
914 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 3, MARCH 2023

Utilizing XMG-Based Synthesis to Preserve
Self-Duality for RFET-Based Circuits

Shubham Rai , Graduate Student Member, IEEE, Alessandro Tempia Calvino , Heinz Riener ,
Giovanni De Micheli , Life Fellow, IEEE, and Akash Kumar , Senior Member, IEEE

Abstract—Individual transistors based on emerging reconfig-
urable nanotechnologies exhibit electrical conduction for both
types of charge carriers. These transistors [referred to as
reconfigurable field-effect transistors (RFETs)] enable dynamic
reconfiguration to demonstrate either a p- or an n-type func-
tionality. This duality of functionality at the transistor level is
efficiently abstracted as a self-dual Boolean logic, that can be
physically realized with fewer RFET transistors compared to the
contemporary CMOS technology. Consequently, to achieve bet-
ter area reduction for RFET-based circuits, the self-duality of a
given circuit should be preserved during logic optimization and
technology mapping. In this article, we specifically aim to pre-
serve self-duality by using Xor-majority graphs (XMGs) as the
logic representation during logic synthesis and technology map-
ping. We propose a synthesis flow that uses new restructuring
techniques, called rewriting and resubstitution for XMGs to pre-
serve self-duality during technology-independent logic synthesis.
For technology mapping, we use a novel open-source and a logic-
representation agnostic mapping tool. Using the above-proposed
XMG-based flow, we demonstrate its benefits by comparing
post-mapping areas for synthetic and cryptographic benchmarks
with three different synthesis flows: 1) AIG-based optimization
and AIG-based mapping; 2) XMG-based optimization with
AIG-based mapping; and 3) AIG-based optimization with logic-
representation agnostic mapping. Our experiments show that the
proposed XMG-based flow efficiently preserves self-duality and
achieves the best area results for RFET-based circuits (up to
12.36% area reduction) with respect to the baseline.

Index Terms—Logic synthesis, reconfigurable field-effect tran-
sistors (RFETs), self-duality, Xor-majority graph (XMG).

I. INTRODUCTION

EMERGING reconfigurable nanotechnologies offer a
unique feature set over the traditional CMOS technolo-

gies. The transistors based on reconfigurable nanotechnologies
can be dynamically reconfigured to exhibit either a p- or an n-
type polarity [1], [2], [3]. Hence, these transistors are termed as
reconfigurable field-effect transistors (RFETs) [4]. Such recon-
figurable properties can be utilized in circuits to achieve more

Manuscript received 12 November 2021; revised 14 March 2022; accepted
26 May 2022. Date of publication 20 June 2022; date of current version
20 February 2023. This work was supported in part by the German Research
Foundation (DFG), project SecuReFET under Grant 439891087; and in part
by the SNF grant “Supercool: Design Methods and Tools for Superconducting
Electronics,” under Grant 200021_1920981. This article was recommended by
Associate Editor H. Zheng. (Corresponding author: Shubham Rai.)

Shubham Rai and Akash Kumar are with Chair for Processor
Design, CfAED, Technische Universität Dresden, 01187 Dresden, Germany
(e-mail: shubham.rai@tu-dresden.de).

Alessandro Tempia Calvino, Heinz Riener, and Giovanni De Micheli are
with Integrated Systems Laboratory, EPFL, 1015 Lausanne, Switzerland.

Digital Object Identifier 10.1109/TCAD.2022.3184633

functionality per computational unit [4], [5]. Recently, it has
been shown that RFETs allow efficient implementation of self-
dual logic functions with few transistors [6]. Therefore, to
achieve better area results for RFETs-based circuits, synthe-
sis flow should utilize the maximum available self-duality in
the circuit. The present work focuses on improving the logic
synthesis and the technology mapping flow to achieve bet-
ter area results for circuits based on emerging reconfigurable
nanotechnologies by preserving the self-duality of a given
circuit.

Logic synthesis plays an important role in optimizing a logic
representation for a given circuit in terms of a cost function,
typically focusing on the reduction of area or delay. At the
technology-independent level, multilevel logic representations
are used to represent and optimize circuits. Recently, novel
representations have been proposed that enhance and-inverter
graphs (AIGs) [7] and majority-inverter graphs (MIGs) [8]
with an additional XOR primitive. These new logic represen-
tations, called Xor-and graphs (XAGs) [9] and Xor-majority
graphs (XMGs) [10], [11], offer better compaction and, thus,
often have a positive effect on the performance of logic
minimization techniques [10]. Technology mapping, on the
other hand, focuses on expressing the minimized logic repre-
sentation in terms of a network of logic gates chosen from a
given library [12].

We explore an XMG-based synthesis flow for reconfig-
urable nanotechnologies to preserve and utilize the existing
self-duality of a circuit, as they are less prone to disrupting
self-duality compared to AIGs. XMG’s gate primitives—XOR

and MAJORITY offer a compact representation to abstract
self-dual logics, because MAJORITY and odd-input XORs are
self-dual.

We provide experimental evidence that a logic representa-
tion that compactly abstracts self-duality is able to preserve
more self-duality in the circuit and achieve better area results
for RFETs-based circuits. This is motivated by the fact that
synthesis approaches such as logic optimization and tech-
nology mapping involve structural changes over a graph
representation of a circuit which can disrupt the existing self-
duality of a circuit. Our experiments show that for circuits
with high percentage of self-dual logic (for ex. Majority and
odd-input XORs), AIGs are more prone to decompose self-dual
logic and preserve less self-dual logic as compared to XMGs.

The present work is an extension of the prior work [13].
While the prior work [13] did explore XMG-based logic syn-
thesis for RFETs-based circuits, it suffered from the lack of

1937-4151 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 16:31:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6522-5628
https://orcid.org/0000-0003-1312-2907
https://orcid.org/0000-0003-1527-7160
https://orcid.org/0000-0002-7827-3215
https://orcid.org/0000-0001-7125-1737

RAI et al.: UTILIZING XMG-BASED SYNTHESIS TO PRESERVE SELF-DUALITY FOR RFET-BASED CIRCUITS 915

a logic representation-agnostic technology mapper. Hence, in
this work, we extend and use the recently proposed versatile
mapper [14] that can perform technology mapping natively
on XMGs to solve the limitation of the prior work [13]. The
technology-independent mapper can use XMGs as the sub-
ject graph, and, therefore, our approach avoids the suboptimal
process of converting to other logic representations that break
down self-dual logic gates into smaller primitives. Further, we
carry a detailed evaluation in terms of self-dual cuts recognized
by the AIG and the XMG flows. Additionally, we propose a
synthesis flow meant specifically for RFETs-based circuits and
evaluate it with three other flows. The scope of the present
work is limited to logic synthesis and technology-independent
mapping and does not focus on the physical synthesis of
RFETs-based circuits. The major contributions are as follows.

1) To preserve self-duality, we propose an XMG-based
synthesis flow for circuits based on reconfigurable nan-
otechnologies. The XMG-based synthesis flow enables
a better area reduction for RFET-based circuits.

2) We propose a resubstitution and a rewriting algorithm
for XMGs. We demonstrate that the two techniques
play an important role for XMG optimization and also
increase the self-duality density of the circuits.

3) Our resubstitution algorithm uses a new filtering rule for
3-input XOR gates (XOR3) which drastically reduces the
runtime.

4) Using an area-oriented mapping, we demonstrate that
as compared to AIGs, XMGs enable a higher percent-
age of self-dual cuts during mapping. The higher share
of self-dual cuts subsequently leads to more mapping
opportunities on to self-dual logic gates.

We compare our XMG-based approach with three different
flows. First, we compare it to the native flow of the state-of-
the-art tool ABC [15] (baseline). Second, we use XMG-based
logic synthesis as a starting point and compare the area results
calculated by the logic-representation agnostic mapper [14]
with those calculated by the ABC technology mapper. Third,
since the logic-representation agnostic mapper can support
different logic representations, we compare our XMG-based
approach with the AIG-based approach within the mockturtle
framework [16].

We perform experiments over two sets of benchmarks to
evaluate our approach. In the first set of experiments, we
enumerate synthetic benchmarks with varying degrees of self-
duality and show that our XMG-based approach gives the best
results across these three different flows. In the second set of
experiments, we use cryptographic benchmarks [17], [18]. We
first demonstrate the impact of logic optimization techniques
on the runtime and self-duality of the graph representation of
circuits. We show that the XOR3 filtering rule leads to 59.48%
improvement in runtime. In conjunction, the two techniques—
resubstitution and rewriting, lead to a 23% average increment
of self-duality or the cryptographic benchmark suite. We then
show that our proposed XMG-based approach leads to an area
savings of up to 12.3% with respect to the baseline. Finally,
we explore the relation between self-dual cuts and the final
share of area by self-dual logic gates as a percentage of the
overall area. We can see that on an average, the XMG-based

(a) (b)

Fig. 1. Edges and nodes representation in case of (a) AIG and (b) XMG
representation for the function, f = x1⊕ x2⊕ x3 (3-input XOR). The AIG has
6 gates and 13 edges, while the XMG has 1 gate and 4 edges.

approach results in 7.66% more area occupied by self-dual
gates compared to the AIG-based approach within mocktur-
tle framework. These comparisons show that for circuits with
higher self-duality, our XMG-based flow achieves superior
results as compared to other contemporary flows.

