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ABSTRACT

The Adiabatic Quantum-Flux Parametron (AQFP) is an energy-

efficient superconducting logic family. AQFP technology requires

buffer and splitting elements (B/S) to be inserted to satisfy path-

balancing and fanout-branching constraints. B/S insertion policies

and optimization strategies have been recently proposed to mini-

mize the number of buffers and splitters needed in an AQFP circuit.

In this work, we study the B/S insertion and optimization methods.

In particular, the paper proposes: i) an algorithm for B/S insertion

that guarantees global depth optimality; ii) a new approach for B/S

optimization based on minimum register retiming; iii) a B/S opti-

mization flow based on (i), (ii), and existing work. We show that our

approach reduces the number of B/S up to 20% while guaranteeing

optimal depth and providing a 55× speed-up in run time compared

to the state-of-the-art.
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1 INTRODUCTION

In recent years, superconducting electronics (SCE) gained increas-

ing interest proposing high-speed and power-efficient solutions.

Superconducting circuits are based on Josephson junctions (JJs) and

operate at a few degrees Kelvin (typically 4K) where resistive ef-

fects are negligible. The switching speed of Josephson junctions

supports the realization of circuits clocked at several tens of Giga-

hertz and a considerably lower power consumption compared to

CMOS. The potential of SCE is well supported by academic and

industrial projects which address the electronic design automation

(EDA) challenges of digital SCE design [7, 14, 20].

The adiabatic quantum-flux parametron (AQFP) is a supercon-

ducting logic family that targets low-energy consumption. In this

technology, adiabatic switching operations drastically reduce the

dynamic and static power consumption compared to other super-

conducting logic families [17]. AQFP circuits operate at frequencies

up 10 Gigahertz with a power dissipation of two orders of mag-

nitude lower compared to CMOS when accounting also for the

cryo-cooling energy [7].
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In AQFP circuits, due to a different encoding of the information

compared to CMOS, each logic gate needs an alternating excitation

current that periodically releases the computation. The excitation

current is delivered as a clock [16]. Thus, data at each gate must be

present at specific time frames for correct functionality. This may

require the insertion of clocked buffers such that all data paths at

each gate’s fanin have the same length. This design constraint is

called path-balancing. Logic gates also have limited driving capabil-

ities. Branching elements called splitters are necessary for multiple

fanouts. Splitters need a clock to operate and typically support up to

4 fanouts. This second design constraint is called fanout-branching.

The path-balancing and fanout-branching requirements com-

plicate the design process and significantly affect area and delay.

In some applications, buffers and splitters (B/S) arrived to occupy

half of the total area even after optimization [3–5, 11, 13]. Hence,

developing EDA tools able to minimize the number of buffers and

splitters is of primary importance. Existing work considered AQFP

constraints during logic optimization to reduce imbalances and

high-fanouts by modifying the logic [4, 13, 19]. Other previous

work developed techniques to insert and minimize the number of

buffers and splitters needed in an AQFP circuit after logic synthe-

sis [5, 8, 11].

In this paper, we tackle the B/S insertion problem for area and

delay minimization given a logic network. Similarly to [11], we

formulate the B/S insertion problem as a scheduling problem. First,

we propose a linear-time algorithm to insert B/S elements such that

the resulting AQFP circuit is delay-optimal. Minimizing the delay is

beneficial for the area since it reduces the number of buffers needed

for path-balancing. None of the previous approaches guarantee

global delay optimality [5, 8, 11]. Then, we present a novel B/S

optimization method based on minimum-register retiming [12]

to reduce the number of buffers and splitters in an AQFP circuit.

Finally, we propose an AQFP B/S insertion and optimization flow

based on depth-optimal B/S insertion, retiming, and the chunk

movement algorithm presented in [11].

In the experiments, we show that our approach reduces the

number of buffers and splitters up to 20% compared to the state-of-

the-art algorithm [8] while providing a 55× speed-up in run time.

Finally, we show that our approach scales up to large benchmarks.

