switzerland [1] and voting systems [2].

Besides the well-known scenarios mentioned above, there is an increasing demand for
privacy-preserving applications. For instance, in secure neural network inference, model
providers avoid revealing their meticulously trained network models, and the clients avoid
leaking their sensitive input data [3]. An increased interest in secure medical data sharing
is being witnessed as well [4].

However, realizing general-purpose MPC is not easy. Among the few candidates in
the literature, garbled circuit (GC) is a promising choice. First proposed by Andrew Yao
in 1986 [5], GC is a cryptographic technique with a constant round complexity. GC offers
several advantages over other competitors: compared with fully homomorphic encryption
(FHE) [6], GC is free from prohibitive computational overhead and can be executed much
faster; in comparison with secret sharing [7], GC protects the privacy of intermediate values,
preventing information about private inputs from being revealed by intermediate results.

Meanwhile, this powerful technique also has its limitations. In this protocol, the
target computation is represented by a Boolean circuit and subsequently transformed into
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a GC—essentially a network of encrypted tables—for execution. The requirement that
the encrypted tables shall be transmitted among parties results in an excessive amount of
data communication. Considering that modern application scenarios are typically large-
scale and usually have low latency and high energy efficiency requirements, garbling cost
becomes a major concern.

To make the protocol more efficient, researchers have proposed various solutions,
which generally fall into two categories. One focuses on proposing better garbling schemes,
because a smarter way to garble each logic gate can reduce the number of cipher texts
in each encrypted table. To name a few, Free-XOR points out that, by making use of the
algebraic property of XOR operations, garbling XOR gates can be free from resulting in any
encrypted tables [8]. Half-gate shows that any two-input nonlinear logic operation, such as
AND2, can be garbled using two cipher texts, i.e., a two-entry encrypted table [9]. Garbling
gadget proposes that the garbling cost of any m-input symmetric logic gate is no more
than m, suggesting that large-fanin-sized logic gates might be more garbling-cost-efficient
nonlinearity providers than AND2 [10].

The other technical direction to which this work belongs is to optimally synthesize
the Boolean circuit that implements the target computation. Since XOR gates and inverters
are free of garbling cost (by adopting the free-XOR scheme), this is widely regarded as a
multiplicative complexity (MC) reduction problem: implement the target Boolean function
over the basis of {AND, XOR, NOT}, i.e., as an XOR-AND graph (XAG), then minimize
the number of two-input ANDs (AND2s) in the XAG through manipulating logic. Great
success has been achieved: Both Songhori et al. and Riazi et al. base their works on
establishing a customized library and exploiting standard logic synthesis tools to conduct
library binding [11,12]; Testa et al. create a logic synthesis toolbox, which leverages existing
logic optimization techniques in a hybrid manner [13]; Liu et al. focuses on detecting
the ANDs in a network that can be replaced by XNORs without changing the network’s
functionality [14].

For the first time, we raise the following question: “Is there a kind of logic representa-
tion more cipher-text-efficient than XAGs?” Aiming at finding garbling-cost-efficient logic
primitives, our exploration started with a systematic study of the properties of three-input
symmetric logic gates. Noticing that OneHots, whose truth table is #16 (in this paper, truth
tables are represented in hexadecimal as a bit-string by default, and the most significant
bit is on the left-hand side), can provide nonlinearity with more cipher-text efficiency than
AND2s, a new logic representation, XOR-OneHot graph (X1G), is proposed (this manuscript
is an extension and summary of the authors’ (Yu, M., De Micheli, G.) previous works [15,16].
This work provides more detailed explanations of our techniques and involves a newly
proposed logic optimization flow for X1Gs, which consists of three X1G optimization
algorithms proposed for the first time). To unleash the efficiency of OneHots, powerful and
agile logic optimization algorithms are elaborated, which together make up a customized
optimization flow for X1Gs. All our proposed Boolean techniques are developed on top
of the most advanced garbling schemes, which distinguishes this work from any existing
effort made by the logic synthesis community.

This paper is organized as follows. Sections 2 and 3 provide the preliminaries, re-
spectively, for the aspects of cryptographic protocol and logic synthesis. In Section 4, the
cipher-text efficiency of different logic primitives in providing nonlinearity is analyzed;
as a result, X1G is proposed as an ideal logic representation for low-cost GC generation.
Based on studying the properties of OneHot operations, a mapping algorithm that bridges
existing research on MC reduction and the new proposal of adopting X1Gs are proposed in
Section 5. In Section 6, we propose a novelly formulated exact synthesis algorithm that can
agilely synthesize optimal X1Gs for small-scale Boolean functions. By exploiting the exact
synthesis algorithm, along with the Boolean function classification technique, a database of
garbling cost-optimal X1G implementations for six-variable Boolean functions is generated.
In Section 7, several heuristic logic optimization algorithms tailored for X1Gs are dedicated,
which form an optimization flow that offers high-quality X1G implementations for practical
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functions. Experimental results on evaluating the performance of (a) the exact synthesis
algorithm and (b) the logic optimization flow are presented in Section 8. In Section 9, we
discuss the potential influence of the runtime overhead of logic synthesis on system perfor-
mance, which highlights the prospect of X1G-optimization-based low-cost GC generation
techniques. Section 10 concludes this paper.

2. Garbled Circuits
2.1. The GC Protocol

The concept of GC was first proposed by Yao as a solution to secure two-party com-
putation (2PC) [5] and was later generalized to an MPC protocol [17]. We introduce its
2PC version for clarity, which is also the core of the MPC variant. Generally, we adopt the
formalization provided in [18].

Two parties, namely Alice and Bob, would like to rely on GC to collaborate on comput-
ing a function f without revealing their private inputs to each other. They are supposed to,
respectively, play the roles of garbler, who is in charge of generating the GC, and evaluator,
who evaluates the generated GC. Without loss of generality, we assume that Alice is the
garbler and Bob is the evaluator.

The execution of the protocol can be split into 5 steps:

1. Boolean circuit synthesis. Starting from a target computation, commonly described in
high-level languages like C++ or Python, it is required that Alice generates a Boolean
circuit whose function f (·): Bm → Bn implements the computation.

2. GC generation. With a parameter l ∈ N indicating the desired security level, for each
wire in the circuit, Alice selects an encoding function En(·): B→ Bl that maps the two
potential binary values, 0 and 1, to two l-bit labels. For example, the label A that cor-
responds to Alice’s private input a is created following A = En(a). Correspondingly,
for each logic gate in the circuit, an encrypted table is created based on its truth table;
each entry of the table is a cipher text created by encrypting the output label using the
input labels. In this way, a GC F, which is essentially a network of encrypted tables, is
generated by Alice on top of the Boolean circuit.

3. GC transmission. Alice sends Bob the GC F, the label corresponding to her inputs A,
and a set of labels B that consists of all the potential labels for Bob’s private input. By
exploiting oblivious transfer (OT) as the moderator, among the labels in B, Bob only
learns B, the one that corresponds to his private input b.

4. GC evaluation. Bob evaluates the received GC F and obtains the garbled output Y
following Y = F(X), where X = {A, B}.

5. Result sharing. Alice announces the decoding function for the primary output wire
De(·): Bl → B, while Bob shares the evaluation result Y. These two resources of
information jointly determine the computation result y, as y = De(Y).

2.2. Bottleneck of System Performance

A GC is essentially a network of encrypted tables. While preserving privacy, the
cipher texts in encrypted tables are also the source of communication costs. A correct
execution of the GC protocol requires the distribution of all involved cipher texts among
the participants. This data communication is typically prohibitive, which easily bottlenecks
system performance and has significantly impeded the spread and application of GC-based
secure computation. For instance, garbling a three-layer neural network model already
results in a 128 MB data communication [19]. The amount of data communication required
to execute the protocol is hereinafter referred to as the garbling cost.