The remainder of this article is organized as follows.
Section II presents a motivating example of a simple cir-
cuit and compares the AIG and the XMG flow. Section III
introduces reconfigurable nanotechnologies and explains how
self-duality is a natural abstraction for logic gates based on
these emerging technologies. In Section IV, we explain how
self-duality can be preserved using XMG-based logic synthe-
sis and technology mapping. This is followed by Section V,
which explains the proposed resubstitution and the rewriting
algorithm for XMGs. Then, in Section VI, we brief about
our versatile mapper. This is followed by Section VII, which
presents details about the algorithm to generate benchmarks
with varying degrees of self-duality. Section VIII contains
details about our experimental analysis. Closing remarks can
be found in Section IX.

II. MOTIVATION

In order to understand the motivation behind this work, let
us consider a circuit that consists of a single 3-input XOR. Our
objective is to carry out technology mapping of this given cir-
cuit. Two straightforward mappings for the given circuit are
possible—one where the circuit is mapped to two 2-inputs
XOR gates; and the other directly to a 3-input XOR gate. From a
CMOS perspective, the mapper should prefer the first mapping
as we know that a 3-input XOR logic is avoided in CMOS as
it requires multiple transistors and often has large delay [19].
Logic gates with many CMOS transistors require cascading or
branching of multiple transistors that hampers the performance
of such logic gates based on CMOS. Hence, circuits based
on CMOS prefer logic gates with few inputs as such logic
gates are better in terms of performance and area. This is
also one of the considerations in contemporary logic repre-
sentation of AIG as CMOS favors negative unate logic [20].
However, in the case of RFETs, a 3-input XOR is a preferred
mapping since it is a self-dual logic gate [6]. From a logic
synthesis perspective, the contemporary logic representation
of AIG uses 6 nodes and 13 edges to represent the circuit.
In contrast, XMG uses 1 nodes and 4 edges. Both the AIG
and XMG representations are shown in Fig. 1. If we consider

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 16:31:09 UTC from IEEE Xplore. Restrictions apply.

916 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 3, MARCH 2023

(a)

(b) (c)

Fig. 2. Generic RFET showing two gate terminals: the program (signal P) and
the control gate (signal A) [19]. The program gate controls the type of charge
carriers whereas the control gate controls the flow of the charge carriers. The
adjacent curve shows the V-shaped curve representing electrical symmetry for
n- and p-type functionality. (b) It shows a graphene p-n junction where the
back gates (S and U) work as a control knob to control the ambipolarity. (c) It
shows an all-around RFET, called TIGFETs. The band diagrams are shown
in [21].

the AIG representation, a simple 3-input cut-based technique
during logic optimization and technology mapping results in
the first kind of mapping. However, in the case of XMGs,
with the same setting, the second mapping is achieved. The
higher number of edges and nodes in AIG compared to XMG
explains this difference in mapping results. This simple intu-
itive example motivates us to explore XMGs for RFETs-based
circuit. As CMOS favors negative unate logic gates, AIGs are
the natural abstraction for CMOS logic [20]. However, are
AIGs appropriate for RFETs-based circuits as well? In this
article, we investigate this question.

III. BACKGROUND

A. Reconfigurable Nanotechnologies

Ambipolarity, or ambipolar conduction, is a phenomenon
observed at lower technology nodes where the transistor allows
conduction of both the charge carriers through the channel.
Ambipolar conduction is enhanced using process techniques
for several nanoscale FET devices based on materials such
as silicon or germanium [22]. The class of emerging nan-
otechnologies that aims to take advantage of this ambipolarity
is termed reconfigurable nanotechnology and the devices are
referred to as RFETs. These devices demonstrate both n- and
p-type functionality from a single device when an external
bias is applied. Multiple device geometries based on various
materials like silicon [22], [23], germanium [24], carbon [25],
etc. have been proposed which exhibit near to full electrical
symmetry in both n- and p-type functionality. This electri-
cal symmetry is shown as V-shaped curve in Fig. 2. Both
1-D (such as silicon [23] or germanium nanowires [22], etc.)

(a) (b)

(c)

Fig. 3. (a) Transistor-level schematics of the reconfigurable logic gates
(a) MINORITY and (b) XOR3, as presented in [19], [23]: (c) Functionality
of the gates changes with the value applied to P and x1, respectively.

and 2-D devices (such as graphene p-n junctions [26], WSe2
three-independent gate FET (TIGFET) [27], etc.) have been
demonstrated to exhibit ambipolarity. In terms of feasibility,
silicon or germanium nanowires-based RFETs follow a simi-
lar manufacturing and fabrication process as CMOS [28], [29]
and hence, they are closer to commercial integration.

Further, RFETs allow multiple gate terminals on a sin-
gle channel, thereby reducing the on-channel resistance. This
enables a wired-AND functionality [30] for multiple input
gate terminals that can be used to realize large logic gates
with more than 2 inputs. This has been shown experimentally
in [31] and [32]. Having multiple gate terminals on a single
channel enables designing large logic gates with more than
2 inputs without compromising on performance [32]. More
details about the electrical performance and the physics of
RFETs can be found in [4], [19], and [28].

B. RFETs-Based Logic Gates

Ambipolarity at the transistor level can be exploited for
designing efficient logic gates based on RFETs [19]. Since
individual transistors allow dynamic reconfiguration between
p and n-type behavior, logic gates can exploit such dynamic
reconfigurability to have more than one functionality [19],
[33], [34] as shown in Fig. 3. It can be seen from the figure,
that a single circuit schematic can realize up to three different
logic functions.

Unlike CMOS, different functionalities such as NAND and
NOR functionality demonstrate equal current drive strength [4].
It is to be noted that logic gates exhibiting multiple function-
alities follow a similar schematic of pass-transistor logic [4],
[32]. Exhibiting dynamic reconfiguration between logic func-
tionalities also has a delay overhead as demonstrated in [19]
as compared to the static logic gate design. However, equal

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 16:31:09 UTC from IEEE Xplore. Restrictions apply.

RAI et al.: UTILIZING XMG-BASED SYNTHESIS TO PRESERVE SELF-DUALITY FOR RFET-BASED CIRCUITS 917

(a) (b)

Fig. 4. (a) Fixed pull-up and pull-down networks in case of complementary
MOS logic gates. (b) Switchable pull-up and pull-down networks in case of
RFET-based logic gates [6].

current drives in both p- and n-type configuration, and
having multiple gate terminals on a single channel enable
better performance and better compaction in terms of area
as compared to the CMOS logic gates with more than
2 inputs [32], [35].

C. Self-Dual Functions

The dual of an n-input Boolean function f (x1, . . . , xn) over
the Boolean variables x1, . . . , xn is given by f (x̄1, . . . , x̄n), i.e.,
the dual is obtained first by replacing each literal xi with x̄i and
then by complementing the function. We write f d(x1, . . . , xn)

to denote the dual of a Boolean function f (x1, . . . , xn).
A logic function f (x1, . . . , xn) is called self-dual [36] if

f (x1, . . . , xn) = f (x̄1, . . . , x̄n) (1)

or, equivalently, if

f (x1, . . . , xn) = f (x̄1, . . . , x̄n) (2)

for all x1, . . . , xn ∈ B.
Theorem 1: There are 22n−1

different self-dual functions of
n variables.

Proof: For a self-dual function, because of (1), only half
of inputs are sufficient to completely specify the function.
From this, only 2n−1 combinations for n inputs exist. Hence,
the total number of self-dual functions for n inputs consider-
ing both polarities (0 and 1) is equal to 22n−1

which is the
square root of the total number of functions possible with n
variables.

Fig. 3(c) shows the self-dual 3-input function of the XOR3
logic gate. If the truth table is split by the value of x1 (or any
other arbitrarily selected literal), the two halves of the XOR3
truth-table (XOR2 and XNOR2 if split by x1) are dual to each
other.

Rai et al. [6] showed that self-dual functions are a logi-
cal abstraction for ambipolar nanotechnologies. The multiple
functionalities exhibited by RFET-based logic gates as shown
in Fig. 3 are due to the switchable pull-up and pull-down
networks, as shown in Fig. 4. The switching of polarities of
individual transistors in their respective pull-up and pull-down
networks is caused by the change of the potential at the pro-
gram gate, as shown in Figs. 3(a) and (b). This change of

the potential causes PFETs to become NFETs and vice-versa,
which switches the pull-up and pull-down networks, as shown
in Fig. 4(b). This corresponding switch in electrical behavior
is abstracted conveniently by a self-dual function. Only with
self-dual functions, the polarity switch in individual transistors
creates a conducting path between the output and the source
(or drain) leading to the realization of the dual of the original
function.

D. Terminologies

We introduce some terminologies, which will be used
throughout the rest of this article. A given circuit is rep-
resented as a direct acyclic graph consisting of nodes and
edges. Nodes are data structures representing logic gates as
defined by a given logic representation (AIG, XMG, etc.)
Edges denote the connections between nodes. Without losing
generality, the terms circuit, logic graph, and logic network
are used interchangeably throughout the manuscript.

