
Striving for Both Quality and Speed:
Logic Synthesis for Practical Garbled Circuits

Mingfei Yu, Giovanni De Micheli
Integrated Systems Laboratory, EPFL

Lausanne, Switzerland
{mingfei.yu, giovanni.demicheli}@epfl.ch

Abstract—Garbled circuit (GC) is one of the few promising
protocols to realize general-purpose secure computation. The
target computation is represented by a Boolean circuit that is
subsequently transformed into a network of encrypted tables
for execution. The need of distributing GCs among parties
however requires excessive data communication, called garbling
cost, which bottlenecks system performance. Due to the zero
garbling cost of XOR operations, existing works reduce garbling
cost by representing the target computation as the XOR-AND
graph (XAG) with minimum multiplicative complexity. Recently,
an XOR-OneHot graph (X1G) has been proposed as an efficient
GC representation. However, there is a lack of formal proof of
X1G performance in the literature. In this paper, we prove that
starting from any XAG, there exists an X1G implementation with
equal or lower garbling cost. Based on our findings, we propose
(a) an affine function classification-based database generation
method, which decouples time-consuming on-the-fly exact syn-
thesis from Boolean rewriting; (b) a novel optimal X1G synthesis
approach to accelerate the database generation procedure. The
proposals jointly facilitate a performant Boolean rewriting-
based X1G optimization method. Experimental evaluations show
significant improvement in both garbling cost and runtime: with
a 2273.63× speed-up achieved on average, the proposed method
realized an up-to 8.20% improvement in garbling cost reduction
compared to the state-of-the-art.

Index Terms—logic synthesis, garbled circuits, secure multi-
party computation, multiplicative complexity

I. INTRODUCTION

Secure computation, also known as secure multi-party com-
putation (MPC), refers to the process of computing a joint
function on private inputs from multiple parties in a way that
ensures the privacy and security of the inputs. This feature
enables parties to collaborate in a privacy-preserving way and
provides an ideal solution to many scenarios where privacy
and security are paramount, such as financial transactions [1],
voting systems [2], and medical data sharing [3].

However, realizing general-purpose MPC is not easy.
Among the few candidates in the literature, garbled circuit
(GC) is a promising one. First proposed by Andrew Yao
in 1986 [4], GC is a cryptographic technique with a con-
stant round complexity. GC offers several advantages over
other competitors: compared to fully homomorphic encryption
(FHE) [5], GC is free from a prohibitive computational over-
head and can be executed much faster; in comparison with
secret sharing [6], GC protects the privacy of intermediate
values, preventing information about the private inputs from
being revealed by intermediate results.

Meanwhile, this powerful technique has its limitations.
In this protocol, the target computation is represented by a
Boolean circuit and subsequently transformed into a garbled
circuit — essentially a network of encrypted tables — for
execution. The requirement that the GC shall be transmit-
ted among parties results in an excessive amount of data
communication. This communication cost, also known as
garbling cost, is a significant factor that bottlenecks the overall
system performance: since the size of a GC depends on the
number of logic gates in the Boolean circuit, while modern
application scenarios are typically large-scale, and commonly
have requirements for low latency and high energy efficiency,
garbling cost becomes a major concern.

To make the protocol more efficient, researchers have
proposed various solutions, which generally fall into two
categories. One focuses on improving the garbling scheme,
because a smarter way to garble each logic gate can reduce the
number of cipher-texts in each encrypted table. To name but a
few: The free-XOR technique points out that, by making use of
the algebraic property of XOR operations, garbling XOR gates
can be free from resulting in any encrypted tables [7]. Half-
gate shows that any 2-input non-linear logic operation, such
as AND2, can be garbled using 2 cipher-texts, i.e., a 2-entry
encrypted table [8]. Garbling gadget proposes that the garbling
cost of any m-input symmetric logic gate is no more than
m, suggesting that large-fanin-size logic gates might be more
garbling cost-efficient non-linearity providers than AND2 [9].

The other technical direction, to which this work belongs,
is to optimally synthesize the Boolean circuit that implements
the target computation. Due to the fact that XOR gates and
inverters are free of garbling cost (by adopting the free-XOR
scheme), it is widely regarded as a multiplicative complexity
(MC) reduction problem: implement the target Boolean func-
tion over the basis of {AND2, XOR2, NOT}, i.e., as an XOR-
AND graph (XAG), then minimize the number of AND2s in
the XAG through manipulating logic. Remarkable progress has
been achieved by either exploiting existing logic optimization
techniques with the number of AND2s targeted as the quality
measure [10], or tailored approaches, such as detecting those
AND2s that can be replaced by XNOR2s without changing the
functionality of the circuit [11]. It is also of interest to find
more garbling cost-efficient logic primitives to represent the
Boolean circuits to be garbled: inspired by garbling gadget,
a study on the garbling cost-efficiency of larger-fanin-size

logic gates reveals that both wide AND and OneHot3 are
more efficient non-linearity providers than AND2; thus, it
is preferable to adopt compact XAGs (generalized XAGs
that support wide ANDs) or XOR-OneHot graphs (X1Gs)
over XAGs as the logic representation when synthesizing the
Boolean circuits [12]. However, there is a lack of formal
comparison between the performance of these two garbling
cost-efficient logic representations, as well as supportive logic
optimization techniques.

For the first time, we report in Section III that X1G is
the better logic representation for the task of practical GC
generation, evidenced by the observation that starting from any
compact XAG, there always exists an X1G implementation
with equal or lower garbling cost. To facilitate a powerful and
agile X1G-oriented logic optimization method, two proposals
are made, respectively in Section IV and V, to efficiently
develop a database of garbling cost-optimal X1G implemen-
tations for 6-variable Boolean functions: (a) applying affine
function classification to limit the database to a manageable
size; and (b) a novelly-formulated exact synthesis approach
that can quickly synthesize optimal X1G for small-scale
Boolean functions. As reported in Section VI, evaluations
on three popular benchmark suites show that our method on
average outperforms the state-of-the-art algorithm in garbling
cost reduction by respectively 1.97%, 1.59%, and 0.51%,
together with 2441.64×, 795.58×, and 3950.08× speed-ups.

