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Abstract—Garbled circuit (GC)-based frameworks are the
cornerstone of advanced secure multi-party computation (MPC)
protocols in various domains. These applications, such as secure
network inference, require both scalability and real-time compu-
tation. However, the data communication among parties required
by GC is currently a bottleneck of its runtime performance.
Most existing works focus on minimizing the number of ANDs in
logic networks over the basis {AND, XOR, NOT}, represented
by XOR-AND graphs (XAG). AND is the only logic primitive
among the three that contributes to providing the necessary
multiplicative complexity (MC) of the desired logic function but
causes communication costs. Inspired by the garbling gadget
technique, we conduct a thorough study on the plausibility
of adopting XAGs as the underneath logic representation to
generate low-cost GCs and make two proposals: (1) merging
small-fanin-size ANDs in XAGs, and (2) adopting OneHot gate,
rather than AND, as the logic primitive to express MC, in order to
reduce garbling costs. The first proposal optimizes GCs within
a shorter runtime, whereas the second reduces garbling costs
more. To validate our ideas, we propose a XAG-targeted merging
algorithm and a logic synthesis flow for XOR-OneHot graphs
(X1G). Compared to best-known results, our XAG- and X1G-
targeted implementations achieve reductions in garbling cost by
up to 25.27% and 35.48% respectively.

Index Terms—garbled circuits, logic synthesis, multiplicative
complexity

I. INTRODUCTION

First proposed by Yao as an impactful protocol for secure
two-party computation [1], garbled circuit (GC) allows two
parties to use their private data as operands to jointly conduct
arbitrary computation without revealing the content of each
party’s input to the other. With the advantages such as constant
round complexity, GC is widely believed to be an ideal starting
point to pursue performant secure multi-party computation
(MPC). The famous Beaver-Micali-Rogaway (BMR) protocol
is an example of a successful generalization of GC [2].
Meanwhile, the excessive communication among the involved
parties required by GC-based protocols has seriously restricted
the realization of low-latency and energy-efficient applications.

Nowadays, besides the well-known MPC tasks in the lit-
erature like secure auction [3] and voting [4], there is an
increasing demand for privacy-preserving applications. For
instance, in secure neural network inference, model providers
avoid revealing their dedicatedly-trained network models, and
the clients avoid leaking their sensitive input data [5]. Pre-
ferred solutions rely on a combination of cryptographical
approaches. For example, linearly homomorphic encryption

(LHE) is adopted for data encryption in linear layers, while
GC guarantees the secure executions of non-linear activation
functions [6]. It follows that improving the efficiency of GC is
more urgent than ever before to meet these rapidly-increasing
application requirements.

GC, as well as MPC protocols stemming from it, relies on
representing the target function as a Boolean circuit. For the
execution of each logic gate, cipher-texts have to be sent from
the garbler to the executor by oblivious transfer (OT), which
accounts for the mentioned communication complexity of GC-
based protocols. Thus, reducing the communication cost (i.e.,
the number of cipher-texts to transfer) of each gate has a direct
positive impact on the performance of applications. To achieve
this, various efforts have been made. In particular, free-XOR
[7] and half-gate [8] are commonly regarded as the major
milestones. These two garbling schemes are compatible with
each other, and a joint application enables the communication
cost (hereafter referred to as garbling cost) of any 2-input logic
gates to reach a proved minimum: 0 cost for XOR, XNOR and
NOT gates; 2 cipher-texts for others. In other words, XOR,
XNOR, and NOT gates are free in this context.