Given a GC, its garbling cost is determined by the number of cipher texts (denoted
by “#cipher-texts”) utilized to garble it; The terms “garbling cost” and “#cipher-texts” are
therefore used interchangeably in this paper. As introduced, a GC is constructed on top
of a Boolean circuit that implements the target computation. The Boolean circuit and the
generated GC are isomorphic, as each logic gate in the former corresponds to an encrypted
table in the latter. This fact suggests two orthogonal solutions to generating lower-cost GCs:
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(a) In the stage of Boolean circuit synthesis, the garbling cost of each kind of logic gate shall
be taken into consideration, so as to prioritize the usage of gates that require fewer cipher
texts to garble. (b) More advanced garbling schemes are demanded, which facilitate using
fewer cipher texts (i.e., a fewer-entry encrypted table) to garble each kind or certain types
of logic gates.

2.3. Advanced Garbling Schemes

Despite numerous sophisticatedly elaborated garbling schemes in the literature, we
introduce two that have directly inspired this work.

2.3.1. Free-XOR

Free-XOR points out that XOR gates can be garbled without using any cipher text,
regardless of the fanin size [8].

An XOR operation is essentially a mod-2 addition. Hence, the bitwise XOR-ed result
of m l-bit bitstrings is also an l-bit bitstring. Let there be such an m-input XOR gate in the
Boolean circuit to be garbled, y = XOR(x1, . . . , xm). An encoding function En is desired to

map the binaries x1, . . . , xm and y, to the bitstrings X1, . . . , Xm and Y, such that Y =
m⊕

i=1
Xi,

where “
⊕

” denotes bitwise XOR operations. If such an encoding function is available, it
implies the garbling of an XOR gate does not require any cipher texts—indeed, the executor
can obtain the output label of a garbled XOR gate by conducting bitwise XOR operation on
the input labels, instead of relying on an encrypted table for look-up and decryption.

The desired encoding is proven to be achievable [8]: Let s be a signal in the Boolean
circuit to be garbled, and En, respectively, encodes s = 0 and s = 1 to two l-bit labels S0

and S1. Let ∆ be a l-bit bitstring and satisfy ∆ =
⊕

i={0,1}
Si. Then, En is a qualified encoding

function, as long as it holds the property that ∆ is the same for all signal s in the Boolean
circuit to be garbled.

2.3.2. Garbling Gadget

When synthesizing a Boolean circuit to be garbled, logic gates with more fanins are
hardly considered, because the garbling cost of a logic gate increases exponentially as the
size of its fanin increases. Naïvely garbling an m-input logic gate requires 2m cipher texts,
since the truth table of an m-input gate is 2m-entry.

However, garbling gadget [10] has yielded a fresh perspective. Inspired by Free-XOR,
garbling gadget suggests interpreting any symmetric logic operation as a modular addition.
This is possible because the output of a symmetric logic gate depends exclusively on the
Hamming weight of its input pattern. For an m-input symmetric gate, the Hamming weight
of its input pattern ranges from 0 to m, determining that the minimum modulus z is no
more than m+ 1. Therefore, an m-input symmetric operation can be interpreted as a bitwise
mod-z addition, followed by a projection gadget that encodes the sums back to binary. The
garbling of a modular addition is free from cipher texts; A z-to-2 projection gadget, by
further adopting a compatible garbling scheme, called garbling row reduction [20], can be
garbled into a (z− 1)-entry encrypted table.

Garbling gadget reduces the garbling cost of an m-input symmetric logic gate from 2m

to no more than m− 1. The finding that larger-fanin-sized symmetric gates can be garbled
efficiently makes it worthwhile to explore the possibility of using them as logic primitives
to implement the Boolean circuits to be garbled.

3. Logic Synthesis

Logic synthesis generally refers to the process of converting a high-level description of
a circuit into a lower-level representation, such as a gate-level netlist. It plays an important
role in modern electronic design automation (EDA) flows, as it optimizes the designs of
integrated circuits for a specified cost criterion. The goal is typically, but not limited to,
optimizing area, delay, power consumption, etc.
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In logic synthesis, a Boolean circuit is typically abstracted into a logic network for
compact representation. A logic network, essentially a directed acyclic graph (DAG), allows
efficient applications of graph-based optimization algorithms to manipulate designs.

3.1. Exact Synthesis

Exact Synthesis refers to the task of finding the provably optimum way to represent
Boolean functions using allowed types of primitives. The definition of optimum depends
on the cost criterion of the synthesis problem.

The exploration of how to efficiently solve an exact synthesis problem has a long
history [21]. In recent years, thanks to the remarkable progress that has been achieved in
developing performant Boolean satisfiability (SAT) solvers, formulating an exact synthesis
problem as a SAT problem has become mainstream [22]. But even for the same exact
synthesis problem, depending on the way it is formulated, the difficulty of solving it may
vary a lot [23].

Exact synthesis problems are intractable, as determined by their intrinsic complex-
ity [24]. Thus, the application of exact synthesis techniques is restricted to small-scale
functions. While a high-quality formulation can mitigate the limitation to some extent, the
weak scalability of exact synthesis techniques is insurmountable to overcome in principle.

3.2. Peephole Optimization

Most logic synthesis techniques are heuristic, because the target logic networks are
usually of large scale and complex, making it infeasible to find the optimum solution in
a reasonable time. A large portion of successful heuristics can be categorized as peephole
optimizations. This refers to divide-and-conquer-like strategies, i.e., partitioning a network
into subnetworks to break down the problem into a series of amenable ones. Such a
partition commonly relies on the concept of cuts [25].

3.2.1. Cuts

A cut in a logic network is identified by its root, which is a node, and its leaves, which
are a collection of nodes. A feasible set of leaves shall meet two properties: (a) there is at
least one leaf on any path from a primary input to the root; (b) all the leaves are on at least
one such path.

A cut is recognized as k-feasible if its number of leaves does not exceed k. Given a
specified k, the process of finding all the k-feasible cuts in the target network is known as
cut enumeration [26].

3.2.2. Logic Rewriting

Logic rewriting refers to the idea of optimizing a logic network by greedily replacing
each part of the network, i.e., each cut, with the optimum, or optimal, implementation of
the local function of this cut.

The optimization effect of a logic rewriting algorithm highly depends on the selection
of k, as k determines the allowed number of leaves of each cut. A larger k allows the process
to get closer to the global optimum—to take an extreme example, when k achieves the input
size of the network, a logic rewriting algorithm then reduces to the exact synthesis problem
of finding the optimum implementation for the function of each primary output. Certainly,
due to scalability concerns, it is impossible to set k to be unreasonably large. Configuring k
to four or five is common practice.

How the optimum implementations of each cut are obtained is another factor that
distinguishes different variants of logic rewriting algorithms. Existing algorithms fall into
the categories of finding the optimum implementation of each encountered cut by either
(a) invoking an exact synthesis solver on the fly [15], or (b) referring to a prepared database
of optimum implementations of small-scale Boolean functions. The intrinsic complexity of
exact synthesis problems determines that (b) typically supports the selection of a larger k
than (a) does.
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Based on the functional completeness of the database, (b) can be further divided
into two genres: the (i) Boolean-mining-based functionally incomplete one [27] and the (ii)
functionally complete one [28]. Boolean mining requires that the Boolean functions that
occur in practice be collected before entering the logic optimization procedure; Considering
the privacy-preserving property of secure computation, such a premise is likely invalid.
Thus, we recognize (i) as inapplicable to our case. In practice, (ii) is usually applied along
with Boolean function classification techniques, since the number of logic functions increases
double exponentially with input size.

3.3. Algebraic Rewriting

Algebraic optimization methods consider logic functions as objects of some algebra
(not necessarily Boolean algebra) and consider algebra-specific manipulations to optimize
them. While such abstractions disregard certain Boolean properties, this simplification
leads to fast algorithms that scale well to large logic networks.