1) Self-Duality Density: We define the term self-duality
density for a circuit (or a logic network) as the ratio of
the total number of self-dual nodes to the total number
of nodes.

2) Trivial and Nontrivial Self-Dual Functions: As shown in
Theorem 1, self-dual functions are fewer (square root of
the total number of functions) compared to the nonself-
dual functions. Moreover, among two-input functions,
self-duality exists in those functions which are equiv-
alent to either the inputs or to their complements [for
example, f (a, b) = a or f (a, b) = a]. Such functions are
implemented in circuits as wires (or use an inversion)
and, hence, their implementation in RFETs is identical
to that of CMOS. Thus, two-input self-dual functions
are referred to as trivial functions. For self-dual func-
tions with more than two inputs, their implementation
with RFETs requires fewer transistors compared to their
CMOS counterpart [6], [19]. These functions will have a
direct impact on the area of the circuit. Hence, self-dual
functions with 3 or more inputs are called nontrivial
functions.

E. Majority Logic Synthesis

In this section, we review majority logic synthesis. The
majority function 〈x1, x2, x3〉 of three Boolean variables
x1, x2, x3 evaluates to true if and only if at least two of the
three variables have a value of true. The majority function can
be expressed in disjunctive normal form or conjunctive normal
form, i.e.,

〈x1, x2, x3〉 = x1x2 + x1x3 + x2x3

= (x1 + x2)(x1 + x3)(x2 + x3). (3)

By setting one of the three Boolean variables x1, x2, x3 in
the majority function 〈x1, x2, x3〉 to a constant value 0 or 1,
one obtains the logic functions AND and OR, respectively, i.e.,

〈0, x1, x2〉 = x1x2 and 〈1, x1, x2〉 = x1 + x2. (4)

Equation (4) is often called the containment rule of majority.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 16:31:09 UTC from IEEE Xplore. Restrictions apply.

918 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 3, MARCH 2023

F. Earlier Work on XMG

Haaswijk et al. [10] proposed a logic representation, called
XOR-MAJ graph (XMG), consisting of three-fanin majority
(MAJ) gates, three-fanin XOR gates, and inversion. The rep-
resentation enables a size-proportional representation of both,
n-input unate and n-input binate logic functions. XMGs were
first introduced in [10] as a means for the underlying logic
representation for exact synthesis. Exact synthesis solves the
problem of finding an optimum network for a given function.
Since exact synthesis uses SAT solving or enumeration, the
runtime of exact synthesis tools directly depends on the size of
the logic representation. Since XMGs have both binate (XOR)
and unate (MAJ) nodes, this results in a size-proportional
logic representation for both n-input unate and n-input binate
functions compared to the representation of binate logic (XOR-
based logic) of MIGs or AIGs [11]. Algebraic optimizations
for XMG-based logic synthesis were proposed in [11]. The
authors explored Boolean algebraic optimizations for XOR and
XOR-MAJ logic and were able to achieve depth optimizations.

G. Classification of Boolean functions

Two Boolean functions f (x) and g(x) over the variables
x = x1, . . . , xn belong to the same class C of functions if
they are equivalent modulo some fixed set T of function trans-
formations. In other words, if f can be transformed into g (or
vice versa) by applying a sequence of transformations from T ,
then f and g are T-equivalent. The three most common func-
tion classes are: 1) P: permutation of inputs; 2) NP: negation
of inputs and permutation of inputs; and 3) NPN: negation of
inputs, permutation of inputs, and negation of outputs. These
classes play an important role in technology-independent logic
synthesis since two functions belonging to the same class
can be represented with the same graph structure modulo the
respective input and output transformations [37]. For exam-
ple, the functions f1 = x1x2 + x3 and f2 = x1 + x2x3 are
NPN-equivalent because by swapping the variables x1 and x3
in f1 the function f2 is obtained. Hence, if a node-minimum
AIG for f1 is known, then a node-minimum AIG for f2 can be
derived by swapping the inputs x1 and x3.

In the following, we use function classification (or function
canonization) to perform Boolean matching in logic synthe-
sis and technology mapping techniques. Boolean rewriting
requires a database of size-minimum circuits for all Boolean
functions. With the help of function classification [38], the
database can be reduced to one size-minimum circuit per
class. In technology mapping, the preenumeration and hashing
of the NP-equivalent functions of all cells in the technology
library enables us to match Boolean functions with cells more
quickly [12].

IV. PRESERVING SELF-DUALITY

A. During Logic Synthesis

Due to their reconfigurability at the device level, RFETs
enable efficient implementations of nontrivial self-dual logic
functions in terms of the number of transistors [6] compared
to CMOS. For example, an XOR logic gate with 3 inputs

(a) (b) (c)

Fig. 5. Different logic representations of the function, f = 〈x1, x2, (x3⊕x4)〉.
One can notice that the number of nodes and edges are the lowest in the XMG
representation. (a) AIG. (b) MIG. (c) XMG.

(shown in Fig. 4) requires 4+ 2 (for P and P′) transistors when
using RFETs as compared to 22 transistors when realized in
CMOS technology [19]. This implies that circuit implementa-
tions with RFETs lead to area reductions if they have a high
density of nontrivial (3 or more input functions) self-dual
gates. In order to use this property, it is, therefore, impera-
tive that the self-duality in a logic representation is preserved
through logic optimizations. From a logic representation per-
spective, if we consider AIGs (consisting of two-input AND
gates with complement-edge attributes), a nontrivial self-dual
function is decomposed into multiple AIG nodes. Similarly, for
MIGs, parity-based self-dual functions cannot be represented
in a compact manner using MAJ nodes alone [11]. Various
logic optimization techniques using cut-based techniques on
AIGs and MIGs can allocate different cuts for the decomposed
self-dual logic, thereby losing self-duality.

In contrast, XMGs use XOR and MAJ nodes as logic prim-
itives. Each MAJ and odd-input XOR function is self-dual,
so using XMGs can better preserve self-duality during logic
optimization compared to other logic representations. This can
easily be seen in Fig. 5. The figure shows three logic repre-
sentations of the same function f = 〈x1, x2, (x3 ⊕ x4)〉. The
AIG logic representation requires 7 gates, while the same
function has 4 and 2 gates when represented as MIG and
XMG, respectively. In the example, there are more edges in
the AIG and MIG representations than in the XMG represen-
tation. This leads to an increase in the number of competing
structural cuts of the logic network in logic optimization and
technology mapping phase. With the above benefits in mind,
we have developed an XMG-based logic optimization flow that
addresses these issues and helps to achieve area reductions for
RFET-based circuits.

B. During Versatile Technology Mapping

One of the limitations of the previous work [13] is the
absence of a technology mapper that can map with arbitrary
logic representations. Rai et al. [13] used XMG as the graph
representation and carried out logic optimization intending to
preserve self-duality. However, technology mapping was per-
formed using ABC’s native technology mapper, where AIG is
the default logic representation. Thus, the XMG graph repre-
sentation has to be converted to an AIG graph representation.
During this process, individual XMG nodes are represented

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 16:31:09 UTC from IEEE Xplore. Restrictions apply.

RAI et al.: UTILIZING XMG-BASED SYNTHESIS TO PRESERVE SELF-DUALITY FOR RFET-BASED CIRCUITS 919

with multiple AIG nodes. This conversion leads to an increase
in the number of competing cuts for large self-dual logic
nodes. This can be understood from the Fig. 5 where the
self-dual nodes of MAJ are represented using multiple AIG
nodes. This increase in the number of competing cuts dur-
ing mapping can disrupt the self-duality density of the circuit
leading to suboptimal results in the context of area reduc-
tion for RFETs-based circuits. In our experiments, we found
that in comparison to the native AIG-based technology map-
ping in ABC, this XMG-based logic graph leads to a tripling
of the number of competing cuts during technology mapping
within ABC. As a result, several optimal cuts that can preserve
self-duality are lost during the technology mapping phase.
Therefore, a logic-representative agnostic technology mapping
is essential for our work. We have explored this observation
and the explanation is carried out in Section VIII-D4.

V. ADVANCED LOGIC SYNTHESIS TECHNIQUES

While the prior work [10], [11] introduced XMGs and alge-
braic optimizations for them, we are extending the repertoire
of Boolean methods with a resubstitution and NPN-based
cut-rewriting technique.

A. XMG Resubstitution

Boolean resubstitution is a logic optimization method that
re-expresses the function of a node n in a logic network N
using nodes, called divisors, already present in N. Nodes that
are exclusively used by n and are not required by any other
logic in the logic network become free and can be removed.
A resubstitution leads to a size reduction if the number k of
newly added nodes to re-express a node′s function is less than
the number l of removed nodes in its maximum fanout-free
cone (MFFC, [38]).

Resubstitution algorithms are available for different
multilevel logic representations including AIGs [38], [39],
MIGs [40], [41], and logic networks [42], [43], [44] focusing
on two-input AND operations, three-input MAJ operations,
and combinations of two-input gates, such as XOR-ANDs,
AND-XORs, or three and two-input gates, such as MUX-XORs,
respectively.