2 BACKGROUND

2.1 Adiabatic Quantum-Flux Parametron

The adiabatic quantum-flux parametron (AQFP) is an energy-efficient

superconducting technology. The main elements of AQFP circuits

are the buffer cell and the branch cell. The buffer cell is realized

using Josephson junctions (JJs) and superconductive inductors to

form a two-junction SQUID [17]. The basic functional block is the

majority-of-3 gate (MAJ3) that can be realized using three buffers
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Figure 1: Full-adder in AQFP technology

and a 3-to-1 branch cell at their outputs. By modifying a buffer cell

of the MAJ3 to produce a constant zero or one output, the MAJ3 im-

plements the AND2 or the OR2 cell. Inverters can be implemented

in a buffer without additional cost by using a negative mutual in-

ductance instead of a positive one [18]. Since the AQFP logic is

inherently majority-based, the functionality of an AQFP circuit can

be represented by a majority-inverter graph (MIG) [2].

AQFP gates need an AC excitation current to operate. This signal

also serves as a clock used to synchronize the computation at the

output of the gates. Consequently, data at the inputs of a gate must

be available in the same clock cycle to perform the correct operation.

Hence, fast signals need to be delayed by inserting clocked buffers

as delay elements. This problem is called path-balancing. AQFP

circuits also have limited driving capabilities. Branching elements

composed of a buffer cell and a branch cell are necessary whenever

a gate needs to drive more than one output. These elements are

called splitters. This constraint is called fanout-branching. Typically,

splitters have a maximum driving capacity of 3 or 4 and are clocked

cells. Hence, splitters affect path-balancing. Figure 1 shows a full

adder realized using 3-input majority gates that fulfil these con-

straints. Splitters (𝑆 squares) are correctly inserted to drive multiple
gates. Buffers (𝐵 squares) are used to balance the paths such that
each path input to output traverses the same number of gates.

Different technology assumptions have been proposed to ap-

proach the path-balancing and fanout-branching problems [11]. In

particular, these assumptions consider the cases in which primary

inputs (PIs) and primary outputs (POs) need to be branched and

balanced or not. For instance, if primary inputs are available for

multiple cycles, they do not need to be balanced. In this paper,

we assume that PIs and POs need to be balanced and branched.

Nevertheless, our work supports all the other assumptions.

The area and delay in an AQFP technology are commonly evalu-

ated in terms of Josephson junctions (JJs). The area cost of a buffer

or splitter cell is 2 JJs, while the area cost of a MAJ3, AND2, and

OR2 gates is 6 JJs. Each cell has a JJ depth of one. Hence, we describe

the delay of an AQFP circuit in terms of JJ depth.

2.2 Notation

ABoolean network𝑁 is modeled as a direct acyclic graph defined by
the pair (𝑉 , 𝐸) where𝑉 represents the set of nodes and 𝐸 represents
the set of directed edges. In this paper, we use Boolean network

and circuit interchangeably.

For any node 𝑣 , the fanins of 𝑣 , denoted as 𝐹𝐼 (𝑣), is a set of nodes
driving node 𝑣 , i.e., nodes that have an outgoing edge towards 𝑣 .
Similarly, the fanouts of 𝑣 , denoted as 𝐹𝑂 (𝑣), is a set of nodes which
are driven by node 𝑣 , i.e., nodes that have an incoming edge from 𝑣 .
The set of primary inputs (PIs) 𝐼 is a subset of nodes without fanin

in the network. The set of primary outputs (POs) 𝑂 is a subset of
nodes without fanout in the network. The set of logic gates 𝐺 is a
subset of nodes from a predefined gate library. Each node in 𝑉 is
either in 𝐼 , 𝑂 , or 𝐺 . In this paper, each gate in an AQFP-compatible
network is either an AND2, OR2, or MAJ3 with optional input

negations.

A mapped network 𝑁 ′ extends the Boolean network 𝑁 with a
gate element splitter and a gate element buffer. A splitter is a gate

with a fanin size of 1 and fanout size of 𝑠𝑏 where 𝑠𝑏 is the splitting
capacity. A buffer is a special case of splitter with a fanout size of 1.