In algebraic rewriting, lightweight local transformations based on algebraic axioms
are iteratively applied to reshape large logic networks, aiming to optimize a predefined
cost function, such as the total area or delay. This technique is especially powerful in
near-homogeneous logic networks, i.e., logic representations that allow few types of logic
primitives. This is because such networks tend to be more structured, and hence, the
eligibility of small portions of logic for algebraic transformations can be efficiently evaluated
with less computational overhead.

3.4. Don’t-Cares-Based Optimization

In logic synthesis, don’t care (DC) refers to a condition for which the output of a logic
function or circuit is not specified or does not matter. A DC condition typically arises from
the interconnections of logic gates in a logic network, due to the existence of reconvergent
paths [29]. According to the exact cause, DC conditions can be classified into satisfiability
don’t cares (SDCs) and observability don’t cares (ODCs): The former refers to the input patterns
that are never produced under any primary input assignments. The latter refers to the input
patterns whose output, if flipped, would not make a difference to any primary output.

DCs bring flexibility into implementing Boolean functions. Therefore, DCs are often
used to simplify the design and optimize the resulting logic circuit [14]. However, finding
DCs typically suffers from complex computation. In the last few decades, a technical change
from using binary decision diagrams (BDDs) to using SAT solvers as the tool to compute DC
has been witnessed [30].

3.5. Boolean Function Classification

Boolean function classification is the process of categorizing Boolean functions into
different classes based on various characteristics and properties of the functions. For
example, since input negation, input permutation, and output negation do not change
the combinational complexity of a Boolean function, the so-called NPN classification [31] is
widely adopted in Boolean function analysis.

In some applications, such as cryptography, spectral classification provides a powerful
tool to classify Boolean functions, because spectral operations preserve algebraic proper-
ties [32]. Based on an n-variable Boolean function f (x1, · · · , xi, · · · , xj, · · · , xn), the five
spectral operations are as follows:

1. Swap two variables: f
xi↔xj−−−→ f’.

2. Complement a variable: f
xi→¬xi−−−−→ f’, where “¬” indicates negation.

3. Complement the function: f ¬−→ f’.

4. Translational operation: f
xi→(xi⊕xj)−−−−−−→ f’.

5. Disjoint translational operation: f
⊕xi−−→ f’.
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Two Boolean functions, f and g, are defined as spectrally equivalent if there is a series of
spectral operations o = o1, · · · , ok that satisfy

f
o1−→ · · · ok−→ g.

3.6. Multiplicative Complexity

Depending on the context, multiplicative complexity (MC) can refer to the feature of
either a Boolean function or an XAG implementation of a function. To avoid ambiguity, we
distinguish the two cases as functional MC and structural MC.

Given a Boolean function, its functional MC is the minimum number of AND2s suffi-
cient to implement it over the basis {AND2, XOR2, NOT} (i.e., as an XAG) [33]. Functional
MC commonly serves as an indicator of the nonlinearity of a function. Thus, finding the
functional MC of an arbitrary Boolean function correlates with research fields other than
cryptography as well. Though receiving wide attention, it is an intractable problem [34].
So far, the functional MC of any logic function with no more than 6 inputs is known [35].
Most ongoing research on functional MC focuses on Boolean functions that either have
certain features, such as symmetry [36], or appear frequently in certain applications, such
as the interval checking function [37].

By contrast, structural MC is a feature of an XAG: it refers to the number of AND2s in
this logic network. Indeed, a Boolean function’s functional MC lower bounds the structural
MC of any XAG implementing this function. Regarding structural MC, a well-known logic
synthesis problem, the MC reduction problem asks, “Given an XAG implementation of
the target Boolean function (whose functional MC is typically unknown), how does one
reduce the number of AND2s in it as much as possible by manipulating logic synthesis
techniques?” Free-XOR connects the task of synthesizing practical GCs to the MC reduction
problem—in an XAG, AND2 is the only type of logic primitive whose garbling requires
cipher texts. Therefore, any progress in addressing the MC reduction problem contributes
to the synthesis of lower-cost GCs.

4. A Cipher-Text-Efficient Logic Representation

According to the definition of functional MC introduced in Section 3.6, AND2 is
an intuitive nonlinearity provider. However, this does not mean that AND2 provides
nonlinearity in the most cipher-text-efficient manner. Holding a doubtful attitude towards
its cipher-text efficiency, the exploration of this work starts with answering the question: “Is
there any kind of logic primitives that can provide nonlinearity more cipher-text efficiently
than AND2s do?”

With the awareness that symmetric logic gates can be much more efficiently garbled
than previous expectations, as garbling gadget pointed out, it is especially worthwhile to
investigate if such a candidate exists among symmetric logic gates.

4.1. MC Compactness

To quantify the efficiency of a logic gate in providing nonlinearity, we propose the
concept of MC compactness. It is defined as the functional MC of a logic gate divided by
the number of cipher texts required to garble this logic gate, e.g., the MC compactness of
AND2 is 1/2 = 0.5. To provide a given amount of nonlinearity, it is likely that fewer cipher
texts are needed when a more MC-compact kind of logic gate is adopted as the primitive.

Symmetric gates with fanin sizes larger than three are out of the scope of this work,
considering the inefficiency of applying logic synthesis techniques to logic networks con-
sisting of large-fanin-sized primitives. No 3-input asymmetric logic gates are of interest, as
the excessive garbling cost assures that none of them has a preferable MC compactness. The
Hamming weight of a 3-bit pattern has four potential values (ranging from 0 to 3). Since, for
a symmetric 3-input function, its output for each Hamming weight can be independently
set, there are 16 (24) symmetric Boolean functions out of all 256 (28) 3-input Boolean func-
tions. After canonicalizing the 14 nontrivial ones (i.e., excluding the two constant functions)
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by applying input negation and output negation, there turn out to be 5 candidates: AND3
(In this paper, three-input ANDs and XORs are abbreviated as AND3s and XOR3s, with
the fanin size explicitly indicated, so as to distinguish from their two-input counterparts.
Fanin size might be omitted when a claim applies, regardless of fanin size. For other gate
types, the names proposed in [38] are adopted), XOR3, Majority, OneHot, and Gamble.
Furthermore, XOR3 is excluded, as its functional MC is zero and is not qualified as a valid
nonlinearity provider.

Adopting garbling gadget as the scheme to garble a symmetric logic gate, the cost is
determined by the modulus of the modular addition that the logic operation is interpreted
into. An algorithm to calculate the minimum modulus z to interpret a symmetric logic
function as a modular addition is given in the Appendix A (Algorithm A1). When z is
determined, as introduced in Section 2.3.2, z− 1 cipher texts are required to garble the logic
gate. On the other hand, the functional MCs of all five candidates are known [35]. Thus,
their MC compactness can be calculated.

As one can learn from Table 1, OneHot and Gamble share the feature that they can both
be expressed as a mod-3 addition followed by a 3-to-2 project gadget, while other candidates
(i.e., AND3 and Majority) require the modulus to be at least four. To see this for OneHot,
denote the patterns whose Hamming weights are i as HMW(i), then HMW(0) = (0, 0, 0) and
HMW(3) = (1, 1, 1). Since

OneHot(0, 0, 0) = OneHot(1, 1, 1) = 0,

the output of OneHot depends only on the Hamming weight Modulo 3. The same reasoning
applies to Gamble.

Table 1. Features of the four 3-input symmetric logic gates of interest, with garbling gadget adopted
as the garbling scheme.

Gate Type Truth Table Functional MC Garbling Cost MC
(#Cipher-Texts) Compactness

AND3 #80 2 3 0.67
Majority #e8 1 3 0.23
OneHot #16 2 2 1.00
Gamble #81 1 2 0.50

In addition, the functional MC of OneHot is two [38]. Low garbling cost and high
functional MC have jointly determined OneHot as a cipher-text-efficient logic primitive
to provide nonlinearity. This observation indicates that OneHots, together with XORs
and NOTs, serve as a cipher-text-efficient logic representation. This representation, which
we hereinafter term XOR-OneHot graph (X1G), possibly offers a better representation for
Boolean functions that are to be garbled.