From the perspective of logic synthesis, the optimization
objective of the aforementioned problem can be formulated as
follows: Given a logic function implemented over the basis
{AND, XOR, NOT} (which is functionally complete), reduce
the number of AND gates as much as possible, since AND
is the only logic primitive resulting in garbling cost. This
problem is known as the minimization of the multiplicative
complexity (MC) (i.e., multiplicative size) of Boolean circuits,
or MC reduction. Great success has been achieved by the
logic synthesis community: Both Songhori et al. and Riazi
et al. base their works on establishing a customized library
and exploiting standard logic synthesis tools to conduct library
binding [9] [10]; Testa et al. create a logic synthesis toolbox,
which leverages existing logic optimization techniques in a
hybrid manner [11]; the most recent work by Liu et al. focuses
on detecting the ANDs in a network that can be replaced by
XNORs without changing the network’s functionality [12].

On the other hand, experts in cryptography regard free-XOR
and half-gate as near-optimal, if not the best, garbling schemes
for Boolean circuits. Therefore, research focuses on figuring
out a way to efficiently garble arithmetic circuits. For example,
Ball et al. propose the idea of expressing complex arithmetic
operations as mixed moduli circuits [13]. This so-called gar-



bling gadget technique suggests that symmetric gates can be
garbled more efficiently, which is not yet exploited by the
logic synthesis community. Inspired by garbling gadget, we
take a fresh look at this goal of generating lower-cost garbled
circuits, as it is currently limited by the intractability of the
MC reduction problem.

In this paper, we propose to:
• merge the 2-input AND gates in XAGs into wider ANDs.

Experimental results show that our devised merging algo-
rithm reduces garbling costs by up to 25.27% within trivial
runtime.

• use OneHot gates, instead of ANDs, as the logic primitive
to express MC. A OneHot gate is more MC-expressive
than an AND gate, while their garbling costs are the same.
Extensive evaluations have proved the effectiveness of our
XOR-OneHot graph (X1G)-targeted cut-rewriting and exact-
synthesis logic optimization flow, as a reduction in garbling
cost by up to 35.48% is achieved.

II. PRELIMINARIES

A. Multiplicative Complexity

Given a logic function, its MC refers to the minimum
number of AND gates required to implement this Boolean
function over the basis {AND, XOR, NOT} [14], or rather, as a
XOR-AND graph (XAG), where complementation is indicated
by edges and the other two kinds of gates are distinct nodes.
We shall term the MC of a logic function as its functional
multiplicative complexity (FMC), so as to distinguish it from
the structural multiplicative complexity (SMC) of the function,
which indicates the number of AND gates in an arbitrary
XAG representing that function. Obviously, for any function,
its FMC serves as the lower bound of the SMC of any XAG
representation of this function.

Finding the FMC of a given logic function is a research
topic receiving considerable attention, as it correlates to many
fields: security [15], quantum computing [16] and more.

So far, the FMC of any logic function with no more than
6 inputs is known, but figuring out the FMC of a Boolean
function is generally an intractable problem [15]. Thus, many
works focus on logic functions that either exhibit certain
characteristics, such as symmetric functions [17], or appear
frequently in certain applications of interest, such as interval
checking [18], etc. MC reduction of an arbitrary function can
be addressed heuristically by: starting from a XAG, use logic
manipulation to reduce the number of AND gates and get its
SMC as close to the FMC of the function it represents as
possible.

Fig. 1 is an example related to the 3-input majority function
(whose output signal is true if only 2 or more input signals are
true). Dotted lines indicate complemented edges. ’∧’ and ’⊕’
respectively represent an AND gate and an XOR gate. While
both XAGs correspond to the same logic function, the 3-input
majority (MAJ3), whose FMC is known to be 1, there is a
difference between their SMCs: the SMC of the left-hand side
is 3, while the SMC of the one on the right is 1. The latter

(a) SMC = 3 (b) SMC = 1

Fig. 1: Two XAGs representing MAJ3, with different SMCs

is the same as the FMC of MAJ3. Hence, in terms of MC
reduction, it is reasonable to regard the right-hand side graph
as an optimal XAG implementation of MAJ3.