A splitter tree of a node 𝑣 , denoted by 𝐹𝑂𝑇 (𝑣), is a set of splitters
and buffers reachable from 𝑣 to any other node in 𝐹𝑂 (𝑣). Figure
2 shows a splitter tree originated from a node 𝑛. A splitter tree is
said to be irredundant if each B/S element has at least one fanout

and there is not a pair (𝑠1, 𝑠2) ∈ 𝐹𝑂𝑇 (𝑣) such that their incoming
edges are connected to the same node and they both have fanout

size smaller than 𝑠𝑏 [11].
A schedule of a network 𝑑 : 𝑉 → N0 annotates a level as a

non-negative integer for each node in the network. The depth of a

network 𝑑 (𝑁 ) is defined as 𝑑 (𝑁 ) = max𝑜∈𝑂 𝑑 (𝑜). A schedule of the
network is valid if and only if a mapping function 𝑓 : (𝑁,𝑑) → 𝑁 ′

exists such that buffers and splitters can be inserted respecting the

path-balancing and fanout-branching constraints. A possible map-

ping function that runs in linear time has been presented in [11].

2.3 Minimum Register Retiming

Minimum register retiming is the problem of relocating the registers

in a circuit in order to minimize their number while preserving

the functionality [12]. The repositioning is captured by the integer-

valued retiming lag function 𝑟 (𝑣) : 𝑉 → Z that describes the

number of registers moved backward over node 𝑣 , from its fanout
to the fanin. Given a circuit where 𝑤 (𝑒) is the initial number of
registers on an edge 𝑒 , the minimum register retiming problem can
be formulated as a linear problem as follows:

min
∑

∀𝑒=(𝑢,𝑣) ∈ 𝐸

𝑟 (𝑣) − 𝑟 (𝑢) 𝑠 .𝑡 . (1)

𝑟 (𝑢) − 𝑟 (𝑣) ≤ 𝑤 (𝑒) ∀𝑒 = (𝑢, 𝑣) (2)

This linear problem is dual to the minimum-cost flow prob-

lem [12] for which many algorithms exist.

3 DEPTH-OPTIMAL BUFFER AND SPLITTER
INSERTION

In this section, we present a depth-optimal B/S insertion policy

formulating the AQFP mapping problem as a scheduling problem.

The depth-optimal B/S insertion problem for a Boolean network

𝑁 consists of finding splitter tree configurations such that the

resulting circuit depth is minimal. Not well composed splitter trees

could produce longer critical paths that increase the delay and

also the area. In fact, the area of an AQFP circuit is related to its

depth because of path-balancing. Intuitively, longer critical paths

(considering B/S elements) would require to insert more buffers due

to longer paths to balance. Thus, finding an optimal-depth AQFP

circuit is crucial to improve power, performance, and area (PPA).

To introduce our idea, we first define our B/S insertion policy to

find a level assignment 𝑑 (𝑛) for a node 𝑛 given a partial schedule 𝑑 .
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A method based on scheduling has been first proposed by Lee et

al. [11] presenting an algorithm for irredundant B/S insertion on a

single node given the relative depths of the fanout. Their approach

applied to a pre-scheduled network finds a valid AQFP circuit. In

this paper, we also propose an algorithm based on scheduling but

to generate a minimum-height irredundant splitter tree for a node

given the level assignment of its fanout. The algorithm is shown in

Algorithm 1.

Algorithm 1 fits a minimum-height splitter tree for a node 𝑛
given the level assignment of its fanout in a partial schedule 𝑑 and
assigns node 𝑛 to a level in the schedule. First, the pairs composed
of nodes and scheduled levels in the fanout of 𝑛 are saved in 𝐿
(line 2). Then, the highest level in 𝐿 is stored in 𝑙𝑙𝑎𝑠𝑡 (line 3). In the
main loop (lines 5 to 9), for each node-level pair in 𝐿 in descending
order of level, edges is updated. Variable 𝑒𝑑𝑔𝑒𝑠 counts the number
of nodes including B/S elements needed to be connected at level