II. BACKGROUND

A. Garbled Circuits Protocol

The concept of GC was first proposed by Yao as a solu-
tion to secure two-party computation (2PC) [4] and is later
generalized to an MPC protocol [13]. We introduce its 2PC
version for clarity, which is also the core of the MPC version.
Generally, we adopt the formalization provided in [14].

Two parties, namely Alice and Bob, would like to rely
on GC to collaborate on computing a function f without
revealing their private inputs to each other. They are supposed
to respectively play the roles of garbler, who is in charge of
generating the GC, and evaluator, who evaluates the generated
GC. Without loss of generality, we assume that Alice is the
garbler and Bob is the evaluator.

The execution of the protocol can be split into 5 steps:
1) Boolean circuit generation. Starting from a target com-

putation, commonly described in high-level languages
like C++ or Python, it is required that Alice generates
a Boolean circuit whose function f (·): Bm → Bn

implements the computation.
2) GC generation. With a parameter l ∈ N indicating the

desired security level, for each wire in the circuit, Alice
selects an encoding function En(·): B → Bl that maps
the two potential binary value, 0 and 1, to two l-bit
labels. For example, the label A that corresponds to
Alice’s private input a is created following A = En(a).
Correspondingly, for each logic gate in the circuit, an
encrypted table is created based on its truth table; each

entry of the table is a cipher-text created by encrypting
the output label using the input labels. In this way, a GC
F, which is essentially a network of encrypted tables, is
generated by Alice on top of the Boolean circuit.

3) GC transmission. Alice sends Bob: the GC F; the label
corresponding to her inputs A; and a set of labels B that
consists of all the potential labels for Bob’s private input.
By exploiting oblivious transfer (OT) as the moderator,
among the labels in B, Bob only learns B, the one that
corresponds to his private input b.

4) GC evaluation. Bob evaluates the received GC F and
obtains the garbled output Y following Y = F(X),
where X = {A,B}.

5) Result sharing. Alice announces the decoding function
for the primary output wire De(·): Bl → B, while Bob
shares the evaluation result Y . These two resources of
information jointly determine the computation result y,
as y = De(Y).

The need of sending the generated GC from Alice to Bob
in the GC transmission stage typically results in an excessive
amount of data communication.

B. Role of Multiplicative Complexity in Practical GC

Free-XOR [7] connects synthesizing practical GC to a well-
known logic synthesis problem, the MC reduction problem.

Given a Boolean function, its MC is the minimum number
of AND2s sufficient to implement it exclusively using AND2s,
XOR2s, and inverters (i.e., as an XAG) [15]. However, figuring
out the MC of a Boolean function is generally an intractable
problem [16]. Thus, depending on the context, MC also com-
monly refers to the AND2 count in an XAG implementation
of a Boolean function.

To avoid ambiguity, functional MC and structural MC are
used to distinguish the two cases [12]: for a given function, its
functional MC is one of its attributes, while structural MC is
a feature of an XAG implementation of it. Indeed, a Boolean
function’s functional MC lower-bounds the structural MC of
any XAG implementing this function.

The MC reduction problem asks: “Starting from an XAG,
how to reduce the number of AND2s in it as much as possible
by manipulating logic synthesis techniques?” Since among
the logic primitives of {AND2, XOR2, NOT}, AND2 is the
only one that introduces garbling cost to the synthesized GC,
any progress in addressing the MC reduction problem directly
contributes to the synthesis of lower-cost GCs.

C. Garbling Cost-Efficiency of Symmetric Logic Gates

It was first proposed in [9] that symmetric logic gates, whose
output depends on the Hamming Weight of the input pattern,
can be garbled more efficiently than believed.

This is realized by interpreting a symmetric logic opera-
tion as a modular addition followed by an integer-to-binary
projection. For an m-input symmetric logic operation, such a
modulus n is no more than m+ 1. Since a modular addition
is free of garbling cost, the garbling cost of an m-input

symmetric logic gate is numerically the garbling cost of an
n-to-2 projection, which is upper-bounded by n−1 = m [17].

Due to the unateness of AND operation, the modulus
required to interpret an m-input AND operation is always
m+1, determining that garbling an m-input AND gates results
in m cipher-texts. On the other hand, since each m-input AND
decomposes into m− 1 AND2s, the functional MC of an m-
input AND gate is m− 1.

Fig. 1: Structual MC-Optimal
XAG that Implements OneHot3

Fig. 2: Implement AND3
using OneHot3s and XORs

Meanwhile, a OneHot3 operation, whose truth table is #161,
can be garbled using only 2 cipher-texts due to its property
that its outputs are the same when given the input patterns
with the minimum or maximum Hamming Weight (i.e., 000
and 111). The functional MC of the OneHot3 operation is 2,
as at least two AND2s are required to implement it as an XAG
(Fig. 1, “∧” and “⊕” denote AND and XOR respectively).

Non-linear logic gates are indispensable to represent a
computation as a Boolean circuit. It is impossible to build
any Boolean function using merely XORs and inverters, as
witnessed by the functional MC of the function. A logic gate’s
garbling cost-efficiency in providing structural MC is defined
as its MC compactness [12]. When adopting AND2 as the
logic primitive to provide non-linearity, at least 2 cipher-texts
are required to introduce one unit of structural MC to the
resulting logic network [8]. In contrast, an m-input AND gate
offers m − 1 units of structural MC at the expense of m
cipher-texts, while a OneHot3 gate spends 2 cipher-texts to
introduce 2 units of structural MC. Hence, both wide AND
and OneHot3 are more garbling cost-efficient non-linearity
providers compared to AND2.