4.2. A Study on the Properties of OneHot Gates

Noticing that a NOT gate can be regarded as an XOR2 gate with an input fixed as
constant one, as

NOT(x) = XOR2(1, x),

OneHot is therefore the only kind of logic primitive in X1Gs whose garbling requires cipher
texts. Thus, we define the X1G optimization problem as the logic optimization problem of
reducing the number of OneHots in a given X1G.

The fact that the functional MC of a OneHot operation is two (also witnessed by its
structural MC-optimum XAG implementation in Figure 1, where “∧” and “⊕” denote
AND and XOR, respectively) points out the major advantage of adopting OneHot as the
nonlinearity provider. In principle, an AND3 operation equals two consecutive AND2
operations and corresponds to two units of nonlinearity. When garbling an AND3 operation,
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by adopting AND2 or AND3 as the nonlinearity provider, 4 (2× 2) or 3 cipher texts would
be required, respectively; By contrast, by a simple algebraic manipulation on the algebraic
normal form (ANF) [35] of the OneHot operation:

OneHot(x1, x2, x3) = x1x2x3 ⊕ x1 ⊕ x2 ⊕ x3,

we obtain

AND3(x1, x2, x3) = XOR2(OneHot(x1, x2, x3), XOR3(x1, x2, x3)) (1)

Equation (1) points out that an AND3 operation can be realized using one OneHot
and two XORs (as shown in Figure 2, where “OH” denotes OneHot); hence, the garbling
cost of the X1G-based solution is merely two cipher texts.

Figure 1. Structual MC-optimum XAG that implements OneHot operation.

Figure 2. Implementing AND3 operation using OneHots and XORs.

By setting one of the three inputs of a OneHot gate to be a constant one, it is noticed
that

OneHot(1, x1, x2) = AND2(¬x1,¬x2), (2)

where “¬” indicates negation.
Similarly, by configuring one input as constant zero, it is observed that

OneHot(0, x1, x2) = XOR2(x1, x2) (3)

By applying this rewriting rule, from the left-hand side to the right-hand side, the number
of OneHots in an X1G can be reduced. We, therefore, regard the application of this rule as a
postprocessing stage in our logic optimization flow for X1Gs, which is introduced in the
following sections.

5. Mapping XAGs to X1Gs Following Algebraic Rewriting Rules

To improve the practicality of the GC protocol, previous efforts made by the logic
synthesis community focus exclusively on implementing the target function as an XAG
and optimizing the network in the sense of reducing its structural MC. Thus, it is desired
to elaborate an algorithm that maps an XAG to an X1G, which makes it possible to make
full use of existing research and benefit from the cipher-text efficiency of OneHots at the
same time.
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5.1. An Algebraic-Rewriting-Based Mapping Approach

Equation (1) suggests replacing each pair of two adjacent AND2s with one OneHot
and two XORs. Each application of this rule saves two cipher texts. But, it should be noted
that this rewriting rule does not apply to any pair of adjacent AND2s: Given a pair of
AND2s a and b, while a is a fanin of b, it is unwise to directly apply Equation (1) to get
rid of a and b, as long as the fanout size of a is larger than one. This is because the logic
function at node a is at the same time contributing to elsewhere in the logic network, and
removing it would compromise the correct functionality of the network. Therefore, it is
important to make sure that the algebraic rewriting is only applied to the pairs of AND2s
without such concerns. To rule out this problem, we adopt the covering algorithm proposed
in [39] as a preprocessing on the starting point XAG, which groups those AND2s that can
be merged into one AND node with a larger fanin size.

For each AND2 that cannot be paired with another AND2, applying Equation (2)
allows substituting each AND2 with a OneHot, with the amount of required cipher
texts unchanged.

As described before, the covering function in line 1 in Algorithm 1 stands for the
covering algorithm in [39]. Algorithm 1 allows mapping an already highly optimized
XAG into an X1G of potentially further lower garbling cost. Furthermore, it has a linear
time complexity and is algebraic-rewriting-based, which jointly guarantees an almost
negligible runtime.

Algorithm 1: Mapping an XAG to an X1G by applying algebraic rewriting
Input: An XAG, N
Output: An X1G that is functionally equivalent to N

1 covering(N)
2 foreach AND node n ∈ N do
3 M← decompose n into consecutive AND2s
4 whileM 6= ∅ do
5 if |M| = 1 then
6 {x1,x2}← fanins ofM[0]
7 n’← OneHot(1,¬x1,¬x2) // Apply Equation (2)
8 replace nodeM[0] with n’
9 removeM[0] fromM

10 else
11 {x1,x2}←fanins ofM[0]
12 x3 ←the non-M[0] fanin ofM[1]
13 n’← XOR2(OneHot(x1, x2, x3), XOR3(x1, x2, x3)) // Apply

Equation (1)
14 replace nodesM[0] andM[1] with n’
15 removeM[0] andM[1] fromM
16 return N

5.2. Limitations

Algorithm 1 serves as a runtime-friendly way to bridge existing research on MC
reduction and the proposal of adopting OneHot as a cipher-text-efficient logic primitive.
However, it is further noticed that relying on algebraic-rewriting-based mapping can direct
us to suboptimality.

When judging the quality of an XAG implementation of the target function that is to
be garbled, the number of AND2s in the network is the sole criterion, i.e., every AND2
is of equal cost in the context of MC reduction. This situation changes after OneHots
are brought into the scope. When mapping an XAG into an X1G following Algorithm 1,
depending on whether an AND2 can be paired with another, either Equation (1) or (2)
would be applied to replace all AND2s using OneHots and XORs. However, Equation (1)
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is the only rule that contributes to a lower garbling cost. In that sense, pairable AND2s,
to which Equation (1) is applicable, are preferable to separated AND2s. This change in
criterion explains the limitations of synthesizing X1Gs by applying Algorithm 1 to map the
structural-MC-optimal XAGs optimized by previous works into X1Gs.

An example is given by the task of synthesizing the cipher-text-optimal X1G im-
plementation for a 5-variable Boolean function, whose truth table is #2888a000 (when
emphasizing the pursuit of fewer cipher texts, we regard the synthesized logic networks
as cipher-text/garbling-cost-optimal, instead of optimumbecause, although we proved that
OneHot serves as a more cipher-text-efficient logic primitive than AND2, its optimum
remains an open question). It is one of the representatives of all 48 spectral-equivalent
classes for 5-variable Boolean functions and has a known functional MC of three.

The optimality of the XAG implementation in Figure 3a is witnessed by the fact that
its structural MC is three, equal to the functional MC of the logic function. Applying Algo-
rithm 1 to it, however, cannot bring us the optimal X1G representation in Figure 3b—such
an application would result in an X1G with three OneHots, whose garbling cost is six cipher
texts, which is 50% worse than the optimal. Indeed, the expected XAG that can be mapped
into the optimal X1G turns out to be the one with two pairs of adjacent AND2s in it. The
structural MC of such an XAG is four, higher than the lower bound determined by the
functional MC of the target function.

(a) (b)
Figure 3. Cipher-text-optimal implementations of function #2888a000: (a) Adopting XAG as the logic
representation. (b) Adopting X1G as the logic representation.

That being said, to generate the cipher-text-optimal X1G implementation for a given
function through applying the algebraic-rewriting-based mapping to its XAG implementa-
tion, the optimality of the starting point XAG should be taken care of by paying attention to
(a) the number of AND2s and (b) their connectivities. A mapping starting from the XAGs
that are optimized with structural MC adopted exclusively as the optimization goal in
previous research can end up with suboptimality. Not only the amount but the environment
of the AND2s also affects the quality of the X1Gs that the XAGs would be mapped into.

6. Agilely Synthesizing Optimal X1G Implementations for Small-Scale Functions

This section aims to formulate an exact synthesis problem of synthesizing the “truly”
optimal XAG implementations for the given logic functions, which render optimal X1G
implementations after applying Algorithm 1. The optimality is achieved by formulating
both these two features regarding the usage of AND2s as the optimization objective of the
exact synthesis.