B. Logic Synthesis

Logic synthesis generally refers to the process of converting
a high-level described circuit into a lower-level representation,
such as a gate-level netlist. It plays an important role in nowa-
days electronic-design-automation (EDA) flow, as it optimizes
designs of integrated circuits for a specified cost criterion. The
goal can typically be but is not limited to area, delay or power
consumption, etc. The circuits processed by logic synthesis
techniques are usually abstracted into directed graphs, often
referred to as logic networks, for the ease of applying graph-
based optimization algorithms to manipulate designs. The
aforementioned MC reduction problem is essentially a logic
synthesis problem.

Most logic synthesis techniques are heuristic, because the
target logic networks are usually of large scale and complex,
and the search spaces are too large to find the optimum solu-
tion in a reasonable time. A lot of logic synthesis techniques
are based on the concept of cuts [19], which helps focus on a
part of the target network at a time, such as the cut rewriting
technique [20] that the X1G-targeted logic optimization flow
presented in this paper heavily relies on. A cut is identified
by its root and leaves, which is respectively a node and a
collection of nodes. It contains all the nodes in the sub-graph
bounded by its root and leaves. A feasible set of leaves shall
meet two properties: there is at least one leaf on any path from
a primary input to the root, and all the leaves are on at least
one such path. A cut is said to be k-feasible if its number of
leaves does not exceed k. For example, in Fig. 1b, the cut that
consists of {b, c, n1, n2, n3} is 3-feasible, whose root is n3

and leaves are {b, c, n1}. Given a specified k, the process of
finding all the k-feasible cuts in the target network is known
as cut enumeration [19].

C. Garbled Circuits Generation

Garbled circuits generation refers to the process by which
the garbler constructs a network of encrypted tables (i.e., a
GC) based on a Boolean circuit/logic network representing the
target computation. A logic network and the generated GC are



isomorphic, as each logic primitive in the former corresponds
to an encrypted table in the latter.

In a GC, secure computation is realized by: for any signal r
in the original Boolean circuit, two labels X0

r and X1
r are to be

created for the corresponding wire r in the GC, which indicate
false and true in the original Boolean circuit respectively; each
label is a bit-string, the length of which depends on the desired
security level; each entry of an encrypted table is a cipher-
text symmetrically encrypted using a potential combination of
labels on the wires input to this table; since only one of the two
labels on each wire is available to the executor, only one entry
of each encrypted table can be correctly decrypted during the
execution, preventing leakage of information. Generating a GC
is essentially creating the aforementioned labels and encrypted
tables.

While preserving privacy, the cipher-texts in encrypted
tables are at the same time the source of communication
cost, as they are to be sent from the garbler to the executor.
Considering some kinds of logic gates are cipher-text-free,
such as XORs [7], when synthesizing the original Boolean
circuits, logic synthesis techniques can help generate lower-
cost GCs by reducing the number of non-free gates. This is a
stage prior to GC generation, on which our work focuses.

Optimally synthesizing Boolean circuits on the spot in
an application-by-application manner can be time-consuming
and may become another bottleneck of system performance.
Instead, for those functions popular in secure computation,
their Boolean circuits can be optimally synthesized in advance
and made publicly available. There would not be any potential
security liability, given that the security of the GC protocol
comes from the encrypted tables.

D. Garbling Costs of Symmetric Functions

When garbling a Boolean circuit, adopting logic primitives
with more fanins is hardly considered, because the garbling
cost of a logic gate increases exponentially as the size of its
fanin increases. As an example, the garbling cost of a 2-input
AND (AND2) is 4 (can be reduced to 2 by applying some
advanced garbling schemes, such as half-gate), while a 3-input
AND (AND3)’s garbling cost is 8, due to the fact that there
are 8 (23) potential input patterns.