𝑙 (line 7). Every time a node at a lower level is encountered, the
number of edges is reduced by fitting a balanced splitter tree of

depth 𝑙𝑙𝑎𝑠𝑡 − 𝑙 (line 6) and 𝑙𝑙𝑎𝑠𝑡 is updated. Once that every fanout
of 𝑛 has been processed, the algorithm finds the highest level where
𝑛 can be scheduled (lines 11 to 14). This level corresponds to the
first position where edges is equal to one. Figure 2 illustrates an

example for a node 𝑛 with four fanout nodes to better understand
Algorithm 1. Nodes are represented by circles with an id. The four

fanout nodes are assigned to levels 8 (nodes 1, 2, 3) and 7 (node 4)

in the partial schedule. The splitting capacity is 𝑠𝑏 = 2. Variable
𝑒𝑑𝑔𝑒𝑠 (𝑣,𝑙 ) indicates the value of 𝑒𝑑𝑔𝑒𝑠 when node 𝑣 (id) at level 𝑙
is considered in the main loop (lines 5 to 9). First, 𝑒𝑑𝑔𝑒𝑠 (1,8) = 1,
𝑒𝑑𝑔𝑒𝑠 (2,8) = 2 (not in the figure) and 𝑒𝑑𝑔𝑒𝑠 (3,8) = 3 are computed.
The algorithm is counting the nodes at level 𝑙 = 8. When a node
at a lower level is considered, in this case node (4, 7), the number
of needed B/S elements at level 7 to drive the nodes at level 8

is computed by 	3/28−7
 and 𝑒𝑑𝑔𝑒𝑠 is updated. Finally, from the
second loop (lines 11 to 14), edges is updated two times before

it reaches value 1 at level 5. Gate 𝑛 is then inserted as soon as
𝑒𝑑𝑔𝑒𝑠 = 1 at level 4. Figure 2 also shows the computed minimum-
height splitter tree where B/S elements are squares. It follows that:

Lemma 1. Algorithm 1 finds an irredundant minimum-height split-

ter tree for a node given a schedule of the fanout.

Proof. Algorithm 1 has two parts. In the first one, it counts

the number of nodes at level 𝑙 = 𝑙𝑙𝑎𝑠𝑡 when the level is stable.

𝑙 = 4

𝑙 = 5

𝑙 = 6

𝑙 = 7

𝑙 = 8

𝑒𝑑𝑔𝑒𝑠 =
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2
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⌉
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𝑒𝑑𝑔𝑒𝑠 =
⌈
3
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⌉
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⌈
3
2

⌉
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𝑒𝑑𝑔𝑒𝑠 (3,8) = 3

𝑛

1 2 3
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Figure 2: Example to illustrate Algorithm 1

Algorithm 1: Single node scheduling

1 Input : node 𝑛, partial scheduling 𝑑

2 L← { (𝑣,𝑑 (𝑣) ) | 𝑣 ∈ 𝐹𝑂 (𝑛) };

3 𝑙𝑙𝑎𝑠𝑡 ← max
(𝑣,𝑙 ) ∈ 𝐿

𝑙 ;

4 𝑒𝑑𝑔𝑒𝑠 ← 0;

5 foreach (𝑣, 𝑙 ) ∈ 𝐿 in descending order of 𝑙 do

6 𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑟𝑠 ←

⌈
𝑒𝑑𝑔𝑒𝑠

𝑠
(𝑙𝑙𝑎𝑠𝑡 −𝑙 )
𝑏

⌉
;

7 𝑒𝑑𝑔𝑒𝑠 ← 𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑟𝑠 + 1;

8 𝑙𝑙𝑎𝑠𝑡 ← 𝑙 ;

9 end

10 𝑙𝑙𝑎𝑠𝑡 ← 𝑙𝑙𝑎𝑠𝑡 − 1;

11 while 𝑒𝑑𝑔𝑒𝑠 ≠ 1 do

12 𝑒𝑑𝑔𝑒𝑠 ←
⌈
𝑒𝑑𝑔𝑒𝑠
𝑠𝑏

⌉
;

13 𝑙𝑙𝑎𝑠𝑡 ← 𝑙𝑙𝑎𝑠𝑡 − 1;

14 end

15 𝑑 (𝑛) ← 𝑙𝑙𝑎𝑠𝑡 ;