Due to the limited scalability of exact synthesis, the approach is not applicable to
Boolean functions of large scales for concerns of practicality. However, experimental
evaluations witnessed that we managed to formulate the problem in such an efficient way
that the optimal implementations are successfully synthesized for all 150,357 representative
Boolean functions of 6-variable spectral-equivalent classes. These implementations of small
functions can be used as building blocks for obtaining high-quality X1G implementations
for practical functions.
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6.1. AND Fence

We propose the concept of AND fence to effectively extract the information of our
interest from a given XAG. Inspired by Boolean fences proposed in [23], which refers to the
topology of a whole logic network, we propose AND fences to exclusively describe the
usage of AND2s in XAGs.

The procedure for obtaining the AND fence consists of the following: (1) Apply the
covering algorithm to classify AND2s in the network into groups. Each group of AND2s
forms an AND tree. The cardinality of the i-th group is denoted as ci, then ci ≥ 1. (2) The
cardinalities of all d AND2 groups form the AND fence F of the network, i.e.,

F = {c1, c2, · · · , cd} (4)

The uniqueness of the AND fence of an XAG is ensured by ordering the AND2 groups
by the network topology.

Intuitively, the structural MC of an XAG can be easily learned from its AND fence, as

smc(F ) =
d

∑
i=1

ci (5)

More to the point, an XAG’s AND fence contains all information required to calculate the
garbling cost of the X1G that the XAG would map into, as

cost(F ) =
d

∑
i=1

(2 ·
⌈ ci

2

⌉
) (6)

6.2. Abstract XAG

The formulated exact synthesis problem of synthesizing the cipher-text-optimal XAGs
relies on a type of logic representation, named abstract XAG. In [35], the researchers simpli-
fied the network description from the original XAG to a more general form. First referred
to as abstract XAG in [40], this logic representation distinguishes from XAG from the
following perspectives: (1) Fanin sizes of XORs are allowed to be arbitrary (each XOR node
is therefore called an XOR cloud). (2) Each fanin of any XOR cloud is either a primary input
or an AND2 belonging to a lower logical level. (3) Fanins of any AND2 are XOR clouds.
(4) Primary outputs are XOR clouds.

To make this representation compatible with the AND fence, we generalize it by
allowing the fanin size of AND nodes to be more than two. Since a group of AND2s
with a cardinality of c can be concisely represented as (c + 1)-input AND, on top of the
generalized abstract XAG, it is intuitive to both (a) extract the AND fence of a generalized
abstract XAG and (b) construct a network topology of a generalized abstract XAG that
meets a given AND fence. To avoid ambiguity, we hereinafter refer abstract XAG to our
generalized representation.

Figure 4a provides an abstract XAG implementation of the Boolean function we saw
before. The number of steps in an abstract XAG is defined as the number of ANDs in it.
For conciseness, instead of using arrows, the blue texts under each XOR cloud denote the
fanins of that XOR cloud. By focusing on the ANDs in the abstract XAG, the AND fence is
easily extracted (Figure 4b), whose numerical representation is F = {2, 2}, as both a1 and
a2, the first-step and second-step ANDs, are three-input, indicating that the cardinalities of
the two corresponding groups of AND2s are both two.
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(a) (b)

Figure 4. Abstract XAG and AND fence: (a) an abstract XAG implementation of Boolean function
#2888a000 and (b) its AND fence.

6.3. Exactly Synthesizing Garbling-Cost-Optimal X1Gs

Utilizing AND fences and abstract XAGs, an exact algorithm to synthesize garbling-
cost-optimal X1G implementations is elaborated.

6.3.1. Formulating an Exact Synthesis Problem

We formulate the exact synthesis problem of synthesizing the optimal XAG implemen-
tation for a given Boolean function as follows. Given a target AND fence, an incomplete
abstract XAG is constructed, as the fanin connectivities of all XOR clouds are missing.
A SAT solver is used to find if there is a way to configure the fanins of the XOR clouds
so that the resulting abstract XAG implements the target function. The optimality of the
synthesized abstract XAG is guaranteed by enumerating all candidates of AND fences in a
garbling-cost-ascending manner. In other words, the formulated exact synthesis problem is
composed of a series of instances, each of which explores the possibility of using a certain
AND fence to implement the function.

The formulation relies on a library of AND fences. Indeed, the completeness of the
library contributes directly to the optimality of the synthesized logic networks.

We start by addressing its simpler variant: “When targeting a certain structural MC,
how many AND fences are there?” This is the reverse of calculating the structural MC of an
AND fence (Equation (5)), and it is essentially a positive integer partition problem, a classic
problem in number theory and combinatorics. Especially, the permutation of numerically
different elements matters in our case, e.g., if ci 6= cj, {ci, cj} and {cj, ci} are two different
AND fences. The algorithm proposed in [41] is adapted to our implementation.

It is known that the functional MC of up to six-variable Boolean functions is upper-
bounded by six [35]. Therefore, by, respectively, figuring out the AND fence candidates
with the structural MC ranging from one to six, all AND fences of interest are taken into
consideration. There turns out to be 63 AND fence candidates in total in the library.

Algorithm 2 illustrates how the optimal abstract XAG implementation of a function is
agilely synthesized. The synthesis procedure consists of solving a series of exact synthesis
instances. Making use of a function’s functional MC, the synthesis procedure is accelerated
by skipping the instances where the involved AND fences are not able to provide sufficient
structural MC (line 4).

The abstract XAG in Figure 4a is exactly the one found by the proposed approach,
with #2888a000 given as the target Boolean function.
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Algorithm 2: Agilely Synthesizing Optimal Abstract XAG using AND Fences
Input: Boolean function, f ; Library of AND fences, lib
Output: Optimal abstract XAG implementation of f, N

1 fmc← functional MC of f
2 foreach AND fence F ∈ lib do
3 smc← smc(F )
4 if smc < fmc then continue
5 N← SAT(agile_formulation(f, F ))
6 if N 6= NULL then return N
7 return N← NULL

6.3.2. Effects of Suboptimality on XOR Counts

By decomposing the XOR clouds into XOR2s, an abstract XAG is converted into an
XAG. How to conduct the decomposition is not trivial, as a naïve decomposition can result
in functionally equivalent XOR2s, i.e., redundant logic in the resulting XAGs, as well as
the X1Gs that the XAGs would map onto. Even if the decomposition is handled in an
optimal manner, the resulting number of XOR2s is commonly beyond the minimal, as no
efforts have been made to constrain the fanin size of the XOR clouds when synthesizing
the optimal abstract XAG implementations.

While the pursuit of the minimal XOR2 count can be taken into consideration by intro-
ducing extra constraints to the exact synthesis problem, we recognize such an investigation
as unwarranted for two reasons: (a) The garbling cost of an XAG does not depend on the
number of XOR2s in it, as determined by the application of Free-XOR. (b) A significant
advantage of the proposed exact synthesis problem formulation stems from the relaxation
of XOR counts, which considerably increases the number of solutions in the search space
and speeds up the problem-solving process.

By further applying Algorithm 1 to the XAGs that the synthesized abstract XAGs
decompose into, the optimal X1G implementations are obtained. In this way, the limitation
of directly applying Algorithm 1 to the structural-MC-optimal XAGs, which is introduced
in Section 5.2, is overcome.

6.4. Database Generation

Despite the agility of the proposed formulation, due to the exponential complexity
of exact synthesis problems, it is impractical to apply the method to exactly synthesize
the X1G implementation for large-scale functions. To benefit from the formulation, we
make use of it to build a functionally complete database, which contains the optimal X1G
implementations of 6-input logic functions. The database later facilitates a database-driven
logic rewriting algorithm, which plays a crucial role in our logic optimization flow for the
X1G implementations of large-scale functions.

There are 264 6-input logic functions, and synthesizing the optimal X1G implementa-
tions for all of them is not a trivial task, even with the help of the agile formulation. By classi-
fying Boolean functions, the number of functions to consider can be significantly reduced.