For this reason, regarding garbling cost reduction as an
MC reduction problem has its limitations. This formulation
depends on the premise that XAG is adopted as the logic
representation for the Boolean circuit, which is no longer
plausible: by either (a) generalizing XAG to compact XAG,
where the fanin size of ANDs is allowed to be arbitrary, or (b)
adopting X1G instead as the logic representation, a reduced
garbling cost can be achieved.

D. Affine Function Classification

Affine operation refers to those transformations that, if
applied, do not change the algebraic properties of a Boolean

1In this paper, we represent truth tables in hexadecimal as a bit-string and
the most significant bit is on the left-hand side.

function [18]. Based on an n-variable Boolean function f (x1,
· · · , xi, · · · , xj , · · · , xn), the five affine operations are:

1) Swap two variables: f
xi↔xj−−−−→ f ’.

2) Complement a variable: f xi→¬xi−−−−−→ f ’, where “¬” indi-
cates negation.

3) Complement the function: f ¬−→ f ’.

4) Translational operation: f
xi→(xi⊕xj)−−−−−−−−→ f ’.

5) Disjoint translational operation: f ⊕xi−−→ f ’.
Two Boolean functions, f and g, are defined as affine

equivalent if there is a series of affine operations o = {o1,
· · · , ok} that satisfies

f
o1−→ · · · ok−→ g.

In some applications, such as cryptography, affine equiva-
lence theory provides a powerful approach to classify Boolean
functions, which we hereafter refer to as affine function clas-
sification. For example, all 216 4-variable Boolean functions
split into 222 NPN equivalence classes [19] but only 8 affine
equivalence classes [20].

III. WIDE AND OR ONEHOT

Compared to AND2, both large-fanin-size AND and One-
Hot3 are more garbling cost-efficient MC providers. However,
we have noticed that given a Boolean function, any of its
compact XAG implementations can be converted into an X1G
with equal or lower garbling cost, implying that X1G is the
better logic representation for low-cost GC generation.

A. One-to-One Conversion from a Compact XAG to an X1G

By adopting garbling gadget as the garbling scheme, gar-
bling an AND3 gate and a OneHot3 gate requires only
3 and 2 cipher-texts respectively [9]. This points out the
possibility of making use of OneHots to garble AND op-
erations with a reduced cost. As can be learned from the
algebraic normal form (ANF) [16] of the OneHot3 operation:
OneHot3(x1, x2, x3) = x1x2x3⊕x1⊕x2⊕x3, we can extract
the two inherent AND2s in it by applying extra XORs to
cancel the last three items in the formula. Such a solution
is depicted in Fig. 2, where an AND3 operation is realized
using one OneHot3 (we use “OH” to denote a OneHot gate)
and two XORs. Thanks to the fact that garbling XORs is free
of cipher-texts, the implementation requires 2 cipher-texts in
total, cheaper than directly garbling an AND3 operation.

It is believed that adopting OneHots as the logic primitives
to introduce structural MC is effective in reducing garbling
cost but needs considerable runtime. This is because the
starting point of the logic synthesis flow is assumed to be
an optimized XAG (in order to take advantage of existing
achievements on MC reduction); a time-consuming logic net-
work restructuring is therefore inevitable to obtain an X1G
from an XAG. On the other hand, the adoption of wide AND
is relatively easy, as an XAG can be quickly transformed
into a compact XAG by merging adjacent AND2s [12]. Our
aforementioned observation however suggests that a compact

Algorithm 1: Converting a compact XAG into an X1G
with equal or lower garbling cost

Input: A compact XAG, N
Output: An functionally-equivalent X1G

1 foreach AND node n ∈ N do
2 M← decompose n into consecutive AND2s
3 while M ≠ ∅ do
4 if |M| = 1 then
5 {x1,x2}← fanins of M[0]
6 n’← OneHot(1,¬x1,¬x2)
7 replace node M[0] with n’
8 remove M[0] from M
9 else

10 {x1,x2}←fanins of M[0]
11 x3 ←the non-M[0] fanin of M[1]
12 n’←implement AND(x1, x2, x3) as Fig. 2
13 replace nodes M[0] and M[1] with n’
14 remove M[0] and M[1] from M
15 return N

XAG can be easily converted into an X1G, whose garbling
cost is provably never higher than before conversion.

Algo. 1 has a linear time complexity. It takes a compact
XAG and goes through all the AND gates in it. When an m-
input AND is encountered, it would be regarded as m − 1
consecutive AND2s (line 2). Each pair of AND2s is garbled
following the solution shown in Fig. 2 (line 10-13); If there
is an AND2 that cannot form a pair, which happens when m
is even, by following the rule that

AND(x1, x2) = OneHot(1,¬x1,¬x2),

this remaining AND2 is replaced by a OneHot gate (line 5-7).

Proposition 1. The garbling cost of the X1G obtained by
applying Algo. 1 is never higher than the cost of the starting
point compact XAG.

Proof. Assume there are p ANDs in the original compact
XAG, whose fanin sizes are respectively m1, m2, · · · , mp.
Recall that garbling an m-input AND operation requires m
cipher-texts, then the garbling cost of this compact XAG is

costXAG =

p∑
i=1

mi. (1)

In contrast, by converting this compact XAG into an X1G via
applying Algo. 1, the resulted garbling cost becomes

costX1G =

p∑
i=1

(2 ·
⌈
mi − 1

2

⌉
), (2)

which is in the range of
p∑

i=1

mi − p ≤ costX1G ≤
p∑

i=1

mi.