When a new node at a lower level is considered, the minimum

number of B/S elements needed at the lower level is computed

at line 6. This number is minimum since 𝑠
(𝑙𝑙𝑎𝑠𝑡−𝑙 )
𝑏

computes the

maximum number of nodes a single splitter tree can drive from

level 𝑙 to level 𝑙𝑙𝑎𝑠𝑡 . The ceiling of the ratio between the number of
nodes at level 𝑙𝑙𝑎𝑠𝑡 and the maximum splitter tree capacity tell us
the minimum number of splitters needed at level 𝑙 ′. In the second
part, once all the fanout has been processed, the algorithm fits the

minimum number of B/S elements level by level until 𝑒𝑑𝑔𝑒𝑠 = 1.
Since Algorithm 1 inserts the minimum number of B/S elements

per level, it also generates an irredundant and minimum-height

splitter tree. �

Since Algorithm 1 finds a level assignment that satisfies the path-

balancing and fanout-branching constraints for a node based on its

fanout, it can be used as a scheduling function in an ALAP schedule.

An ALAP scheduling algorithm schedules all the POs of a network

to a bound 𝜆 and applies a scheduling function for each node in
reverse topological order.

Proposition 2. Let 𝜆 be a sufficiently large bound to obtain a le-

gal ALAP schedule. Let 𝑙𝑚𝑖𝑛 = min𝑖∈𝐼 𝑑 (𝑖) be the lowest level of a
scheduled node in the network. Then, the depth of the AQFP circuit is

𝜆 − 𝑙𝑚𝑖𝑛 .

Proof. By definition, the ALAP scheduling bound 𝜆 is relaxed
such that 𝜆 ≥ 𝑑 (𝑁 ). Since there are not scheduled nodes from level

zero to 𝑙𝑚𝑖𝑛 − 1, we could reduce 𝜆 by 𝑙𝑚𝑖𝑛 to removed unassigned

levels. �

From Proposition 2, it follows that the scheduling objective for

minimizing the depth is to maximize the level of PIs in the ALAP

schedule since 𝑑 (𝑁 ) = 𝜆 − 𝑙𝑚𝑖𝑛 where 𝜆 is constant.

Theorem 3. The global optimal-depth buffer and splitter inser-

tion problem is solvable using dynamic programming by inserting

minimum-height splitter trees in reverse topological order.
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Figure 3: Example of splitter selection due to fanout limita-

tions.

Proof. An ALAP scheduling algorithm assigns all the POs to

the bound 𝜆 that is the maximum possible level. Given a node 𝑛 and
its already scheduled fanout, a minimum-height splitter tree can be

inserted using Algorithm 1. Thus, 𝑛 is scheduled to its maximum
level. By induction, the algorithm maximizes the level of each node

and thus the resulting AQFP circuit is depth-optimal. �

Using Lemma 1, Proposition 2, and Theorem 3, we proved that

Algorithm 1 in a ALAP scheduling obtains depth-optimality.

Our AQFP ALAP mapping method firsts computes a higher

bound 𝜆 for the ALAP scheduling, for instance by assuming each
node would need a balanced splitter tree to drive its fanout. Then,

every PO is scheduled to the bound. Next, each node is scheduled in

reverse topological order using Algorithm 1. The reverse topologi-

cal ordering guarantees that each fanout has been already visited.

Finally, the PIs are scheduled to level zero and the rest of the nodes

are lowered by the minimum assigned level. The depth-optimal

ALAP scheduling algorithm runs in linear time to the number of

nodes in the network. The presented method can be used to gener-

ate a scheduling assignment that maps into a valid AQFP circuit.

Then, a mapping function can be used to extract the mapped circuit

in linear time [11].

Our approach can support different technology assumptions such

as balanced or not-balanced POs and PIs. In case of not branched

PIs, PIs are scheduled without running Algorithm 1 by placing

them just below the internal node with the lowest level. For other

assumptions, the ALAP scheduling method remains unchanged.

The mapping function, instead, does not insert buffers or splitters

for PIs or POs according to the specifications.

4 RETIMING-BASED BUFFER AND SPLITTER
OPTIMIZATION

In this section, we present an algorithm based on minimum register

retiming to globally minimize the numbers of buffers and splitters

in an AQFP network. Previous work applied a retiming-like opti-

mization to AQFP logic [3, 5]. However, their approach does not

perform global retiming but moves buffers locally from the output

of splitters to the input. This optimization is already included in our

depth-optimal algorithm since our approach creates irredundant

splitter trees.