Computing three-input XOR resubstitutions is particularly
time-consuming because divisor filtering techniques developed
for AND and OR operations cannot be applied. To substitute a
node n in a network with logic function fn(x) by a three-input
XOR operation, three divisor nodes d1, d2, and d3 have to be
found, such that

fn(x) = fd1(x)⊕ fd2(x)⊕ fd3(x) (5)

for all assignments to the primary inputs x, where fd1 , fd2 , and
fd3 are the divisor functions, respectively.

State-of-the-art Boolean resubstitution algorithms over-
approximate the node functions using windowing to apply
scalable truth-table computations. The algorithms have to iter-
ate over all triples of nodes in a window of a root node n
(excluding the root node’s MFFC) to test if (5) holds. The
first substitution possible that reduces the network’s size

is accepted. In the worst case, if no resubstitution can be
accepted, O(w3) tests are required for a window with w nodes.

Filtering techniques help to reduce the number of tests
required and significantly speed-up the performance of resub-
stitution algorithms in practice. We develop a new filtering rule
for three-input XORs guiding the search for divisors using dis-
tinguishing bit-pairs [45]: a resubstitution of a target node n
with function f (x) and divisor nodes d1, d2, d3 with functions
fd1(x), fd2(x), fd3(x) over common window inputs x exists if
and only if for any pair x̂i �= x̂j of input assignments

f
(
x̂i

) �= f
(
x̂j

) =⇒
∨

1≤a,b≤3,a �=b

da
(
x̂i

) �= db
(
x̂j

)
. (6)

Utilizing (6), we sort all divisor nodes in a window by the
number of bit-pairs distinguished by the divisor with respect
to the root node’s target function. We define the absolute dis-
tinguish bit power DBP(n) of the root node n as the number
of pairs (x̂i, x̂j) of input assignments for which fn(x̂i) �= fn(x̂j),
and we define the relative distinguishing bit power DBPn(d) of
a divisor d as the number of pairs (x̂i, x̂j) of input assignments
for which fn(x̂i) �= fn(x̂j) and fd(x̂i) �= fd(x̂j).

Example 1: Suppose that n is a node to be substituted
and D = {d1, d2, d3, d4} are divisors with the following truth
tables:

The absolute distinguishing bit power DBP(n) = 16,
whereas the relative distinguishing bit powers DBPn(di) = 4
for i ∈ {1, . . . , 4}. We use a counting argument as a necessary
condition to conclude that no Boolean operation using three
(or less) of the given divisor functions is sufficient to synthe-
size n. Assuming that the given divisor functions distinguish
different bit pairs, any subset of D of size 3 can distinguish at
most 12 bit pairs. However, n requires 16 bit pairs to be distin-
guished. In other words, regardless of which three divisors one
picks, there is always at least one-bit pair that cannot be dis-
tinguished. This can be easily verified by looking at the truth
tables of the divisor functions: the two least-significant bits
of all divisor functions are equal, but the two least-significant
bits of n are not.

Algorithm 1 shows our Boolean filtering and resubstitution
algorithm as pseudocode. The algorithm first computes the
MFFC (line 1), collects the divisors in W (line 2), which are all
nodes excluding the MFFC, and simulates the nodes bottom-
up such that each node n in W has a corresponding truth table
TT[n] (line 3). The divisors are sorted (line 4) by their rel-
ative distinguishing bit power—higher relative distinguishing
bit power will more likely lead to a possible resubstitution. We
further leverage the relative distinguishing bit power to filter
insufficient divisor triples. Given a sorted list D = d1, . . . , dw

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 16:31:09 UTC from IEEE Xplore. Restrictions apply.

920 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 3, MARCH 2023

Algorithm 1: Boolean Filtering and Resubstitution
Data: Window W in a logic network with root node n
Result: Node resubstitute for n or ⊥ if no resubstitution

has been found
1 Set M←W.computeMFFC(n);
2 Set D←W.collectDivisors(n)\M;
3 Set TT ←W.simulate();
4 sortByDBP(D, TT, n);
5 for i← 0 to |D| do
6 if 3 · DBP(D[i]) < DBP(n) then
7 return ⊥;
8 for j← i+ 1 to |D| do
9 if DBP(D[i])+ 2 · DBP(D[j]) < DBP(n) then

10 break;
11 for k← j+ 1 to |D| do
12 if TT[n] = TT[i]⊕ TT[j]⊕ TT[k] then
13 return W.xor3_resub(n, D[i], D[j], D[k]);
14 if TT[n] = ¬TT[i]⊕ TT[j]⊕ TT[k] then
15 return W.xor3_resub(n, D[i], D[j], D[k]);
16 return ⊥;

of divisors such that DBPn(di) ≥ DBPn(dj) for all i < j, a
single divisor d can never be completed to a divisor triple
that passes the test in (5) if 3 · DBPn(d) < DBP(n) (line 6).
Since the list is sorted, no remaining divisor will pass this
test either, such that the algorithm can terminate (line 7).
For a similar reason, no divisor pair di, dj, i < j, can be
completed to a divisor triple that passes the test in (5) if
DBPn(di)+ 2 · DBPn(dj) < DBP(n) (line 9). In this case, the
algorithm can proceed by selecting another candidate divisor
di (line 10). Finally, if the algorithm reaches line 12, a divisor
triple di, dj, dk has been found that passes all filtering checks.
The algorithm then creates a new XOR node di ⊕ dj ⊕ dk and
substitutes n with it if and only if the corresponding truth tables
TT[n] and TT[i]⊕ TT[j]⊕ TT[k] are equal (lines 12 and 13).
This test is performed twice (lines 14 and 15)—once for each
polarity of the first divisor.

If |M| > 1, the proposed resubstitution algorithm reduces
the number of nodes in the logic representation by |M| − 1.
If |M| = 1, the algorithm replaces an MAJ node by an XOR

node.

B. Exact XMG Rewriting

Boolean rewriting is a logic optimization method that selects
small parts of a logic network and replaces them with more
compact implementations to reduce its number of nodes.
State-of-the-art rewriting algorithms either rely on a database
of precomputed size-optimum subnetworks for all Boolean
functions up to 5 inputs [38] or compute size-optimum subnet-
works on-the-fly using exact synthesis [46], [47]. DAG-aware
rewriting [38], fast cut enumeration techniques [48], NPN can-
onization [37] of Boolean functions, and efficient caching [47]
enable scalability.

Rewriting XMGs has been first proposed in [10] using
a two-step approach: 1) a logic network is mapped into
a network of k-feasible lookup-tables (LUTs) and 2) the

k-feasible LUTs are resynthesized into size-optimum XMGs.
By repeating the two steps until convergence, substantial size
reduction can be achieved.

We propose an improved XMG rewriting approach, called
exact XMG rewriting, that integrates both steps into one algo-
rithm. For each node, in the logic network, the set of all
k-feasible cuts is enumerated, each cut is simulated to obtain
its Boolean functions, and the functions are resynthesized
using exact synthesis. In contrast to the previous approach,
our algorithm takes advantage of structural hashing to utilize
the existing logic within the network, such that a global size
reduction can be achieved even if a locally smaller subnetwork
is replaced with a larger subnetwork.

The algorithm can be parameterized with a set of gate prim-
itives and supports the synthesis of multiple candidates per cut
function. A conflict limit in exact synthesis allows us to limit
the maximum synthesis effort per function. We consider exact
XMG rewriting for three different sets of gate primitives.

1) Three-input MAJ gates with two-input XOR gates as
originally proposed by [10].

2) Three-input MAJ gates and three-input XOR gates to
enable a more compact representation of Boolean func-
tions. Note that with constants the three-input XOR gate
can simulate the function of two-input XOR gates and,
thus, is a generalization of two-input XOR.

3) Three-input MAJ gates without constants and three-input
XOR gates to improve the internal self-duality of a logic
network during rewriting.

In practice, when mapped to RFETs, the best optimizations
is achieved with the first set of gate primitives. The MAJ gate
and the three-input XOR gates are large primitives and hence,
fine granular optimizations can be lost. This is an inverse
scenario that is explained in Section IV-B. Since the individ-
ual nodes are large, certain competing cuts (that could have
been generated using smaller logic representation) required for
optimal area reduction are lost. Also, for circuits, which do not
have high self-duality density, the optimizations can be sub-
optimal and hence, the obtained graph representation can have
a much higher number of edges (due to the undue presence
of constants) than possible with smaller gate primitives.

VI. LOGIC REPRESENTATION-AGNOSTIC MAPPING

A. Versatile Mapper

In design automation, mapping is the process of expressing
a logic graph using a set of primitives. Commonly, mapping
either refers to LUT mapping or standard-cell mapping [49].
In the present work, we focus on standard-cell mapping in
the context of emerging nanotechnologies. Once all the logic
optimizations are carried out over a logic graph, the logic
graph is converted to a k-bounded network, called subject
graph. During technology mapping, the subject graph needs
to be expressed using the standard cells present in a given
cell library. This matching is often carried through Boolean
matching [50].