Notice that costXAG is numerically equal to the upper bound,
which would be reached only if all mi-s are even. QED

We further provide experimental evidence by generating the
X1G implementations for the 10 benchmarks in the EPFL
benchmark suite of random/control circuits. We adopted the
merging algorithm in [12] to generate the compact XAGs to
feed to Algo. 1. It averagely spends merely 0.02s on a laptop
computer to realize a 4.20% garbling cost reduction.

B. Limitations of Relying on One-to-One Conversion
Algo. 1 not only suggests that X1G is the better choice

of logic representation for practical GC generation but also
enlightens us with a runtime-friendly way to benefit from its
garbling efficiency. However, it is further noticed that relying
on this one-to-one conversion from compact XAG to X1G
(Algo. 1) can direct us to sub-optimality.

Eq. 1 and 2 respectively define the garbling costs of a
compact XAG and an X1G: a compact XAG implementation
is preferable if it consists of fewer but larger-fanin-size ANDs;
while a better X1G implementation is the one with fewer One-
Hot3s in it. Thus, when garbling cost-optimally implementing
a function, its compact XAG-based and X1G-based solutions
are likely different in structure.

We take as an example the task of finding the garbling
cost-optimal implementation for a function whose truth table
is #2888a000. This function is one of the representative
functions of all 48 affine equivalence classes for 5-variable
Boolean functions and has a known functional MC of 3.

(a) Compact XAG-Based (b) X1G-Based

Fig. 3: Garbling Cost-Optimal Implementations of #2888a000

Naı̈vely applying Algo. 1 to the compact XAG in Fig. 3a
cannot lead us to the X1G in Fig. 3b — such an application
would result in an X1G with 3 OneHot3s, whose garbling
cost is 6, which is 50% worse than the optimal. Indeed,
the expected compact XAG that can be converted into the
optimal X1G shall be the one with two AND3s in it. However,
the structural MC of such a compact XAG is 4, while the
structural MC of the compact XAG in Fig. 3a is only 3,
which is numerically equal to the functional MC of the target
function and is therefore minimal. That being said, given a
target function, its garbling cost-optimal X1G is not always
reachable if we rely on applying the one-to-one conversion to
its garbling cost-optimal compact XAG implementation.

The two observations proposed in this section jointly sug-
gest that our goal of generating practical GCs can be simplified
as: given a target function, figuring out a way to efficiently find
its garbling cost-optimal X1G implementation.

IV. AFFINE FUNCTION CLASSIFICATION-BASED
DATABASE GENERATION

In the previous section, we found the optimal implemen-
tations for the exemplary function via exact synthesis. It is
a logic synthesis technique that involves finding the most
efficient way to represent Boolean functions using network
primitives but typically suffers from poor scalability [21]. In
fact, most logic synthesis techniques are heuristic, as the sizes
of functions encountered in practical problems are too large,
making the pursuit of global optimum infeasible.

A large portion of successful heuristics can be categorized as
peephole optimizations [22]. As its name indicates, peephole
optimization refers to those divide-and-conquer-based strate-
gies, which focus and optimize a partial logic network at
a time. Existing effort on X1G-oriented logic optimization
falls precisely into this category: in [12], the authors propose
a Boolean rewriting-based X1G optimization method, where
an exact synthesis solver is invoked on-the-fly to find the
optimal X1G implementation for each encountered partial
network. Due to the intrinsic complexity of exact synthesis,
this approach requires a prohibitive runtime. The demand for
low latency in most application scenarios of MPC determines
the desire for a runtime-friendly X1G optimization technique.

A database of optimal X1G implementations for small-scale
Boolean functions can effectively eliminate the need of invok-
ing exact synthesis in an on-the-fly manner and significantly
reduce the runtime of Boolean rewriting. Therefore, in this
section, we aim at generating such a database.

A potential solution in the literature is Boolean mining-
based functionally-incomplete database generation [23]. Un-
fortunately, it is inapplicable to our problem: Boolean mining
requires that the Boolean functions that occur in practice are
collected before entering the logic optimization procedure so
that their optimal implementations can be prepared in advance;
Considering the privacy-preserving property of MPC, such a
premise is likely invalid. Hence, the database to be created
should possess the characteristics of: (1) functionally complete
and (2) with a reasonable number of entries.

Affine function classification turns out to be a natural fit. As
introduced in Section II, for any two affine-equivalent Boolean
functions f and g, there exists a series of affine operations o
that converts f to g; The reverse process of o, which converts
g to f, is denoted by o′. The reasonability of generating the
database based on affine function classification is evidenced
by the following proposition:

Proposition 2. Assume the garbling cost-optimal X1G imple-
mentation of the function f is available, denoted as f1. Then,
by applying o to f1, the obtained X1G g1 is a garbling cost-
optimal X1G implementation of the function g.

Proof. If g1 is not a garbling cost-optimal X1G implemen-
tation of the function g, there exists an X1G g2 that also
implements function g but requires fewer OneHot3s than g1.
By applying o′ to g2, another implementation of function f,
f2, can be obtained. Since applying affine operations never

change the number of OneHot3s in a logic network, there are
fewer OneHot3s in f2 than in f1, indicating that f1 is not a
garbling cost-optimal X1G implementation of the function f,
which leads to a contradiction. QED

This is not the first attempt in the literature to adopt
affine function classification in a logic synthesis problem.
Existing trials can be found in tasks like MC reduction [24],
synthesizing optimal quantum circuits [25], etc. But our pro-
posal distinguishes itself as it is targeting X1G, while all
the above-mentioned works target XAG as the objective logic
representation.