However, garbling gadget [13] has yielded a fresh perspec-
tive on this problem. Intended to figure out a way to efficiently
garble arithmetic circuits, garbling gadget has proposed the
following observations: a 2-input XOR (XOR2) operation is
essentially a mod-2 addition, whose garbling cost is zero.
Then, the definition of free-XOR can be generalized and
applied to any m-input logic gate whose output depends only
on the Hamming weight (the number of signals that are true
among its m inputs) of its input pattern. This is because, such
a logic operation, also known as a symmetric function, can be
interpreted as a modular addition. The minimum modulus o is
no more than m + 1 (the calculation of o is described later)
because the maximum Hamming weight of an input pattern
of a m-input logic gate is m and the number of potential
Hamming weights is therefore m+ 1 (ranging from 0 to m).

Therefore, for a symmetric logic gate, instead of garbling
it in the conventional manner, which would result in a 2m-
entry encrypted table, a better solution to do the garbling is
to interpret the operation as a mod-o addition followed by a
projection gadget that encodes each sum back to the original
finite field, GF(2). Since an o-to-2 projection gadget is garbled
into a o-entry encrypted table, the garbling cost of such a m-
input logic gate is now o, which is much better than in the
baseline garbling scheme where it is 2m.

Here is an example to compare the garbling of an AND3
gate (whose input signals are a, b, and c, and whose output
signal is d) with the baseline garbling scheme adopted and
with the garbling gadget technique applied:

(a) The baseline scheme (b) Garbling gadget

Fig. 2: Garble an AND3 following different garbling schemes

For clarity, there is no entry permutation operated on the
two encrypted tables in Fig. 2a and Fig. 2b.

As demonstrated before, based on the baseline garbling
scheme, the fact that the truth table of a 3-input function
is 8-entry determines that, after garbling, the corresponding
encrypted table is 8-entry as well.

By contrast, when garbling gadget is applied, the operation
of a symmetric logic gate is interpreted as a mod-o addition.
Hence, it is possible that the potential number of labels on a
wire exceeds two, and the output labels are no long strings of
bits, but strings of integers. As shown in Fig. 2b, by regarding
an AND3 function as a mod-4 addition (denoted as ⊕4), for
wire d′, there are four potential labels (from X0

d′ to X3
d′ ); The

projector would then operate a mapping, thanks to which the
number of potential labels on each wire is still two and the
result labels are still bit-strings. Such projectors guarantee that
the execution of the remaining GC is valid.

Comparing the sizes of the two encrypted tables in Fig. 2a
and Fig. 2b, it is obvious that by adopting garbling gadget, the
garbling cost of an AND3 gate is reduced from 8 to 4 (which
can be further reduced through applying other compatible
optimizing schemes).



III. EXPLOIT SYMMETRIC THREE-INPUT GATES

According to the baseline garbling schemes before garbling
gadget, the garbling cost of a logic gate increases exponen-
tially with the increase of its fanin size. Such a constraint
makes it impossible to adopt logic gates with more fanins as
logic primitives when synthesizing garbled circuits. However,
garbling gadget provides us with a new perspective on the
garbling of symmetric logic gates. The following question
remains open:“Is AND2 still our one and only choice of logic
primitive to express MC?” We propose to bring 3-input logic
gates into the scope.

Since garbling gadget is a generalization of free-XOR, XOR
gates and NOT gates are still free after the adoption of the
garbling gadget technique. As the FMCs of an XOR gate and
a NOT gate are both 0, the problem is further simplified as:
“Among 3-input logic gates, is there an alternative that is
capable of expressing MC more cost-efficiently than AND2?”

A. MC Compactness

As a quantified metric to evaluate choices of logic prim-
itives, we define MC compactness as the FMC of a logic
primitive divided by its garbling cost. For example, the MC
compactness of an AND2 gate is 1/2 = 0.5, which is a
baseline for later comparison. A logic primitive of higher MC
compactness is preferable here, because to provide a certain
amount of MC (i.e., the FMC of the target logic function),
using more MC-compact primitives may likely result in a
lower garbling cost.