Our versatile mapper supports arbitrary graph representa-
tions, such as AIG, XMG, XAG, or MIG, to represent the
subject graph in standard cells (as given in a technology

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 16:31:09 UTC from IEEE Xplore. Restrictions apply.

RAI et al.: UTILIZING XMG-BASED SYNTHESIS TO PRESERVE SELF-DUALITY FOR RFET-BASED CIRCUITS 921

library). In our work, the technology library is an RFET-
centric generic library (.genlib) consisting of logic gates
as proposed in [19]. The mapping can be optimized for either
area or delay but in the present work, we focus only on area
optimization. Our mapper follows four main steps.

1) Library Generation: In the library generation phase, our
mapper generates a hash table for the gate primitives
listed in the technology library. The hash table con-
sists of NP enumerations for each of the gate primitives
subject to filtering of enumerations that are function-
ally symmetric [49]. We maintain a data structure
that contains the delay and area values of each gate
configuration.

2) Cut Enumeration: In this step, we traverse the logic
network in topological order and enumerate cuts with up
to k inputs. For each of the cuts, truth tables are com-
puted which are later used during Boolean matching to
find a match in the hash table of the gate primitives. The
cut enumeration technique used in our mapper is based
on priority cuts as suggested in [48] and [51].

3) Boolean Matching: In this step, the truth table for each
cut of the subject graph is looked up in the hash table
(generated in the first step) to select gates that can imple-
ment it. We consider both polarities of the cut during
matching to enable logic sharing of inverters and to
avoid additional inverter delay.

4) Optimization Objective: Once the matching is done for
each of the cuts, a cover is selected. A cover is a set
of cuts so that all cuts in the set are either rooted at
the primary output or at the leaves of another cut. The
cover is selected so that an optimum area or delay for the
circuit is achieved. During delay minimization, the pri-
mary objective is to have the smallest delay of the largest
path of the cover and during area minimization, the area
of the cover is minimized. Various heuristics [48], [52]
are followed during this step to attain the best possible
mapping.

For more details on the actual implementation of our
mapper, readers are requested to refer to [14].

B. Support of Supergates

Using supergates is an efficient technique as suggested by
Chatterjee et al. to mitigate structural bias [53]. Structural bias
arises from the fact that the structure of the starting logic
graph representation dictates the final mapping quality to a
large extent. By combining several gate primitives from the
cell library, a list of supergates is precomputed to be used later
during the technology-independent mapping step. Supergates
aims to explore unique combinations of gate primitives which
otherwise cannot be used during technology mapping [53].
An example is shown in Fig. 6. Here, MUX is the root gate,
and its two inputs are connected to outputs of two other logic
gates. Consequently, a 5-input supergate is realized. Similarly,
various other combinational supergates are precomputed and
added to the hash table so that they are available for matching
during technology-independent mapping. From the previous
section, an obvious outcome is an increase in the size of

TABLE I
DISTRIBUTION OF SELF-DUAL FUNCTIONS IN NPN

Fig. 6. Supergate generation. Here, MUX is the root gate with NANDs and
NORs as the new input pins. The supergate thus generated has five inputs.

the hash table created during the library generation stage.
Supergates lead to improved quality of mapping at the expense
of requiring additional runtime [12].

Our implementation can read supergate libraries produced
by the open-source tool ABC [15]. For each entry in a
.super file, our implementation computes the truth table,
the area, and the delay. We then add it to the hash table gen-
erated in the library generation step. Once added to the hash
table, the supergates are available to the mapper during the
Boolean matching step.

VII. CREATING SELF-DUAL BENCHMARKS

As stated in Theorem 1, self-dual functions are rare. Table I
shows the distribution of the self-dual functions over all
Boolean functions up to 4 variables and their NPN repre-
sentatives. NPN canonization preserves the self-duality of a
Boolean function, i.e., if a Boolean function is self-dual, so are
all Boolean functions obtained by applying the NPN transfor-
mations to it. The numbers in the table illustrate that self-dual
functions are not only rare when compared to the total number
of Boolean functions, but also show that they reduce with an
increasing number of variables. Whereas 25% of the NPN rep-
resentatives in 2 variables are self-dual, this percentage drops
to 21.43% and 3.15% for 3 and 4 variables, respectively.

Hence, in order to evaluate the efficacy of our approach
compared to state-of-the-art logic synthesis approaches for
RFET-based standard-cell mapping, we adopt a simple graph-
based technique to generate benchmark circuits with varying
numbers of self-dual logic gates. These benchmarks are built
in a level-by-level fashion from the primary inputs to primary
outputs. There have been multiple previous works targeting
benchmark generation [54], [55].

We use Algorithm 2 to generate benchmarks with differ-
ent self-dual densities, starting from an empty XMG network.
The algorithm takes following four parameters as inputs: the

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 16:31:09 UTC from IEEE Xplore. Restrictions apply.

922 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 3, MARCH 2023

Algorithm 2: Generate Self-Dual XMG Network
Data: num_pis, levels, nodes_per_level, index
Result: XMG network N

1 Set signalList ← [];
2 Set counter← 0;
3 for k← 0 to num_pis do
4 signalList.add(N.create_pi());
5 for i← 0 to levels do
6 for j← 0 to nodes_per_levels do
7 fanins← signalList.randSubSet();
8 if counter < index then
9 node ← N.create_selfdual_gate(fanins);

10 else
11 node ← N.create_normal_gate(fanins);
12 signalList.add(node);
13 counter ← (counter + 1) mod 10;
14 for o ∈ signalList.not_used() do
15 N.create_po(o);
16 return N

number of Primary Inputs (PIs) (num_pis), the number of lev-
els (levels), the number of nodes per level (nodes_per_level),
and the self-duality index (index).

For a given set of the above three parameters—num_pis,
levels, nodes_per_level, we generate ten different benchmarks
by assigning values {1 → 10} sequentially to the self-
duality index (index). A self-duality index value v implies
that out of every 10 nodes added, v are self-dual nodes
(MAJ or 3-input XOR) and 10 − v are normal nodes (AND,
OR, 2-input XOR) (lines 8–11). For example—let us consider
the following values for the parameters (of Algorithm 2)—
num_pis = 12, levels = 512, nodes_per_level = 131. In
this case, Algorithm 2 creates ten different circuits, all with
12 primary inputs, 512 levels between the primary inputs
and primary outputs, and 131 maximum nodes in each level.
Each benchmark is guided with the self-duality index value
(index) chosen sequentially from {1 → 10} so that the 10
benchmarks have varying levels of self-duality density. The
algorithm maintains a list of signals to keep track of all gener-
ated nodes (line 12). The algorithm first generates the primary
inputs of the XMG network and adds them to the list (lines 3
and 4). It then adds new gates in a level-by-level fashion by
randomly selecting fanins from the updated signal list (line 7).
It is to be noted that self-duality index value of v (let’s say 5)

does not correspond to (10× v)% (50%) of self-duality den-
sity. This is primarily because during the construction of the
circuit, nodes are added only after checking whether another
node with the same fanins already exists in the graph or
not. In this way, XMG optimizes away some of the redun-
dant nodes. Finally, those nodes that are never referenced by
any other node are marked as primary outputs (lines 14 and
15). The source code of the benchmark generator is available
online.1

1https://github.com/shubhamrai26/self-dual-experiments

VIII. EXPERIMENTS

In this section, we describe our experimental setup and
discuss the results obtained. All algorithms have been imple-
mented in the open-source logic synthesis tool mockturtle from
the EPFL logic synthesis libraries [16]. For technology map-
ping, we use the RFET-based generic library consisting of
logic gates as mentioned in [19].

A. XMG-Based Flow

Our proposed XMG-based flow comprises a logic synthe-
sis and a technology mapping flow, where we use XMGs as
the graph representation for a given circuit. We carry out the
following steps in this flow.

1) Starting with the graph representation of a given cir-
cuit, we first convert it to a 4-input LUT-based logic
graph. The procedure is similar as suggested in [56],
[57] albeit with an additional step of converting the
LUT-network into an XMG network. We then resyn-
thesize2 each 4-input LUT of the logic graph into the
equivalent XMG representation by using a pregenerated
4-input NPN class.

2) We then apply the proposed two algorithms (resubstitu-
tion and 4-input NPN-based rewriting) iteratively to the
obtained XMG until no size improvement of more than
0.5% is possible

3) Finally, we use the versatile technology mapper on the
obtained XMG from step 2. We use the RFET-based
generic library and compute the supergates within our
mapper to achieve an area-oriented mapping.

B. Experimental Setup

We carry out experiments on two sets of benchmarks. First,
we use the synthetic benchmarks (as described in Section VII)
and compare the post-mapping areas for different flows. This
gives an empirical evidence of our proposed XMG-based syn-
thesis flows. For post-mapping area, we use the following
synthesis flows.

1) abc_rwrs: Native ABC flow is used to carry out both
logic optimization and technology mapping. Here, AIG
is the used graph representation. This flow is the baseline
in our experiments.

2) mtl_AIG: AIG is the used graph representation. We
use the logic-representation agnostic technology map-
per within the mockturtle framework to compute post-
mapping area.