Boolean rewriting relies on k-feasible cut enumeration [26]
as a pre-process, to decide which partial networks the opti-
mization process should focus on. The selection of k deter-
mines the allowed number of inputs to the partial networks. A
larger k allows the process to get closer to the global optimum.
Certainly, due to scalability concerns, it is impossible to set k
to be unreasonably large. Configuring k to 4 or 5 is common
in practice.

Thanks to the adoption of affine function classification, there
are only 150 357 equivalence classes for all 6-variable Boolean
functions, implying the feasibility of creating a database to
support setting k as 6. A representative function can be
assigned for each class [27]. However, finding the garbling-
cost optimal X1G implementations for these 150 357 functions
is still a non-trivial task. Thus, an approach to efficiently
synthesizing optimal X1Gs for small-scale functions can sig-
nificantly facilitate the generation of the targeted database.

V. A NOVEL APPROACH TO EFFICIENTLY SYNTHESIZE
GARBLING COST-OPTIMAL X1GS

A. Abstract XAG and AND Fence

In [16], the authors simplify the network description from
the original XAG to a more general form. This representation,
which is later termed as abstract XAG [28], features that: (1)
fanin sizes of XORs are arbitrary (called XOR clouds); (2)
each fanin of any XOR is either a primary input or an AND2
belonging to a lower logical level; (3) fanins of any AND2
are XOR clouds; (4) primary outputs are XOR clouds.

The number of steps of an abstract XAG equals the number
of AND2s in it, i.e., between every two AND2s in adjacent
steps, there are two XOR clouds inserted. It is observed
in [28] that, by solving the SAT-based exact synthesis problem
formulated on top of abstract XAG, the structural MC-optimal
(i.e., AND2 count-minimal) implementation can be found
significantly faster. We suppose the reason is that this encoding
relaxes the restriction on the optimality in XOR count, which
considerably increases the number of solutions in the search
space and makes finding a solution much easier.

The XOR count in a solution found in this way is commonly
beyond the minimal [28]. But considering that XORs are lit-
erally free in the context of GC generation, this complete lack
of concern over XOR count makes this formulation a natural
fit for our problem. To adapt this technique, we generalize

it by supporting multi-fanin ANDs. To avoid ambiguity, we
hereinafter use refer to our extended version as abstract XAG.

Additionally, in order to quickly evaluate the quality of an
abstract XAG implementation, we introduce a concept named
AND fence. This term is inspired by [29], where the term
Boolean fence is used to refer to the topology of a logic
network. In contrast, we use AND fence to describe the usage
of ANDs in an abstract XAG, i.e., AND count, fanin size
of each AND, and the step that each AND belongs to. This
information is of particular interest to us because it directly
and exclusively determines an abstract XAG’s garbling cost.
We denote each AND fence F as a set of integers:

F = {m1,m2, · · · ,mp}.

the ith element indicates the fanin size of the ith-step AND.

(a) Abstract XAG (b) AND Fence

Fig. 4: An Abstract XAG Implementation of Function
#2888a000 and its AND Fence

For example, Fig. 4a provides an abstract XAG implemen-
tation of the function we have seen before. For conciseness,
instead of arrows, we use the blue texts under each XOR cloud
to denote the fanins of that XOR cloud. By ignoring the XOR
clouds, the AND fence of this abstract XAG is obtained (Fig.
4b), whose numerical representation is F = {3, 3}, as both
a1 and a2, the first-step and second-step ANDs, are 3-input.

Based on the AND fence of an abstract XAG, its garbling
cost can be calculated follwing Eq. 1 given in Section III.
An abstract XAG’s structural MC can also be learned from
its AND fence: since each m-input AND can be decomposed
into m − 1 AND2s, an abstract XAG whose AND fence is
F = {m1,m2, · · · ,mp} is with the structural MC of

smc(F) =
p∑

i=1

(mi − 1) =

p∑
i=1

mi − p (3)

B. Finding Optimal Abstract XAG

The fact that an abstract XAG’s garbling cost can be learned
from its AND fence has enabled us to efficiently find the
optimal abstract XAG implementations for given functions.

Given a function, its optimal abstract XAG implementation
can be found by enumerating potential AND fences in garbling
cost ascending order. For each AND fence, we rely on the SAT
solver to answer the following question: “Is there an abstract

XAG that follows the given AND fence and implements our
target function?” If the answer is yes, we manage to find an
abstract XAG implementation for the function — since an
AND fence with the lower garbling cost is always considered
earlier, the optimality of the implementation is guaranteed;
otherwise, the next AND fence would be targeted.

To support this proposal, a library of AND fences is needed.
To take all fences of interest into consideration, our solution
starts by addressing its simpler variant: How many AND
fences are there when a certain structural MC is targeted?
This is the reverse of calculating the structural MC of an
AND fence (Eq. 3) and is essentially a positive integer
partition problem, which is a classic problem in number theory
and combinatorics. The permutation of numerically-different
elements matters in our case, e.g., if mj ̸= mk, {mj ,mk} and
{mk,mj} are two different AND fences.

We adapt the algorithm in [30] to our implementation. Since
our goal is to generate a database for 6-variable Boolean
functions and it is known that the functional MC of up-to-
6 variable functions is upper-bounded by 6 [16], our library
consists of AND fences whose structural MC is no more than
6. By executing the adapted algorithm, it is learned that there
are 63 AND fences in total.

On top of such a library of AND fences, we propose
a novel approach to efficiently find optimal abstract XAG
implementations.

Algorithm 2: Efficiently Finding Optimal Abstract
XAG using AND Fences
Input: Boolean function f, library of AND fences
Output: Optimal abstract XAG implementation for f

1 fmc ← functional MC of f
2 foreach AND fence F ∈ library do
3 s ← smc(F)
4 if s < fmc then continue
5 N ← exact synthesis(f, F)
6 if N ̸= NULL then return N

The functional MCs of small-scale Boolean functions,
whose numbers of input variables are no more than 6, are
known [16]. Making use of a function’s functional MC, the
synthesis procedure is accelerated by skipping those AND
fences providing an insufficient structural MC (line 4).