Buffers and splitters are used in AQFP circuits to meet the circuit

constraints of path-balancing and fanout-branching. Minimizing

the number of B/S elements consists of maximizing the sharing

of B/S elements. Without accounting for fanout-branching, e.g.,

Algorithm 2: B/S retiming

1 Input : AQFP circuit𝑀 , technology assumptions 𝑝𝑠

2 while improvement do

3 select_retimeable_elements(𝑀 , 𝑝𝑠);

4 set up retiming direction to forward;

5 maximum_flow(𝑀);

6 get_minimum_cut(𝑀);

7 move_retimed_elements(𝑀);

8 end

9 while improvement do

10 select_retimeable_elements(𝑀 , 𝑝𝑠);

11 set up retiming direction to backwards;

12 maximum_flow(𝑀);

13 get_minimum_cut(𝑀);

14 move_retimed_elements(𝑀);

15 end

16 reconstruct_splitter_trees(𝑀 , 𝑝𝑠);

17 return;

assuming that buffers have an infinite driving capability, the mini-

mum number of buffers is achievable in polynomial time using a

minimum register retiming algorithm considering each buffer as

a register. Retiming preserves the path-balancing constraint since

each path traverses the same number of registers before and af-

ter retiming. Existing work applied this idea to Rapid Single-Flux

Quantum (RSFQ) superconducting logic [10]. However, when con-

sidering fanout limitations, splitters cannot be relocated freely since

their movement is conditional on respecting the fanout constraints.

Hence, retiming can be only used as a heuristic for B/S optimization.

Figure 3 shows a splitter tree where a gate is represented by a

circle and a B/S element is represented by a rectangle. Let us sup-

pose that the maximum splitting capacity is 𝑠𝑏 = 3. In this example,
splitter 𝑆0 cannot be selected for retiming since its movement would
increase the fanout of 𝑛 to 2 not satisfying the fanout constraint of
a gate. Splitters 𝑆1 and 𝑆2 are only mutually selectable for retiming
since the movement of both of them would increase the fanout of 𝑆0
to 4 not satisfying the fanout constraint 𝑠𝑏 . Note that the latter case
may happen only in redundant splitter trees, as in Figure 3. More-

over, retiming optimization of the splitters 𝑆1 and 𝑆2 may depend
on different fanout groupings such as 𝐹𝑂 (𝑆1) = {𝑓0, 𝑓2}, 𝐹𝑂 (𝑆2) =
{𝑓1, 𝑓3} instead of the current 𝐹𝑂 (𝑆1) = {𝑓0, 𝑓1}, 𝐹𝑂 (𝑆2) = {𝑓2, 𝑓3}.
Some groupings may unlock a B/S minimization that is not achiev-

able in others.

The B/S retiming algorithm is shown in Algorithm 2. The algo-

rithm receives a valid AQFP circuit and the technologies assump-

tions as input. Since the retiming problem is solved as a maximum

flow problem similarly to [9], the flow computation is separated in

the forward and backward directions. The algorithm performs two

optimization loops in both directions. A loop starts by selecting the

elements to be retimed (line 3 or 11). Those are the splitters and

buffers that can be relocated without exceeding the driving capacity

of the fanin gate or the B/S element. In the case of mutually exclu-

sive selections (e.g., two splitters cannot be retimed at the same

time) one is picked using a deterministic random function. Each

selected B/S element is a source and a sink of a unitary flow. Next,
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𝑔0 𝑔1

(a) Initial configuration

𝑔0 𝑔1

(b) Configuration after retiming

Figure 4: Example of forward retiming of buffers and split-

ters.

the algorithm proceeds by selecting the retiming direction, comput-

ing the maximum flow, getting the minimum cut, and moving the

selected elements to the new position if there is an improvement.

Since retiming movements could create redundant splitter trees,

the algorithm terminates by reconstructing each splitter tree to be

irredundant (line 17).

An example of a forward retiming iteration is depicted in Figure 4.