It is observed that none of the 3-input logic gates has an
FMC larger than 2, as the FMCs of all 3-input gates are known
[14]. Therefore, it is assured that no asymmetric logic gate has
a preferable MC compactness due to the expensive garbling
cost and should be excluded from our consideration. As a
result, we are only interested in symmetric functions, to which
garbling gadget is applicable.

B. A Study on Symmetric Three-Input Gates

Logic functions that can be mutually transformed into each
other through applying input negation, input permutation and
output negation are negation-permutation-negation (NPN)-
equivalent and belong to the same NPN class [21]. All the
256 (28) 3-input Boolean functions are split into 14 NPN
classes, 10 of which are non-trivial [22]. Regarding these 10
classes as 10 representative 3-input logic gates, the following
four symmetric gates are of particular interest: AND3, MAJ3,
OneHot (whose output is true if one and only one input signal
is true), and Gamble (whose output is true only if the three
input signals are all true or all false).

To calculate the MC compactness of these four candidates,
their exact garbling costs are required. Using garbling gadget,
each 3-input logic gate is interpreted as a mod-o addition
followed by a o-to-2 project gadget, thus its garbling cost is o.
To determine o for each candidate, i.e., the modulus to express
each candidate as a modular addition, a simple algorithm is
conceived based on the definition of modular additions.

Algorithm 1: Determine the modulus to express a
given symmetric logic gate as a modular addition
Input: m-input function, f
Output: modulus to express the target function as a

modular addition (o)
1 for i← 2 to m do
2 for j ← i to m do
3 if f ( HMW(j) ) ̸= f ( HMW(j mod i) ) then
4 break
5 if j = m then
6 return i
7 return m+1

In Algo. 1, HMW(i) denotes those input patterns whose
Hamming weights are i. For example, when m is specified as
3, then HMW(1) refers to the following three input patterns:
001, 010, and 100.

With Algo. 1, the specific garbling cost of any m-input
symmetric logic gate under garbling gadget can be calculated,
as shown in Table I. Notice that, since garbling gadget is
compatible with another technique, garbled row reduction
[23], the application of which can further reduce the eventual
garbling cost from o to o− 1.

TABLE I: The characteristics of the four three-input gates of
interest and AND2 gate

Gate type Truth table FMC Garbling cost MC compactness

AND2 0x8 1 2 0.5
AND3 0x80 2 3 0.67
MAJ3 0xe8 1 3 0.23

OneHot 0x16 2 2 1
Gamble 0x81 1 2 0.5

In the column labeled “Truth table”, the truth table of each
logic gate is represented in hexadecimal as a bit-string, with
the most significant bit on the left-hand side.

While both AND3 and OneHot are more MC-compact than
AND2, OneHot gate possesses the highest MC compactness.
But how to take advantage of this insight is not immediately
apparent. This is because, the available literature mainly
focuses on developing logic optimization techniques to reduce
the number of AND gates after representing the target function
as a XAG, where the allowed logic gates are AND2, XOR2,
and NOT gates (AND2 reduction for short) [11] [12]. Thus, we
at first explore a way to bridge our findings and the existing
works on AND2 reduction.

IV. MERGE SMALL-FANIN-SIZE ANDS

According to the proposed Algo. 1, to figure out the garbling
cost of a symmetric gate with an arbitrary fanin size is
trivial. The garbling cost of an m-input AND gate is m (with
garbled row reduction applied as well). Meanwhile, based on
the definition of MC, its FMC is m − 1. Its MC compact-
ness is, therefore, (m − 1)/m. In other words, compared to



AND2, wider ANDs are more MC-compact and are therefore
preferable as the logic primitives for low-cost garbled circuit
generation. Hence, we propose to relax the restriction on the
fanin size of AND gates.