C. A Novel Approach to Synthesize Optimal X1G Efficiently
By integrating the proposed optimal abstract XAG synthesis

technique (Algo. 2) and the one-to-one converting algorithm
transforming a compact XAG into a lower-cost X1G (Algo. 1),
we propose a novel approach to efficiently synthesize optimal
X1G implementations.

Given a Boolean function, its garbling-cost optimal X1G
implementation is found in three steps: (1) find the optimal
abstract XAG implementation following Algo. 2; (2) transform
the abstract XAG into a compact XAG by decomposing XOR
clouds into XOR2s; (3) apply Algo. 1 to convert the compact
XAG into an X1G.

As pointed out in Section III, for the same function, its
optimal compact XAG and X1G implementations can be
not interchangeable by applying Algo. 1 due to structural
difference. Nevertheless, based on the AND fence of an
abstract XAG, we can use Eq. 2 to “predict” what its garbling
cost would be if it is converted into an X1G. Thus, when
sorting the candidates in the library of potential AND fences,
the sort criteria is the garbling costs calculated following
Eq. 2. Put another way, for those “optimal abstract XAG
implementations” synthesized in the first step, the optimality
is defined in terms of the “predicted” garbling cost. For this
reason, the first step can be also termed as a conversion-aware
optimal abstract XAG synthesis process.

We recall the example shown before to demonstrate the
effectiveness of this approach. When the target function is
with the truth table of #2888a000, at least two OneHot3s are
required to implement it as an X1G, as evidenced by Fig. 3b.
To reach such an X1G implementation through applying Algo.
1, the starting point shall be a compact XAG whose AND
fence is F1 = {3, 3}. If we focus on synthesizing optimal
abstract XAG in the first step, the solver would be stuck at
an implementation with the AND fence of F2 = {2, 2, 2},
as it achieves the minimum structural MC. Following the
proposed approach however, it is foreseen that F1 would
result in an X1G of lower garbling cost than F2 would
do, as costX1G(F1) = 4 and costX1G(F2) = 6 according to
Eq. 2; thus, it considers F1 prior to F2 and successfully
finds the abstract XAG corresponding to the optimal X1G
implementation. Specifically, the abstract XAG in Fig. 4a is
exactly the one found by the proposed approach.

VI. EXPERIMENTAL RESULTS

We here report the experimental evaluations on (a) the
novel approach to synthesize optimal X1G implementations
for small-scale functions; and (b) the database-driven Boolean
rewriting-based X1G optimization method. All the experi-
ments are run on an Apple M1 Max chip with 32GB memory.

A. X1G-Oriented Exact Synthesis Approach

Among different SAT encoding strategies for exact synthesis
in the literature, single selection variable (SSV) is a widely
welcomed one and selected as the object of comparison [21].
In order to provide a convincing evaluation, for the competitor
we further adopt the heuristic of using the target function’s
functional MC to limit the ranges of the expected number of
OneHot3s and XORs [12], which can considerably prune the
search space for the optimal X1G implementation.

In this experiment, the benchmark consists of all represen-
tative functions of 48 affine equivalence classes for 5-variable
Boolean functions. The exact synthesis solvers in both two
approaches are implemented by exploiting the C++ reasoning
library bill2, with Glucose3 adopted as the underneath SAT
solver. The conflict limit for the SAT solver is set to 100 000.

2Available at: https://https://github.com/lsils/bill
3Available at: https://www.labri.fr/perso/lsimon/research/glucose/

TABLE I: Evaluation on 48 Representatives of 5-variable
Affine Equivalence Classes

Synthesis method #solutions Accum. #OneHot3s Accum. Time [s]

baseline 43 113 1 354.58

ours 48 120* 40.23
* This figure goes down to 105 if we exclude the 5 cases where no

solutions are synthesized by the baseline method.

According to experimental results, the X1G implementa-
tions synthesized following the proposed method (ours) are
always of equal or higher quality, i.e., require fewer OneHot3s,
together with a 33.67× speed-up on average. Among the
48 target functions, the baseline method failed to find any
solution for 5 of them, while the proposed method managed
to synthesize X1G implementations for all target functions.
For 7 functions, the solutions found by the baseline method
are sub-optimal, as the proposed method found solutions using
fewer OneHot3s, evidenced by the fact that the total number
of OneHots (Accum. #OneHot3s) in the 43 solutions found by
the baseline method is higher than the one in the corresponding
43 X1Gs synthesized following the proposed method.

With a reasonable number of conflict limits, the baseline
method even failed to find the optimal X1G implementations
for all these 48 functions. This observation implies the infeasi-
bility of relying on conventional methods to achieve our goal
of generating a database for 6-variable Boolean functions.

By capturing a significant characteristic of this practical GC
generation problem that XORs are free of garbling cost, the
proposed approach smartly removes the constraint on XOR
count, so as to increase the number of solutions in the search
space and make it possible to find a solution efficiently.
By exploiting this approach, a 150 357-entry database of the
garbling cost-optimal X1G implementations for 6-variable
Boolean functions is generated, on which our database-driven
Boolean rewriting-based X1G optimization method relies.

B. Database-Driven Rewriting-Based X1G Optimization

We implemented a Boolean rewriting-based X1G optimiza-
tion method as part of the C++ logic synthesis library mock-
turtle4. For the usage of the database, we empirically set the
maximum number of affine operations allowed for matching
to be 100 000. For practical purposes, if a partial network’s
function cannot be matched to any of the representatives within
this limitation, the rewriting targeting it would be skipped.