Figure 4a shows an initial configuration of a logic section in an

AQFP circuit where circles represent gates, rectangles represent

buffers and splitters, and arrows represent connections. In this

example, the splitter capacity is 𝑠𝑏 = 3. The algorithm selects the
B/S elements in orange to perform retiming as they satisfy all

the conditions (buffers and retimeable splitters). Figure 4b shows

the configuration after retiming. Two new buffers are inserted (in

green). The B/S elements have been reduced from 6 to 5 while

maintaining the same paths lengths.

5 OPTIMIZATION FLOW

In this section, we present a flow for AQFP mapping consisting of

B/S insertion followed by B/S optimization. The optimization flow

is shown in Algorithm 3.

The mapping algorithm takes a MIG as an input expressing the

AQFP circuit functionality. Then, the circuit is scheduled using the

depth optimal algorithm in Section 3 (line 4). Then, an alternative

scheduling approach based on ASAP is attempted (line 5). This

approach takes an ALAP schedule and tries to move the gates as

close as possible to the PIs by pushing fanin buffers forward to the

output (similarly to forward retiming) and constraining the nodes

to be scheduled within the ALAP schedule. In this way, also the

ASAP schedule is depth-optimal. Then, an AQFP circuit is generated

from the schedule. This step is motivated by different technology

assumptions [11], e.g., an ASAP configuration is generally ben-

eficial if POs do not need balancing (B/S elements connected to

Algorithm 3: Splitters and buffers insertion method

1 Input : MIG network 𝑁𝑚𝑖𝑔 , technology assumptions 𝑝𝑠

2 Output: AQFP circuit𝑀

3 𝑀 ← empty network;

4 𝑑𝐴𝐿𝐴𝑃 ← ALAP(𝑁𝑚𝑖𝑔 , 𝑝𝑠);

5 𝑑𝐴𝑆𝐴𝑃 ← ASAP(𝑁𝑚𝑖𝑔 , 𝑝𝑠 , 𝑑𝐴𝐿𝐴𝑃 );

6 if num_bs(𝑑𝐴𝐿𝐴𝑃 ) < num_bs(𝑑𝐴𝑆𝐴𝑃 ) then

7 𝑀 ← dump_circuit(𝑁𝑚𝑖𝑔 , 𝑑𝐴𝐿𝐴𝑃 , 𝑝𝑠);

8 else

9 𝑀 ← dump_circuit(𝑁𝑚𝑖𝑔 , 𝑑𝐴𝑆𝐴𝑃 , 𝑝𝑠);

10 end

11 bs_retiming(𝑀 , 𝑝𝑠);

12 while improvement do

13 chunk_movement(𝑀 , 𝑝𝑠);

14 bs_retiming(𝑀 , 𝑝𝑠);

15 det_randomize(𝑀);

16 end

17 return𝑀 ;

the POs can be removed). Nevertheless, the initial B/S configura-

tion could affect the area results even after optimization in generic

designs. Hence, it is worth to consider multiple starting config-

urations. After the two schedules are computed, the circuit with

fewer B/S elements is selected for generating the AQFP circuit.

This choice reduces the run time of the optimization flow since the

starting AQFP circuit would contain less B/S elements. Then, the

algorithm starts the optimization phase. It first performs an initial

B/S retiming. Next, an optimization loop applies one pass of the

chunk movement algorithm in [11], B/S retiming, and deterministic

randomization. The chunk movement algorithm is used to locally

reschedule some nodes up or down to reduce the number of B/S

elements. This algorithm differs from B/S retiming since the latter

works by globally maximising the sharing of existing buffers and

splitters. The deterministic randomization picks a different topo-

logical ordering to escape local minima and find different fanout

groupings when constructing splitter trees. The loop is iterated un-

til no further improvement or iteration limit is reached. Finally, the

mapped and optimized AQFP circuit is returned. This optimization

flow preserves the depth optimality. Alternatively to this algorithm,

we developed a portfolio approach which consists of carrying the

optimization with both the ALAP and ASAP schedules separately

and picking the best final result. This latter method offers better

quality at the expense of more run time.

6 EXPERIMENTS

The optimization framework has been implemented in C++ 17 in

the logic synthesis framework Mockturtle1 [15]. The experiments

have been conducted on an Intel i5 quad-core 2GHz on MacOS. All

the results were verified to fulfill the path-balancing and fanout-

branching assumptions.