When choosing which classification approach to adopt, two factors are taken into
consideration: (a) The functions classified into the same category should share the same
cost. (b) When there is more than one option that meets (a), the one resulting in fewer
classes is better. We recognize the spectral classification as a natural fit to our case.

As introduced in Section 3.5, for any two spectral-equivalent Boolean functions f and
g, there exists a series of spectral operations o that converts f to g. The reverse process of
o, which converts g to f, is denoted by o′. The reasonability of generating the database by
adopting spectral classification is evidenced by the following theorem:
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Theorem 1. Assume the garbling-cost-optimal X1G implementation of function f is available,
denoted as f1. Then, by applying o to f1, the obtained X1G g1 is a garbling-cost-optimal X1G
implementation of function g.

Proof. If g1 is not a garbling-cost-optimal X1G implementation of the function g, there
exists an X1G g2 that also implements function g but requires fewer OneHots than g1. By
applying o′ to g2, another implementation of function f, f2, can be obtained. Since applying
spectral-equivalent operations never changes the number of OneHots in an X1G, there
are fewer OneHots in f2 than in f1, indicating that f1 is not a garbling-cost-optimal X1G
implementation of the function f, which leads to a contradiction.

Thanks to the adoption of spectral classification, there are only 150,357 equivalent
classes for all 6-input Boolean functions. For each class, a representative function is as-
signed following [42]. For the representative function of each class, the proposed ap-
proach is exploited to efficiently synthesize its optimal X1G implementation. In this way,
a 150,357-entry database of the garbling-cost-optimal X1G implementations for 6-input
Boolean functions is generated. The database facilitates a performant logic rewriting
algorithm, which is introduced in the following section.

7. A Logic Optimization Flow for X1Gs

To synthesize X1G implementations for practical functions, a flow consisting of three
logic optimization algorithms is elaborated (Figure 5).

Figure 5. Proposed flow for X1G optimization.

The XAGs optimized by existing MC reduction techniques are adopted as the input
to the flow. By applying algebraic-rewriting-based mapping (Algorithm 1), the XAGs are
at first naïvely mapped onto X1Gs. Then, a database-driven logic rewriting algorithm is
applied repetitively to the networks, until no gain in #OneHots reduction is observed. As
postprocessing, which does not change the network topologies any more, a don’t-care-
based optimization approach and algebraic rewriting (Equation (3)) are exploited to further
reduce the garbling cost.

7.1. Database-Driven Logic Rewriting

Algorithm 3 describes our database-driven logic rewriting algorithm.
For each node n in the network, a set of cuts rooted in it, denoted as cuts(n), are

computed following the cut enumeration algorithm proposed in [26] (line 4). As soon as a
part of the logic network is rewritten, cut enumeration shall be conducted dynamically.

For the logic cone highlighted by each cut C ∈ cuts(n), using the prepared database, its
optimal implementation can be constructed with negligible runtime overhead. Algorithm 3
is elaborated in such a greedy manner that the cut C’ ∈ cuts(n) that leads to the most
significant reduction in local cost is to be committed (line 11, 12). Redundant nodes
resulting from the rewritten operation are then removed (line 13).

If, for any node in the network, the cuts rooted in it are investigated, Algorithm 3 is
terminated.
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Algorithm 3: Database-driven logic rewriting
Input: X1G, N; Database of optimal X1Gs implementing small-scale functions, db
Output: Optimized X1G, N

1 is_rewritten← true
2 foreach node n ∈ N in topological order do
3 if is_rewritten then
4 cuts← cut_enumeration(N)
5 is_rewritten← false
6 foreach cut C ∈ cuts[n] do
7 implold[C]← the logic cone highlighted by cut C
8 costold[C]← cost of implold[C]
9 f←local function of cut c

10 {implnew[C], costnew[C]}← spectral_equivalent_classification(f, lib)
11 cut C′ ← arg minC∈cuts[n] (costold[C] - costnew[C])
12 rewrite implold[C′] with implnew[C′]
13 N← clean_up(N)
14 is_rewritten← true
15 return N
16 Function spectral_equivalent_classification(f, lib) :
17 {representative r, operations o converting r to f }← spectral_canonicalization(f )
18 {optimal implementation of r implr, cost of implr costnew}← lib[r]
19 optimal implementation of f implnew ← apply o to implr
20 return {implnew, costnew}

7.2. Don’t-Care-Based OneHot Reduction

The truth tables of a OneHot gate and an XOR3 gate are, respectively, #00010110 and
#10010110 (represented in binary for intuitive comparison). In other words, the two types
of gates are functionally distinguishable only by the input pattern (1, 1, 1). This observation
enlightens the possibility of exploiting DC conditions to replace some OneHots in an X1G
with XOR3s, without affecting the functionality of the entire logic network. While both SDCs
and ODCs can be utilized for logic optimization, we investigated the former in this work.

In Algorithm 4, the logic network is first converted into a logically equivalent con-
junctive normal form (CNF) formula P, following the well-known Tseitin encoding [43]
(line 1). For each OneHot node n, another CNF formula P′ is constructed by adding extra
clauses to P (line 5; “∧” denotes conjunction)—these clauses specify the input signals of
node n to be constant ones. A SAT solver is then invoked to figure out if there is a set of
variable assignments that satisfies P′. If not, it means that no primary input combination
can produce pattern (1, 1, 1) as the input of node n, indicating such a OneHot node is
functionally indistinguishable from an XOR3 node with the same input. Hence, the logic
network can be optimized by replacing n with an XOR3 node (line 7).

Algorithm 4: Don’t-care-based logic optimization for X1G
Input: X1G, N
Output: Optimized X1G, N

1 CNF formula P← Tseitin_encoding(N)
2 foreach OneHot node n ∈ N do
3 {x1, x2, x3}← fanins of node n
4 {l1, l2, l3}← literals in P that corresponds to signals {x1,x2,x3}
5 CNF formula P′ ← P∧ l1 ∧ l2 ∧ l3
6 if SAT(P′) 6= true then
7 replace n with an XOR3 node n′, with the same fanins and fanouts as n
8 return N
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8. Experimental Results

Here, we report the experimental evaluations of the effectiveness of (a) the exact
synthesis formulation for agilely synthesizing cipher-text-optimal X1G implementations
of small-scale functions, proposed in Section 6, and (b) the logic optimization flow for
improving the X1G implementations of practical functions.

All experiments are conducted on an Apple M1 Max chip with 32 GB memory.

8.1. Evaluation on the Exact Synthesis Formulation

In [15], an exact synthesis algorithm is proposed to exactly synthesize optimal X1G
implementation. The algorithm is at the core of the widely welcomed single selection variable
(SSV)-based, area-oriented SAT encoding [22]. In addition, the heuristic of using functional
MC to guide the targeted numbers of OneHots and XORs is integrated. We adopt this exact
synthesis algorithm (hereinafter referred to as baseline) as the object of comparison in order
to provide a convincing comparison.

In this experiment, the benchmark consists of all representative functions of the 48
spectral-equivalent classes for five-variable Boolean functions. The exact synthesis solver is
implemented by exploiting the C++ reasoning library bill (available at https://github.com/
lsils/bill), with Glucose (available at https://www.labri.fr/perso/lsimon/research/glucose/)
adopted as the underneath SAT solver. The conflict limit for the SAT solver is set to 100,000.

As can be learned from Table 2, among the 48 target functions, the baseline algo-
rithm failed to find any solution for five of them, while ours managed to synthesize X1G
implementations for all of them. For seven functions, the solutions found by the base-
line algorithm are suboptimal, as ours found solutions using fewer OneHots. This is
evidenced by the total numbers of OneHots (column Accumulated #OneHots in Table 2)
in the 43 solutions found, respectively, by the two approaches. These observations imply
the infeasibility of relying on the baseline algorithm to generate a high-quality database
for six-variable Boolean functions: while the algorithm is designed to be exact, in practice,
even a reasonable conflict limit may divert it from the optimum.