3) abc_XMG: The flow as mentioned in [13] is used. Here,
we use mockturtle for XMG-based logic optimizations
and then carry out technology mapping with ABC.

4) Ours: This is the proposed XMG-based flow.
Then, we evaluate our proposed approach using real bench-

marks in the form of cryptographic benchmarks [17], [18]. We
carry out detailed analysis of our individual contributions. The
area comparison is carried out in terms of number of transis-
tors. Since, we are comparing different logic synthesis flows,

2Calling node resynthesis technique as defined in mockturtle frame-
work [16].

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 16:31:09 UTC from IEEE Xplore. Restrictions apply.

RAI et al.: UTILIZING XMG-BASED SYNTHESIS TO PRESERVE SELF-DUALITY FOR RFET-BASED CIRCUITS 923

TABLE II
POST-MAPPING AREA COMPARISON FOR SYNTHETIC SELF-DUAL

BENCHMARKS USING DIFFERENT SYNTHESIS FLOWS

a reduction in the number of transistors has a direct impact
on reducing the overall area of the RFET-based chip. This is
the normalized area as mentioned in the .genlib. The three
flows (mtl_AIG, abc_XMG, and ours) are compared with the
baseline flow in terms of percentage. A negative percentage
implies that the baseline flow is better than the other flows
while positive percentages imply these flows are better than
the baseline.

Throughout the experiments, we calculate self-duality den-
sity for the flows which use XMGs, as follows:

sd-density = # of 3-XOR nodes+ # of MAJ nodes

total # of nodes
(7)

where, 3-XOR and MAJ nodes are only those nodes in
the network that do not have any inputs which are either
constant− 0 or constant−1. It is used to indicate the amount of
self-duality that exists in the graph representation of the circuit.

C. Synthetic Self-Dual Benchmarks

We use Algorithm 2 to generate 100 sets of benchmarks.
For each set, the self-duality index in Algorithm 2 is iterated
from 1 to 10 to generate 10 benchmarks for a particular set
of parameters. Hence, in total, we have 1 000 benchmarks to
evaluate. The value of other parameters are chosen randomly
for the 100 sets as mentioned in Section VII.

Once the benchmarks are generated, we compare the
post-mapping area for the above-mentioned synthesis flows.
Table II shows the comparison of the post-mapping area using
synthetic benchmarks. We calculate the mean value over the
entire benchmark set in the following way. For a particular
value of the self-duality index, we calculate the mean over
the 100 benchmarks generated. For example, the second col-
umn shows the mean of self-duality density calculated for each
of the 100 benchmark sets corresponding to a given particular
value of the self-duality index. The first two columns show the
benchmark’s self-duality index (index) and the corresponding
self-duality density after logic optimizations step.

The next four columns in Table II show the mean of post-
mapping area over 100 benchmarks for a particular value of
self-duality index for four different flows. The column baseline
shows the mean post-mapping area for the ABC native flow in
terms of a number of transistors. The next three columns show
area comparison with respect to the baseline results in percent-
age. We can see that as compared to the baseline, the mtl_AIG

columns achieve better area results. This can be ascertained
due to better mapping results with the technology mapper
within the mockturtle framework [14].

For the XMG-based flow using the ABC technology map-
per, we get better results only with higher self-duality ratios.
This is consistent with our assumption that with higher self-
duality in circuits, the XMG-based flow achieves better area
results. The last column shows area results with our proposed
approach. The last column of the table shows that our ver-
satile mapper achieves better area results than the ABC’s
technology mapper for XMG-based flow. We acknowledge that
the improvement with XMG-based flow, though consistent, is
close to ∼1% only and is not so significant. This can be ascer-
tained due to the fact that synthetic benchmarks generated
using simple graph-based techniques are devoid of irregular-
ities which are present in an actual benchmark [55]. Further,
the AIG-based flows are well-established flows and hence,
they can also achieve relatively good optimization. Due to
these limitations, we focus our evaluation on real cryptography
benchmarks.

D. Cryptographic Benchmark Suite

While the previous experiment was conducted on syn-
thetic benchmarks, we next present an evaluation on cryp-
tographic benchmarks. These benchmarks were taken from
high-level cryptography protocols such as fully homomor-
phic encryption (FHE) and secure multiparty communication
(MPC) [17], [18].3 This benchmark suite contains circuits
ranging from block ciphers (AES and DES) and hash functions
such as (MDA-5 and SHA) to arithmetic functions (adders
and comparators). We have not considered the EPFL bench-
mark suite as the benchmarks are not representative of our
use case. Almost all the benchmarks have poor self-duality
density, except for a few benchmarks such as square.

1) Runtime Improvement With Filtering in XMG
Resubstitution: In order to measure the improvement in
runtime using the XOR3-based filtering rule, we perform
one iteration of resubstitution (with and without filtering)
over cryptographic benchmarks using XMGs. The third and
the fourth column in Table III show the runtime for our
resubsitution algorithm for both flows. One can see that we
achieve on average a runtime improvement of 59.48% across
all benchmarks.

2) Improving Self-Duality Density: We evaluate the impact
of the proposed algorithms on the self-duality of the circuit.
We follow a simple approach here. As done in all the exper-
iments, we read the benchmarks in AIG and convert them to
XMG using the node resynthesis technique. Then, we invoke
algorithm(s) iteratively until no size improvement of more than
0.5% is possible. We then calculate the self-duality density
for the logic graph. The results are shown in Table IV. The
columns show the self-duality density for the logic graphs
using different algorithms. The first column init shows the
initial self-duality density calculated on the XMG logic graph
of individual benchmarks before invoking the algorithms. The
self-duality density does not change when invoking only the

3https://homes.esat.kuleuven.be/nsmart/MPC/

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 16:31:09 UTC from IEEE Xplore. Restrictions apply.

924 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 3, MARCH 2023

TABLE III
RUNTIME IMPROVEMENT IN XMG RESUBSTITUTION USING THE

PROPOSED FILTERING RULE

TABLE IV
IMPROVEMENT OF SELF-DUALITY RATIO AFTER CALLING ONLY RESUB,

REWRITE FOLLOWED BY RESUB. ALL THE ALGORITHMS ARE

CALLED UNTIL CONVERGENCE

rewriting algorithm because the NPN-based rewriting will
retain the number of MAJ and XOR nodes. However, as vis-
ible in the third column, resubstitution leads to a significant
increase in the self-duality of individual circuits. This can be
ascertained due to the addition of extra self-dual nodes (3-input
MAJ and 3-input XORs) to the logic graph. The final column
shows the self-duality density after calling the two algorithms
sequentially. It can be seen that self-duality almost remains the
same. This experiment demonstrates that the proposed logic
synthesis algorithm helps to increase the self-duality of the
circuit.

3) Area Comparison: Table V shows the post-mapping
area comparison for cryptographic benchmarks with4 and
without supergates, respectively. As in the case of synthetic
benchmarks, here also we compare the post-mapping area

4Using ABC command to create supergate library: super -I 5 -L
3 -N 0 -T 1 -D 0.00 -A 0.00. The command in ABC generates 5
input supergates by combining three levels of primitive gates. This command
generates a total of ∼ 17 000 supergates for mapping.

for the four flows. For ease of readability, we have added
the sd-density value for individual benchmarks from Table IV
(last column). We show the improvement with respect to the
baseline area results.

One can notice that most of the benchmarks from the
cryptography domain have a high density of self-dual gates
(>50%), particularly parity functions as it is an integral logic
function in any cryptographic applications. In case of bench-
marks, where sd-ratio is lower (< 50%) (DES, comparator),
the XMG-based approach gives poor results. Hence, both AIG-
based approaches (baseline and mtl_AIG) achieve better area
results. This is due to the fact that AIG representation consists
of 2-input nodes and hence more smaller cuts are available for
mapping compared to XMGs which consist of bigger XOR and
MAJ nodes. Hence, the mapping achieves better optimization
in terms of area-oriented mapping for these circuits. However,
for benchmarks, md5, SHA-1 and SHA-256, the proposed
XMG-based approach (Ours) outshines other synthesis flows.
and gives superior results. The higher self-duality in these cir-
cuits leads to the mapping of more self-dual logic gates thereby
leading to more area reduction as explained in Section IV.

Consideration of supergates leads to even better results as
it is able to mitigate structural bias issues [12]. However, in
case of ABC-based flows (baseline and abc_xmg), the mapper
leads to poor area results for some benchmarks. This can be
ascertained as the mapper can get stuck in a local minimum
as area-oriented mapping is an intractable problem and driven
by heuristics. However, mockturtle-based flows (mtl_AIG and
ours) are more consistent here as using supergates leads to
more uniform area reduction (comparator, multiplier, SHA-1,
SHA-256). Using supergates with our proposed approach
achieves best area results of up to 12.36% for circuits with
higher self-duality.