Three benchmark suites are targeted to provide a com-
prehensive evaluation: EPFL [31], cryptographic5, and MPC
benchmark suites [32]. The proposed method is run repeti-
tively for each benchmark until no improvement in garbling
cost reduction is observed.

Due to space limitations, we include only the detailed results
on the EPFL benchmark suite of random/control circuits, as
the state-of-the-art X1G optimization algorithm claimed to
have achieved significant garbling cost reduction on them [12].

4Available at: https://https://github.com/lsils/mockturtle
5Available at: https://homes.esat.kuleuven.be/˜nsmart/MPC/

TABLE II: Evaluation using EPFL Benchmark Suite of Random/Control Circuits

Benchmark Initial circuit State of the art (k = 5) [12] proposed optimization method (k = 6)

Garbling cost Garbling cost Red. [%] Time [s] #ite. Garbling cost Red. [%] Time [s] Impr. [%] Speed-up

round-robin arbiter 2 348 1 658 29.39 2 857.40 3 1 522 35.18 17.54 8.20 162.91×
coding-cavlc 788 556 29.44 8 034.96 2 552 29.95 8.82 0.72 910.99×
ALU control unit 90 76 15.56 938.29 2 76 15.56 0.53 0.00 1 770.36×
decoder 656 656 0.00 0.01 1 656 0.00 0.01 0.00 1.00×
i2c controller 1 114 942 15.44 9 653.93 3 932 16.34 8.62 1.06 1 119.95×
int to float converter 170 140 17.65 2 306.66 2 138 18.82 1.96 1.43 1 176.87×
memory controller 9 390 7 578 19.30 34 950.05 5 7 456 20.60 48.74 1.61 717.07×
priority encoder 646 544 15.79 1 664.38 2 544 15.79 5.82 0.00 285.98×
look-ahead XY router 186 120 35.48 1 526.93 3 120 35.48 2.48 0.00 615.70×
voter 8 514 7 186 15.60 29 038.04 4 7 148 16.04 25.48 0.53 1 139.64×

Table II includes following information: garbling cost,
which is the number of cipher-texts required to garble a
OneHot3 gate times the number of OneHot3s in an X1G
(i.e., 2·#OneHot3s), the reduction in garbling cost compared
to the initial circuits (Red.), the number of iteration run
until saturation (#ite.), the runtime (Time), the improvements
in garbling cost reduction (Impr.) and speed-up (Speed-up)
achieved by the proposed method over the state-of-the-art.

Without the need to invoke exact synthesis on the fly,
a significant improvement in runtime is achieved by the
proposed method. Moreover, for 6 out of the 10 benchmarks
in Table II, the proposed method further managed to improve
the reduction in garbling cost.

TABLE III: Summary of Comparison on All Benchmark Suites

Bench. suites #improved bench. Avg. impr. [%] Avg. speed-up

EPFL 8 (20)* 1.97 2 441.64×

cryptographic 2 (10) 1.59 795.58×

MPC 6 (20) 0.51 3 950.08×
* Number in parentheses indicates the total number of involved

benchmarks that belong to this benchmark suite.

Table III provides an overview of the performance of our
X1G optimization method on all three adopted benchmark
suites compared to the state-of-the-art, including the number of
benchmarks on which an improvement in garbling cost reduc-
tion is achieved (#improved bench.), the average improvement
in garbling cost reduction (Avg. impr.), and the average speed-
up (Avg. speed-up).

The speed-up achieved by the proposed optimization
method is consistent in all involved benchmarks. Together
with a reduced runtime, an improvement in garbling cost
reduction is realized in many benchmarks. This is credited to
the generated database of the optimal X1G implementations
for 6-variable Boolean functions: with a larger k (k = 6),
the Boolean rewriting algorithm can focus on a larger portion
of the logic network at a time and seize those optimization
opportunities that are likely missed by the state-of-the-art,
where a smaller k is adopted (k = 5) due to the poor scalability
of exact synthesis.

For other benchmarks where no improvements in garbling
cost reduction are achieved by our method, the resulting

garbling cost is never higher than the state-of-the-art, except
for two benchmarks. On barrel shifter in EPFL benchmark
suite and sha-256 in cryptographic benchmark suite, we have
respectively witnessed a 0.02% and 0.04% higher garbling
cost compared to the state-of-the-art. Through a case study, we
learned that it is because of the constraint on the allowed maxi-
mum number of affine operations during the function matching
procedure, due to which some chances for optimization would
be given up. This problem can be addressed by loosening this
constraint, with the risk of a potential increase in runtime.

VII. CONCLUSION AND DISCUSSION

Compared to XAG, both compact XAG and X1G are be-
lieved to be more appropriate choices of logic representations
for the task of practical GC generation. In this paper, we
proved that X1G is the better candidate, as evidenced by
the fact that for any compact XAG, there always exists a
functionally-equivalent X1G implementation with equal or
lower garbling cost. Although the state-of-the-art X1G opti-
mization algorithm achieved a significant reduction in garbling
cost, it typically suffers from a prohibitive runtime, as it
relies on invoking exact synthesis in an on-the-fly manner. To
provide a more performant X1G optimization technique, we
made two proposals: (a) generating a database of optimal X1G
implementations by adopting the affine equivalence theory as
the basis for Boolean function classification; and (b) a novelly-
formulated exact synthesis approach to efficiently synthesize
X1G implementation for small-scale functions. On top of the
two proposals, we managed to generate a database of the
optimal X1G implementations for 6-variable Boolean func-
tions, which facilitates a database-driven cut rewriting-based
X1G optimization method. A comprehensive experimental
evaluation on three popular benchmark suites shows that our
method on average outperforms the state-of-the-art algorithm
in garbling cost reduction by respectively 1.97%, 1.59%,
and 0.51%, together with 2441.64×, 795.58×, and 3950.08×
speed-ups. The proposed method provides a powerful and agile
technique for low-cost GC generation, enabling practical high-
performance secure computation.