Table 2. Synthesizing optimal X1G implementations for the 48 representatives of 5-variable spectral-
equivalent classes.

Exact Synthesis
Algorithm #Solutions Accumulated #OneHots Accumulated Time [s]

Baseline 43 113 1354.58

Ours 48 120 1 40.23(Algorithm 2)
1 This number goes down to 105 if we exclude the 5 cases where no solutions are synthesized following the
baseline encoding.

In general, the X1G implementations synthesized following the proposed exact syn-
thesis algorithm (Algorithm 2) always require fewer OneHots, together with an on-average
33.67× faster synthesis procedure. By capturing the significant characteristic of this practi-
cal GC generation problem in which XORs are free of garbling cost, Algorithm 2 smartly
removes the constraint on XOR count in order to increase the number of solutions in the
search space and make it possible for the SAT solver to find a solution efficiently.

8.2. Evaluation on the X1G Optimization Flow

In this experiment, three benchmark suites of different properties are involved to
provide a comprehensive evaluation: the EPFL (available at https://github.com/lsils/
benchmarks), the cryptographic (available at https://homes.esat.kuleuven.be/~nsmart/
MPC/), and the MPC benchmark suites [12]. The EPFL benchmark suite consists of two
kinds of combinational circuits, arithmetic ones and random/control ones. The crypto-

https://github.com/lsils/bill
https://github.com/lsils/bill
https://www.labri.fr/perso/lsimon/research/glucose/
https://github.com/lsils/benchmarks
https://github.com/lsils/benchmarks
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/
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graphic benchmark suite involves block ciphers and other cryptographic functions. The
MPC benchmark suite brings into scope popular MPC tasks, such as the secure auction and
stable matching problems.

The garbling costs (i.e., #cipher-texts) of the X1Gs optimized by applying the proposed
flow are compared with the state of the art, which is collected from three works in the
literature [12–14], as none of them dominate the others in all of the benchmark suites
involved. Since XAG is the adopted logic representation in these three works, the corre-
sponding garbling costs are calculated as 2·#AND2s, where #AND2s denotes the number of
AND2s in the structural-MC-optimal XAG implementations reported in the state of the art.
These XAG implementations are adopted as the inputs to the proposed flow. As garbling a
OneHot gate also requires two cipher texts (Table 1), the same cost as garbling an AND2,
the garbling cost of an X1G is calculated as 2·#OneHots.

As for implementation details, all logic optimization algorithms involved in the pro-
posed flow are implemented on top of the C++ logic network library mockturtle (available
at https://github.com/lsils/mockturtle). In the implementation of the database-driven
logic rewriting algorithm, we empirically set the maximum number of spectral opera-
tions allowed for matching (applying to the spectral_canonicalization function in line 17 of
Algorithm 3) to be 100,000. For practical purposes, if the local function of a cut cannot
be matched to any of the representatives within this limitation, such a cut is regarded
as an unqualified candidate to operate rewriting. The SAT-based SDC computation in
Algorithm 4 is implemented exploiting the C++ exact synthesis library percy (available
at https://github.com/lsils/percy), with MiniSAT [44] adopted as the SAT solver. To
avoid an excessive runtime cost in SDC computation, the solving of each SAT instance
(line 6 of Algorithm 4) is bounded by a conflict limitation of 100,000. For the same reason,
for benchmarks with more than 30,000 nodes, the DC-based optimization stage is bypassed.

In Table 3, we report the garbling costs after applying each stage of the optimization
flow (#cipher-texts), the reductions in garbling costs achieved by applying the whole flow
(red), and the overall runtime (Time). Due to the distinguishing features of the two kinds
of benchmarks involved in the EPFL benchmark suite, we calculated the geometric means
separately.

An interesting observation is that, by simply applying the mapping algorithm
(Algorithm 1), a 2.41% reduction and an 11.90% reduction in garbling cost are achieved for
the arithmetic circuits and random/control circuits, respectively. This finding evidences
OneHot’s superior cipher-text efficiency in providing nonlinearity compared with AND2.
Although not included in the table due to space limitations, it is thrilling that this con-
siderable reduction is obtained with an almost negligible runtime overhead. The most
time-consuming case happens to the log2 benchmark, which takes 0.48 s. Among all the
random/control circuits, none of them require more than 0.10 s to finish.

Based on a more careful profile of the effectiveness of the logic optimization flow, logic
rewriting (Algorithm 3) and mapping (Algorithm 1), respectively, contribute to 32.64% and
62.77% of the reduction in garbling costs, using 84.23% and 0.07% of the runtime. While
the contribution made by DC-based optimization (Algorithm 4) and algebraic rewriting
(Equation (3)) seems rather trivial, their roles in the flow are indeed crucial, as they managed
to seize the optimization opportunities missed by the high-effort logic rewriting stage.

Through case studies on Adder, Barrel shifter, and Decoder, it is recognized that no
reduction in #cipher-texts was achieved by the proposed flow because of benchmark
features. Since the AND2s in the three starting point XAGs are separated, all OneHots in
the three resulting X1Gs hold the feature described by Equation (2) and are unable to offer
nonlinearity in a cipher-text-efficient manner. Therefore, the effectiveness of the proposed
flow can vary from function to function, which is also learned from the evaluation results
for the other two benchmark suites.

Observations from the experimental results in Tables 3 and 4 are consistent in general.

https://github.com/lsils/mockturtle
https://github.com/lsils/percy
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Table 3. Evaluating the X1G optimization flow for EPFL benchmark suite.

Benchmark
#Cipher-Texts #Cipher-Texts (X1G Optimization Flow)

Red. Time [s]
(SOTA) Mapping Logic Rewrite DC-Based Opt. Algebraic Rewrite

Adder 256 256 256 (1 *) 256 256 0.00% 1.72
Barrel shifter 1664 1664 1664 (1) 1664 1664 0.00% 1.88
Divider 10,264 9882 9294 (6) 9288 9288 9.51% 129.31
Log2 17,546 16,986 15,584 (4) 15,318 15,314 12.72% 532.73
Max 1744 1662 1636 (2) 1636 1636 6.19% 6.71
Multiplier 15,170 15,022 14,698 (3) 14,694 14,694 3.14% 116.10
Sine 3918 3724 3266 (5) 3244 3242 17.25% 214.06
Square-root 10,434 10,176 9406 (5) 9400 9400 9.91% 288.12
Square 9192 9052 8662 (4) 8648 8648 5.92% 58.63

Geometric mean 4503.95 4395.44 4186.17 4173.57 4173.16 7.34%

Round-robin arbiter 2348 2260 1488 (2) 1488 1488 36.63% 62.23
Coding-cavlc 788 656 524 (2) 512 512 35.03% 39.57
ALU control unit 90 82 74 (3) 74 74 17.78% 2.87
Decoder 656 656 656 (1) 656 656 0.00% 1.93
i2c controller 1114 1004 886 (3) 872 872 21.72% 34.75
int to float converter 170 144 132 (3) 130 130 23.53% 9.15
Memory controller 9390 8298 7264 (5) 7156 7156 23.79% 296.11
Priority encoder 646 592 450 (2) 450 450 30.34% 16.06
Look-ahead XY router 186 126 114 (2) 114 114 38.71% 7.29
Voter 8514 7848 6344 (6) 6242 6242 26.69% 244.20

Geometric mean 850.80 749.59 633.83 628.75 628.43 26.14%

* Data in parenthesis indicate the number of applications of the logic rewriting algorithm to reach saturation.

Table 4. Evaluating the X1G optimization flow for Cryptographic and MPC benchmark suites.