4) Exploring Why Higher Self-Duality Density Leads To
Better Area Results With XMG-Based Approach: In this set
of experiments, we explore why XMG-based approaches lead
to better area reduction as compared to AIG-based approaches.
We use the mockturtle-based synthesis flows for this experi-
ment (mtl_AIG and ours). We calculate three data—the total
number of cuts available during mapping, the number of total
self-dual cuts, and the number of nontrivial self-dual cuts.
These data give us an overall idea of what kind of cuts are
available during mapping. Additionally, from post-mapping
results, we compute the ratio of the area of self-dual logic
gates to the total area of the circuit. Table VI show these val-
ues for both AIG and XMG-based flows. For each benchmark,
we show the total cuts, the ratio of self-dual cuts to the total
cuts, the ratio of nontrivial self-dual cuts to the total cuts, and
finally the ratio of area contribution from self-dual logic gates
to the total post-mapping area.

From Table VI, the number of total cuts in AIG is more than
that in XMG as AIG uses a 2-fanin AND node compared to
XMG that uses larger 3-fanin XOR and 3-fanin MAJ nodes.
However, the ratio of self-dual cuts is much higher in the case
of XMG as compared to AIG. An interesting observation is
that this ratio is also higher for circuits that have a higher
self-duality density (sha-1, sha-256, md5) which clearly indi-
cates that XMGs offer more self-dual cuts during mapping

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 16:31:09 UTC from IEEE Xplore. Restrictions apply.

RAI et al.: UTILIZING XMG-BASED SYNTHESIS TO PRESERVE SELF-DUALITY FOR RFET-BASED CIRCUITS 925

TABLE V
COMPARISON OF POST-MAPPING AREA WITHOUT THE USE OF SUPERGATES. USE OF SUPERGATES LEAD TO BETTER AREA ACROSS ALL THE FLOWS

PARTICULARLY WITH MOCKTURTLE FRAMEWORK (MTL_AIG AND OURS). HIGH SELF-DUALITY DENSITY LEADS TO HIGHER IMPROVEMENT

OVER BASELINE FOR XMG-BASED FLOWS

TABLE VI
COMPARISON OF RATIOS OF SELF DUAL CUTS, AND GATE AREA BETWEEN AIG AND XMG-BASED REPRESENTATION

compared to AIGs. Similarly, for circuits with higher self-
duality density, XMG on an average has a higher sd-area-ratio
(54.38% versus 46.72%) compared to AIGs. In fact, it can be
noticed that XMG-based approach has higher sd-area-ratio for
all the benchmarks. Due to the higher sd-area-ratio, XMGs
lead to better area reduction for RFET-based implementation
compared to AIGs for circuits with higher self-duality.

Another practical benefit with the XMG-based flow, that
can be correlated with the results shown in Table VI and was
earlier demonstrated in [10], is the improvement in the run-
time for XMG-based flow. XMG-based flow has to iterate over
fewer cuts as compared to the AIG-based flow which leads to
reduction in the overall runtime of the synthesis flows. In terms
of runtime to carry out technology-independent mapping for
all the cryptography benchmarks, XMG takes in total 7.06 s
as compared to AIG that takes 59.88 s.

IX. SUMMARY AND CONCLUSION

The present work explores both logic synthesis and tech-
nology mapping from an emerging technology perspective.
With the particular aim of preserving self-duality in cir-
cuits, we investigate an XMG-based logic synthesis solution
for RFETs-based circuits. XMGs are used for two reasons:
1) XMGs are a compact representation for both unate and

binate logic and 2) the logic primitives in XMGs (MAJs and
XORs) can efficiently represent self-dual logic gates because
both MAJ and odd-input XORs are self-dual. Additionally,
with our logic-representation-agnostic mapper, the limitation
of previous work [13] of converting XMGs into AIGs before
technology mapping has been resolved. In comprehensive
experimental evaluations, we compare our XMG-based flow
with three different sets of experiments and show that for
circuits with higher self-duality, the XMG-based synthesis
achieves better area results. Future work directions include
the development of more optimization algorithms for XMGs.
Additionally, measures to deal with the problem of structural
bias within technology mapping needs to be explored.

REFERENCES

[1] M. D. Marchi et al., “Top–down fabrication of gate-all-around vertically
stacked silicon nanowire FETs with controllable polarity,” IEEE Trans.
Nanotechnol., vol. 13, no. 6, pp. 1029–1038, Nov. 2014.

[2] A. Heinzig, T. Mikolajick, J. Trommer, D. Grimm, and W. M. Weber,
“Dually active silicon Nanowire transistors and circuits with equal elec-
tron and hole transport,” Nano Lett., vol. 13, no. 9, pp. 4179–4181,
2013.

[3] M. H. Ben-Jamaa, K. Mohanram, and G. De Micheli, “An efficient
gate library for ambipolar CNTFET logic,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 30, no. 2, pp. 242–255, Feb. 2011.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 16:31:09 UTC from IEEE Xplore. Restrictions apply.

926 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 3, MARCH 2023

[4] J. Trommer, A. Heinzig, T. Baldauf, S. Slesazeck, T. Mikolajick, and
W. M. Weber, “Functionality-enhanced logic gate design enabled by
symmetrical reconfigurable silicon nanowire transistors,” IEEE Trans.
Nanotechnol., vol. 14, no. 4, pp. 689–698, Jul. 2015.

[5] M. Raitza et al., “Exploiting transistor-level reconfiguration to optimize
combinational circuits,” in Proc. Des. Autom. Test Europe Conf. Exhibit.
(DATE), Mar. 2017, pp. 338–343.

[6] S. Rai, M. Raitza, S. Sahoo, and A. Kumar, “DiSCERN: Distilling
standard-cells for emerging reconfigurable nanotechnologies,” in Proc.
DATE, 2020, pp. 674–677.

[7] A. Kuehlmann, M. K. Ganai, and V. Paruthi, “Circuit-based Boolean
reasoning,” in Proc. 38th Annu. Des. Autom. Conf., New York, NY,
USA, 2001, pp. 232–237.

[8] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A new paradigm for logic optimization,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 35, no. 5, pp. 806–819, May 2016.

[9] I. Háleček, P. Fišer, and J. Schmidt, “Are XORs in logic synthesis really
necessary?” in Proc. DDECS, 2017, pp. 134–139.

[10] W. Haaswijk, M. Soeken, L. Amarù, P. E. Gaillardon, and
G. De Micheli, “A novel basis for logic rewriting,” in Proc. ASP-DAC,
2017, pp. 151–156.

[11] Z. Chu, M. Soeken, Y. Xia, L. Wang, and G. De Micheli,
“Structural rewriting in XOR-majority graphs,” in Proc. ASPDAC, 2019,
pp. 663–668.

[12] S. Chatterjee, “On algorithms for technology mapping,” M.S. thesis,
Dept. Elect. Eng. Comput. Sci., Univ. California, Berkeley, CA, USA,
2007.

[13] S. Rai, H. Riener, G. De Micheli, and A. Kumar, “Preserving self-
duality during logic synthesis for emerging reconfigurable nanotechnolo-
gies,” in Proc. Des. Autom. Test Europe Conf. Exhibit. (DATE), 2021,
pp. 354–359.

[14] A. T. Calvino, H. Riener, S. Rai, A. Kumar, and G. De Micheli, “A versa-
tile mapping approach for technology mapping and graph optimization,”
in Proc. 27th Asia South Pac. Des. Autom. Conf. (ASP-DAC), 2022,
pp. 410–416.

[15] R. K. Brayton and A. Mishchenko, “ABC: An academic industrial-
strength verification tool,” in Proc. CAV, 2010, pp. 24–40.

[16] M. Soeken et al., “The EPFL logic synthesis libraries,” 2018,
arXiv:1805.05121.

[17] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and
M. Zohner, “Ciphers for MPC and FHE,” in Proc. EUROCRYPT, 2015,
pp. 430–454.

[18] M. Chase et al., “Post-quantum zero-knowledge and signatures from
symmetric-key primitives,” in Proc. ASCCCS, 2017, pp. 1825–1842.

[19] S. Rai, J. Trommer, M. Raitza, T. Mikolajick, W. M. Weber, and
A. Kumar, “Designing efficient circuits based on runtime-reconfigurable
field-effect transistors,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 27, no. 3, pp. 560–572, Mar. 2019.

[20] L. G. Amaru, New Data Structures and Algorithms for Logic Synthesis
and Verification. Cham, Switzerland: Springer, 2017.

[21] S. Rai et al., “Emerging reconfigurable nanotechnologies: Can they
support future electronics?” in Proc. ICCAD, 2018, pp. 1–8.

[22] M. D. Marchi et al., “Polarity control in double-gate, gate-all-around ver-
tically stacked silicon nanowire FETs,” in Proc. IEDM, 2012, pp. 1–4.

[23] A. Heinzig, S. Slesazeck, F. Kreupl, T. Mikolajick, and W. M. Weber,
“Reconfigurable silicon nanowire transistors,” Nano Lett., vol. 12, no. 1,
pp. 119–124, 2012.

[24] J. Trommer et al., “Material prospects of reconfigurable transistor
(RFETs)–from silicon to germanium nanowires,” MRS Online Proc.
Library, vol. 1659, pp. 225–230, Aug. 2014.