ACKNOWLEDGMENT

This project is supported in part by Synopsys Inc. We thank
anonymous reviewers for their insightful comments.

REFERENCES

[1] P. Bogetoft, I. Damgård, T. Jakobsen et al., “A practical implemen-
tation of secure auctions based on multiparty integer computation,” in
International Conference on Financial Cryptography and Data Security.
Springer, 2006, pp. 142–147.

[2] M. R. Clarkson, S. Chong, and A. C. Myers, “Civitas: Toward a secure
voting system,” in IEEE Symposium on Security and Privacy, 2008, pp.
354–368.

[3] F. Chen, X. Jiang, S. Wang et al., “Perfectly secure and efficient
two-party electronic-health-record linkage,” IEEE internet computing,
vol. 22, no. 2, pp. 32–41, 2018.

[4] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986). IEEE,
1986, pp. 162–167.

[5] C. Gentry, A fully homomorphic encryption scheme. Stanford university,
2009.

[6] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[7] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free xor
gates and applications,” in International Colloquium on Automata,
Languages, and Programming. Springer, 2008, pp. 486–498.

[8] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2015, pp. 220–250.

[9] M. Ball, T. Malkin, and M. Rosulek, “Garbling gadgets for boolean and
arithmetic circuits,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, 2016, pp. 565–577.

[10] E. Testa, M. Soeken, H. Riener et al., “A logic synthesis toolbox for
reducing the multiplicative complexity in logic networks,” in Design,
Automation & Test in Europe Conference & Exhibition. IEEE, 2020,
pp. 568–573.

[11] H.-L. Liu, Y.-T. Li, Y.-C. Chen et al., “A don’t-care-based approach
to reducing the multiplicative complexity in logic networks,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 11, pp. 4821–4825, 2022.

[12] M. Yu and G. De Micheli, “Generating lower-cost garbled circuits: logic
synthesis can help,” in IEEE International Symposium on Hardware
Oriented Security and Trust, 2023.

[13] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols,” in Proceedings of the twenty-second annual ACM symposium
on Theory of computing, 1990, pp. 503–513.

[14] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled
circuits,” in Proceedings of the 2012 ACM conference on Computer and
communications security, 2012, pp. 784–796.

[15] J. Boyar, P. Matthews, and R. Peralta, “Logic minimization techniques
with applications to cryptology.” J. Cryptol., vol. 26, no. 2, pp. 280–312,
2013.

[16] Ç. Çalık, M. Sönmez Turan, and R. Peralta, “The multiplicative com-
plexity of 6-variable boolean functions,” Cryptography and Communi-
cations, vol. 11, no. 1, pp. 93–107, 2019.

[17] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and
mechanism design,” in Proceedings of the 1st ACM Conference on
Electronic Commerce, 1999, pp. 129–139.

[18] C. Carlet, Y. Crama, and P. L. Hammer, “Boolean functions for cryp-
tography and error-correcting codes.” 2010.

[19] M. A. Harrison, “Introduction to switching and automata theory,”
McGraw-Hill series in systems science, 1965.

[20] M. Turan Sönmez and R. Peralta, “The multiplicative complexity of
boolean functions on four and five variables,” in Lightweight Cryptog-
raphy for Security and Privacy. Springer, 2015, pp. 21–33.

[21] M. Soeken, W. Haaswijk, E. Testa et al., “Practical exact synthesis,” in
2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2018, pp. 309–314.

[22] S.-Y. Lee and G. De Micheli, “Heuristic logic resynthesis algorithms at
the core of peephole optimization,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2023.

[23] W. Haaswijk, M. Soeken, L. Amarú et al., “A novel basis for logic
rewriting,” in 22nd Asia and South Pacific Design Automation Confer-
ence. IEEE, 2017, pp. 151–156.

[24] E. Testa, M. Soeken, L. Amarù et al., “Reducing the multiplicative com-
plexity in logic networks for cryptography and security applications,” in
Proceedings of the 56th Annual Design Automation Conference 2019,
2019, pp. 1–6.

[25] G. Meuli, M. Soeken, M. Roetteler et al., “Enumerating optimal quan-
tum circuits using spectral classification,” in 2020 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2020, pp. 1–5.

[26] A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements to
technology mapping for LUT-based fpgas,” in Proceedings of the 2006
ACM/SIGDA 14th international symposium on Field programmable gate
arrays, 2006, pp. 41–49.

[27] D. M. Miller and M. Soeken, “An algorithm for linear, affine and spectral
classification of boolean functions,” in Advanced Boolean Techniques.
Springer, 2020, pp. 195–215.

[28] M. Soeken, “Determining the multiplicative complexity of boolean
functions using SAT,” arXiv preprint arXiv:2005.01778, 2020.

[29] W. Haaswijk, A. Mishchenko, M. Soeken et al., “SAT based exact
synthesis using DAG topology families,” in Proceedings of the 55th
Annual Design Automation Conference, 2018, pp. 1–6.

[30] D. E. Knuth, Art of Computer Programming, Volume 4, Fascicle 4, The:
Generating All Trees–History of Combinatorial Generation. Addison-
Wesley Professional, 2013.

[31] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The epfl combinational
benchmark suite,” in Proceedings of the 24th International Workshop on
Logic & Synthesis, 2015.

[32] M. S. Riazi, M. Javaheripi, S. U. Hussain et al., “Mpcircuits: Optimized
circuit generation for secure multi-party computation,” in IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust, 2019, pp.
198–207.