Benchmark
#Cipher-Texts #Cipher-Texts (X1G Optimization Flow)

Red. Time [s]
(SOTA) Mapping Logic Rewrite DC-Based Opt. Algebraic Rewrite

AES (Key Expansion) 10,880 10,240 10,240 (2) 10,240 10,240 5.88% 41.17
AES (No Key Expansion) 13,600 12,800 12,800 (2) 12,800 * 12,800 5.88% 50.22
DES (Key Expansion) 13,830 13,346 12,864 (4) 12,482 12,474 9.80% 533.58
DES (No Key Expansion) 13,666 13,194 12,690 (5) 12,280 12,278 10.16% 525.35
Comp. 32-bit SLT 168 138 120 (3) 120 120 28.57% 6.81
Comp. 32-bit SLTEQ 174 152 134 (2) 134 134 22.99% 7.24
Comp. 32-bit ULT 168 138 120 (3) 120 120 28.57% 6.81
Comp. 32-bit ULTEQ 174 152 134 (2) 134 134 22.99% 7.26
MD5 18,734 18,734 18,734 (1) 18,734 18,732 0.01% 27.61
SHA-1 22,966 22,834 22,636 (3) 22,636 22,636 1.44% 107.32
SHA-256 52,928 51,832 50,086 (3) 50,086 50,086 5.37% 335.79

Geometric mean 3322.25 3066.13 2890.11 2873.61 2873.38 13.51%

Auction_2_16 194 194 194 (1) 194 194 0.00% 1.92
Auction_2_32 386 386 386 (1) 386 386 0.00% 1.92
Auction_3_16 464 464 460 (2) 460 460 0.86% 3.04
Auction_3_32 912 912 908 (2) 908 908 0.44% 3.11
Auction_4_16 990 990 986 (2) 986 986 0.40% 3.26
Auction_4_32 1950 1950 1946(2) 1946 1946 0.21% 3.44
Knn_comb_1_8 1108 1108 1100 (2) 1100 1100 0.72% 4.42
Knn_comb_1_16 2324 2324 2300 (2) 2300 2300 1.03% 4.87
Knn_comb_2_8 1762 1726 1676 (4) 1676 1676 4.88% 10.40
Knn_comb_2_16 3838 3754 3648 (4) 3648 3648 4.95% 15.21
Knn_comb_3_8 2120 2108 2082 (3) 2082 2082 1.79% 7.90
Knn_comb_3_16 4788 4760 4694 (3) 4694 4694 1.96% 13.64
Voting_1_3 14 14 12 (2) 12 12 14.29% 1.92
Voting_1_4 30 28 26 (2) 26 26 13.33% 2.18
Voting_2_2 42 40 38 (2) 38 38 9.52% 2.93
Voting_2_3 110 110 110 (1) 110 110 0.00% 2.37
Voting_2_4 208 208 204 (2) 204 204 1.92% 3.72
Voting_3_4 550 550 536 (2) 536 536 2.55% 7.47
Stable_matching_4_8 32,002 29,416 27,824 (6) 27,824 27,824 13.06% 379.88
Stable_matching_8_8 119,546 108,320 105,086 (3) 105,086 105,086 12.10% 502.04

Geometric mean 790.95 777.04 757.74 756.64 756.64 4.34%

* Data in gray indicate that the DC-based optimization stage is skipped for the benchmark, since its size exceeds
the predefined threshold.
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It turns out that, for all functions in the MPC benchmark suite, the application of the
algebraic rewriting rule did not lead to any reduction in garbling cost. Interestingly enough,
for MD5 in the cryptographic benchmark suite, the algebraic rewriting stage is the only
one that achieved a lower garbling cost, even though it was by merely 0.01%. This fact
demonstrates the unique role of each optimization approach involved in the proposed flow.

The least reduction in garbling cost is achieved for the MPC benchmark suite. This is
likely explained by the following two facts: (a) an analysis of the benchmarks shows that
AND2s are generally located far from each other; (b) with the experience of specialists, the
benchmarks are designed to be garbling-cost-friendly, leaving little room for optimization.

9. Discussion

The experimental results in the previous section reveal the trade-off between the efforts
in logic optimization and the runtime overhead of applying logic optimization algorithms.
Considering this trade-off, X1G optimization algorithms/flows of different flavors are
desired according to the target application scenario.

Optimally synthesizing Boolean circuits on the spot in an application-by-application
manner can be time-consuming and may become a bottleneck of system performance.
Under such circumstances, lightweight X1G optimization algorithms/flows that strike
a balance between quality and speed are a suitable choice. According to our evaluation
results, the mapping algorithm (Algorithm 1) and the algebraic rewriting rule (Equation (3))
provide such a solution.

Conversely, for frequent functions in secure computation, such as the MPC benchmark
suite involved in the experimental evaluation, their X1G implementations can be optimally
synthesized in advance and made publicly available. In this situation, high-effort logic
algorithms, such as the logic rewriting algorithm (Algorithm 3) and the don’t-care-based
optimization algorithm (Algorithm 4), are preferable, since there is an unlimited time
budget and exploiting any opportunities to reduce garbling cost is the priority. Notice that
open-source optimized Boolean circuit implementations would not lead to any compromise
in privacy, given that the security of the GC protocol comes from the encrypted tables that
are created in the GC generation stage.

In future work, customized logic optimization algorithms supporting X1Gs can be
designed in an application-scenario-aware manner, so as to meet the variant requirements
of emerging MPC tasks.

10. Conclusions

Improving the efficiency of garbled circuits is more urgent than ever before to meet
the rapidly increasing application requirements of MPC. Existing efforts made by the logic
synthesis community focus intensively and exclusively on addressing the MC reduction
problem, which is based on the premise of adopting XAGs as the logic representation
for the target computation to be garbled. However, there is a lack of formal proof of the
superiority of using XAGs as the underlying logic representation for the task of low-cost
GC generation. Based on a thorough study of cipher texts’ efficiency for logic gates, we
propose here, for the first time, a more efficient logic representation based on X1Gs for
generating efficient GCs. To support this claim, we showed (a) a novel exact synthesis
algorithm to agilely synthesize the garbling-cost-optimal X1G implementations for small-
scale functions and (b) a logic optimization flow for X1Gs, scalable to practical functions,
that consists of a series of customized X1G optimization algorithms and that achieves
high-quality X1G implementations. Comprehensive experimental evaluations for public
benchmark suites evidenced the effectiveness of our proposals: compared with the state of
the art, for the EPFL arithmetic, the EPFL random/control, the cryptographic, and the MPC
benchmark suites, adopting X1Gs as the logic representation and applying our elaborated
logic optimization algorithms jointly led to 7.34%, 26.14%, 13.51%, and 4.34% reductions,
respectively, in garbling costs, with reasonable runtime overheads. This work offers a new



Cryptography 2023, 7, 61 21 of 23

perspective for low-cost GC generation and enables practical high-performance secure
computation.
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The following abbreviations are used in this manuscript:

2PC Secure two-party computation
ANF Algebraic normal form
BDD Binary decision diagram
DC Don’t-care
FHE Fully homomorphic encryption
GC Garbled circuits
MC Multiplicative complexity
MPC Secure multiparty computation
ODC Observability don’t-care
OT Oblivious transfer
SAT Boolean satisfiability
SDC Satisfiability don’t-care
SSV Single selection variable
X1G XOR-OneHot graph
XAG XOR-AND graph

Appendix A

To figure out the minimum modulus z that is sufficient to express an m-input symmetric
Boolean function as a modular addition, a simple algorithm is conceived based on the
definition of modular additions.

Algorithm A1: Determining the minimum modulus to interpret a symmetric
logic function as a modular addition

Input: m-input symmetric logic function, f
Output: Modulus to express the function as a modular addition, z

1 for i← 2 to m do
2 for j← i to m do
3 if f (HMW(j)) 6= f (HMW(j mod i)) then
4 break
5 if j = m then
6 return z←i
7 return z← m+1

https://github.com/MingfeiYu/mockturtle
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In line 3 of Algorithm A1, HMW(i) denotes the input patterns whose Hamming
weights are i. For example, in the cases of three-input Boolean functions (m = 3), HMW(1)
refers to the following three input patterns: 001, 010, and 100.
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