[25] Y. Lin, J. Appenzeller, J. Knoch, and P. Avouris, “High-performance car-
bon nanotube field-effect transistor with tunable polarities,” IEEE Trans.
Nanotechnol., vol. 4, no. 5, pp. 481–489, Sep. 2005.

[26] S. Tanachutiwat, J. U. Lee, W. Wang, and C. Y. Sung, “Reconfigurable
multi-function logic based on graphene p-n junctions,” in Proc. DAC,
2010, pp. 883–888.

[27] G. V. Resta et al., “Polarity control in WSe2 double-gate transistors,”
Sci. Rep., vol. 6, Jul. 2016, Art. no. 29448.

[28] T. Mikolajick, A. Heinzig, J. Trommer, T. Baldauf, and W. M. Weber,
“The RFET—A reconfigurable nanowire transistor and its application to
novel electronic circuits and systems,” Semicond. Sci. Technol., vol. 32,
no. 4, 2017, Art. no. 43001.

[29] M. Simon, A. Heinzig, J. Trommer, T. Baldauf, T. Mikolajick, and
W. M. Weber, “Top–down technology for reconfigurable nanowire FETs
with symmetric on-currents,” IEEE Trans. Nanotechnol., vol. 16, no. 5,
pp. 812–819, Sep. 2017.

[30] M. Simon et al., “A wired-AND transistor: Polarity controllable FET
with multiple inputs,” in Proc. 76th Device Res. Conf. (DRC), Jun. 2018,
pp. 1–2.

[31] J. Zhang, X. Tang, P.-E. Gaillardon, and G. De Micheli, “Configurable
circuits featuring dual-threshold-voltage design with three-independent-
gate silicon nanowire FETs,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 61, no. 10, pp. 2851–2861, Oct. 2014.

[32] J. Trommer et al., “Reconfigurable nanowire transistors with multiple
independent gates for efficient and programmable combinational cir-
cuits,” in Proc. Des. Autom. Test Europe Conf. Exhibit. (DATE), 2016,
pp. 169–174.

[33] J. Nevoral, R. Råžička, and V. Šimek, “From ambipolarity to multifunc-
tionality: Novel library of polymorphic gates using double-gate FETs,”
in Proc. DSD, 2018, pp. 657–664.

[34] S. Rai, M. Raitza, and A. Kumar, “Technology mapping flow for
emerging reconfigurable silicon nanowire transistors,” in Proc. DATE,
Mar. 2018, pp. 767–772.

[35] J. Zhang, P.-E. Gaillardon, and G. De Micheli, “Dual-threshold-voltage
configurable circuits with three-independent-gate silicon nanowire
FETs,” in Proc. IEEE Int. Symp. Circuits Syst., May 2013,
pp. 2111–2114.

[36] T. Sasao, Switching Theory for Logic Synthesis. New York, NY, USA:
Springer, 2012.

[37] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko, “Fast
Boolean matching based on NPN classification,” in Proc. FPT, 2013,
pp. 310–313.

[38] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis,” in Proc. DAC,
2006, pp. 532–535.

[39] A. Mishchenko and R. K. Brayton, “Scalable logic synthesis using a
simple circuit structure,” in Proc. IWLS, 2006, pp. 15–22.

[40] H. Riener, E. Testa, L. G. Amarù, M. Soeken, and G. De Micheli,
“Size optimization of MIGs with an application to QCA and STMG
technologies,” in Proc. NANOARCH, 2018, pp. 157–162.

[41] H. Riener et al., “Scalable generic logic synthesis: One approach to rule
them all,” in Proc. DAC, 2019, pp. 1–6.

[42] V. N. Kravets and P. Kudva, “Implicit enumeration of structural changes
in circuit optimization,” in Proc. DAC, 2004, pp. 438–441.

[43] A. Mishchenko, R. K. Brayton, J.-H. R. Jiang, and S. Jang, “Scalable
don’t-care-based logic optimization and resynthesis,” ACM Trans.
Reconfigurable Technol. Syst., vol. 4, no. 4, pp. 1–23, 2011.

[44] L. G. Amarù et al., “Improvements to Boolean resynthesis,” in Proc.
DATE, 2018, pp. 755–760.

[45] K.-H. Chang, I. L. Markov, and V. Bertacco, “Fixing design errors with
counterexamples and resynthesis,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 27, no. 1, pp. 184–188, Jan. 2008.

[46] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and M. Soeken,
“On-the-fly and DAG-aware: Rewriting boolean networks with exact
synthesis,” in Proc. DATE, 2019, pp. 1649–1654.

[47] H. Riener, A. Mishchenko, and M. Soeken, “Exact DAG-aware rewrit-
ing,” in Proc. DATE, 2020, pp. 732–737.

[48] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in Proc. ISFPGA, 1999,
pp. 29–35.

[49] G. De Micheli, Synthesis and Optimization of Digital Circuits, 1st ed.
New York, NY, USA: McGraw-Hill, 1994.

[50] F. Mailhot and G. De Micheli, “Technology mapping using boolean
matching and don’t care sets,” in Proc. Conf. Eur. Design Autom., 1990,
pp. 212–216.

[51] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational
and sequential mapping with priority cuts,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Des., 2007, pp. 354–361.

[52] V. Manohararajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for
area minimization in LUT-based FPGA technology mapping,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 11,
pp. 2331–2340, Nov. 2006.

[53] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping,” in Proc. ICCAD,
2005, pp. 519–526.

[54] W. L. Neto et al., “Exact benchmark circuits for logic synthesis,” IEEE
Design Test, vol. 37, no. 3, pp. 51–58, Jun. 2020.

[55] D. Stroobandt, P. Verplaetse, and J. van Campenhout, “Generating
synthetic benchmark circuits for evaluating CAD tools,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 19, no. 9,
pp. 1011–1022, Sep. 2000.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 16:31:09 UTC from IEEE Xplore. Restrictions apply.

RAI et al.: UTILIZING XMG-BASED SYNTHESIS TO PRESERVE SELF-DUALITY FOR RFET-BASED CIRCUITS 927

[56] A. Neutzling, J. M. Matos, A. Mishchenko, A. Reis, and R. P. Ribas,
“Effective logic synthesis for threshold logic circuit design,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 5, pp. 926–937,
May 2019.

[57] A. Neutzling, F. S. Marranghello, J. M. Matos, A. Reis, and
R. P. Ribas, “maj-n logic synthesis for emerging technology,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 3,
pp. 747–751, Mar. 2020.

Shubham Rai (Graduate Student Member, IEEE)
received the B.Eng. degree in electrical and elec-
tronic engineering and the M.Sc. degree in physics
from the Birla Institute of Technology and Science
Pilani, Pilani, India, in 2011. He is currently pur-
suing the Ph.D. degree with Technische Universität
Dresden, Dresden, Germany.

His research focus is on design automation for
reconfigurable nanotechnologies and their security
implications.

Alessandro Tempia Calvin received the B.S. degree
in computer engineering from the Politecnico di
Torino, Turin, Italy, in 2017, and the M.S. degree
in computer engineering from the Politecnico di
Torino, in 2020, and Télécom Paris, Paris, France,
in 2021. He is currently pursuing the Ph.D. degree
in computer science with the Integrated Systems
Laboratory, Swiss Federal Institute of Technology
Lausanne, Lausanne, Switzerland.

His current research interests include design
automation, logic synthesis, and emerging
technologies.

Heinz Riener received the B.Sc. and M.Sc. degrees
from Technical University Graz, Graz, Austria, in
2008 and 2011, respectively, and the Ph.D. degree
in computer science from the University of Bremen,
Bremen, Germany, in 2017.

He is a Researcher with EPFL, Lausanne,
Switzerland. From 2015 to 2017, he worked with
the Group of Avionics Systems, German Aerospace
Center, Bremen. His research interests are logic
synthesis, formal methods, and computer-aided ver-
ification of hardware and software systems.

Giovanni De Micheli (Life Fellow, IEEE) received
the nuclear engineering degree from the Politecnico
di Milano, Milan, Italy, in 1979, and the M.S. and
Ph.D. degrees in electrical engineering and com-
puter science from the University of California
at Berkeley, Berkeley, CA, USA, 1980 and 1983,
respectively.

He was a Professor of Electrical Engineering with
Stanford University, Stanford, CA, USA. He is a
Professor and the Director of the Integrated Systems
Laboratory, EPFL, Lausanne, Switzerland. His cur-

rent research interests include several aspects of design technologies for
integrated circuits and systems, such as synthesis for emerging technologies.

Prof. De Micheli is a fellow of ACM, and a member of the Academia
Europaea and an International Honorary member of the American Academy
of Arts and Sciences.

Akash Kumar (Senior Member, IEEE) received the
Ph.D. degree in electrical engineering in embed-
ded systems from the University of Technology
(TUe), Eindhoven, The Netherlands, and National
University of Singapore, Singapore, in 2009.

He is currently a Professor with Technische
Universität Dresden, Dresden, Germany, where he
is directing the chair for Processor Design. From
2009 to 2015, he was with the National University
of Singapore. His current research interests include
design, analysis, and resource management of low-

power and fault-tolerant embedded multiprocessor systems.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 16:31:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