6.1 Comparison Against the State of the Art

In this experiment, we compare our optimization flow in Algo-

rithm 3 to the state-of-the-art [8]. The state of the art method

1Available at: https://github.com/lsils/mockturtle
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consists of a B/S insertion followed by a heuristic optimization that

pushes gates up and down to reduce the number of buffers. That

approach has local optimality for inserting splitter trees on a single

wire, like Algorithm 1, but no global optimality. Moreover, their

buffer and splitter insertion approach has a higher computational

complexity than the one we propose. To compare the two methods,

the benchmarks have been obtained from the authors of the paper2.

We use the same settings by balancing and branching PIs and POs

using a splitting capacity of 𝑠𝑏 = 4.
Table 1 shows the results of the comparison. For our approach,

we include the results right after B/S insertion, indicated with the

term “Ins.”, and after the optimization flow. Our approach (Algo-

rithm 3) performs significantly better in almost every benchmark

reducing the number of B/S elements up to 20% with a 55× speed-

up in run time compared to the state-of-the-art approach3. Our

results improve even more using a portfolio approach4. The port-

folio approach reduces the total number of B/S elements to 50002

while maintaining a 19× speed-up in run time. Our B/S retiming

algorithm is responsible of the 84% of the total area reduction on av-

erage. The higher JJ depth of our method in benchmark c2670 is due

to the structural hashing pre-processing. Most of the benchmarks

in Table 1 are relatively small. We could expect more significant

improvements on larger benchmarks like the second half of the

table suggests.

6.2 Results on the EPFL Benchmark suite

In this experiment, we applied our B/S insertion and optimization

method (Algorithm 3) to the 10 largest designs in the EPFL bench-

mark suite5 [1] to demonstrate its scalability. The baseline has been

obtained by mapping the benchmarks into MIGs using the graph

mapper in [6] in the delay mode with default settings. In this ex-

periment, PIs and POs are balanced and branched, and the splitting

capacity 𝑠𝑏 = 4. To decrease the run time, we limited the retiming
iterations to 250, the size of the chunks to 100, and we executed

the main optimization loop only once. Moreover, we limited the

execution run time budget to 300 seconds.

Table 2 shows the experimental results after depth-optimal B/S

insertion and after carrying the optimization in Algorithm 3. The

B/S insertion algorithm scales very well with limited run time for

all the benchmarks. The B/S optimization reduces the number of

splitters up to 37.83% and the total area up to 24.04%. However,
our B/S optimization could have issues at finding a solution in

the time budget for large benchmarks with more than 1 million of

B/S elements such as div or hyp. Design partitioning could help at

improving the scalability even more.

7 CONCLUSION

In this work, we studied the buffer and splitter insertion problem

in AQFP circuits. While existing work focused only on area re-

duction [5, 8, 11], in this paper we stated the importance of delay

2The benchmarks contained redundant gates and inverter cells. Since the Mockturtle
framework automatically applies structural hashing to the networks, the starting
points of the experiments are slightly different.
3Since the tool in [8] is not openly available, it is not possible to run it on larger
benchmarks and the run time has been taken from the paper.
4Results are not included in the table for space reasons.
5Available at: https://github.com/lsils/benchmarks

reduction to minimize the path-balancing costs and consequently

benefit the area. Moreover, previous work constructed the splitter

trees separately for each node. Without a global policy, their ap-

proach cannot offer global optimality due to the interplay among

gates. In contrast, we demonstrated that there exists a linear time

algorithm based on ALAP scheduling to insert buffers and splitters

such that the resulting AQFP circuit is globally depth-optimal. Next,

we presented a novel algorithm to minimize buffers and splitters

based on minimum register retiming. Finally, we proposed a B/S in-

sertion and optimization flow based on the algorithms in this paper

and the chunk movement algorithm in [11]. Our approach reduces

the number of B/S elements up to 20% while guaranteeing optimal

depth and providing a speed-up of 55× in run time compared to the

state-of-the-art method. Additionally, we showed that our method

scales to large benchmarks.
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Table 1: Evaluation of our approach against the state of the art
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Table 2: Experimental results for AQFP mapping on the EPFL benchmark suite
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