We are hereafter manipulating graphs, where the AND gates
and XOR gates are nodes, and NOT gates are represented as
an attribute of edges. In this context, the terms AND/XOR
gates and AND/XOR nodes are used interchangeably. We
regard this task of replacing groups of adjacent AND2 nodes
with nodes indicating wider AND gates as a post-processing
step on optimized XAGs (where all the AND nodes denote
AND2 gates). The benefit is twofold: we can make full
use of the existing knowledge on AND2 reduction, and the
runtime of such a post-process is smaller than synthesizing
or restructuring a network. This approach is an alternative
to resynthesizing from scratch the logic network in terms of
wider ANDs and is more effective to realize.

An algorithm to merge ANDs nodes is to be elaborated,
in order to reduce the garbling costs of XAGs as much as
possible while keeping their functions unchanged.

A. To Merge or not to Merge

The question to answer is how to detect the largest possible
groups of AND2 nodes that can be merged into wider AND
gates. In each such group of AND2 nodes, we call the node
that is closest to the primary output side the root node of this
group, and term the opposites as leaf nodes — similar to the
definitions of root and leaves when introducing cut.

To determine if an AND2 node is a root node, some criteria
are evident: an AND2 is a root node if

1) it is a primary output of the logic network;
2) it connects to an XOR node, or is followed by a negated

edge, i.e., directly contributes to a non-AND2 gate (XOR
or NOT).

Meanwhile, there is uncertainty when an AND2 is followed
by more than one AND2. Such an AND2 indicates that a local
function is shared by several groups and therefore shall not
be merged into any one of them, as this shared logic would
otherwise become unavailable to the remaining groups.

Node n1 of the logic network in Fig. 3a, marked in blue,
is such an example, as it is contributing to both node y1 and
Node y2, which are AND2s. Fig. 3b shows that, if we leave
node n1 untouched during the merging procedure, the result
garbling cost of the network is 2+2+3 = 7. It is also possible
to operate a more aggressive merging, with the precondition
of duplicating node n1 once, and obtain a network that looks
further compact, whose garbling cost is 3 + 4 = 7 as well,
as shown in Fig. 3c. Both these two solutions manage to
achieve lower-cost garbled circuits, since the original garbling
cost is 2 × 4 = 8. But this does not suggest that the two
options are always equally good — hereafter, we formally
prove that, while merging is generally preferable, the style of
merging matters. Operating aggressive merging can lead to a
sub-optimal result, especially nodes like n1 in this example
shall not be merged.

(a) The original logic network

(b) Leave n1 not merged (c) Merge n1 after duplication

Fig. 3: A logic network under different merging strategies

Assume that several groups of AND2 nodes, a1, a2, · · · ,
ap (p ≥ 2), share and share only one sub-group of AND2s,
ashare. Then, different merging strategies allow us to either
duplicate ashare for q times and merge them into any q (q+1,
when q = p−1) of these p groups, or leave ashare not merged.
We abbreviate the two merging strategies to merge shared (1 ≤
q ≤ p− 1) and keep shared (q = 0).

Proposition 1. For the same logic network, the garbling
cost corresponding to the “merge shared” merging strategy
is always better than or equal to the “keep shared” one.

Proof. Denote the number of AND2 nodes in the group ai as
andi, then gci, the garbling cost of ai, is numerically equal
to andi + 1.

Without loss of generality, it is assumed that: among the p
groups, the first q (q + 1 when q = p − 1) groups, a1, a2,
· · · , aq , are merged with the sub-group ashare kept in them;
By contrast, the remaining p − q (0 when q = p − 1) groups
have to be merged with the sub-group ashare spun off, i.e.,
a′i = ai\ashare, whose garbling costs are denoted as gc′i.

Then, we can use p and q to represent the garbling cost of
the logic network after merging. When q < p− 1:

gc =

q∑
i=1

gci +

p∑
i=q+1

gc′i + gcshare

=

q∑
i=1

(andi + 1) +

p∑
i=q+1

(andi − andshare + 1) + (andshare + 1)

=

p∑
i=1

andi − (p− 1) · andshare + q · andshare + p+ 1

(1)

The choice in merging strategy is essentially the choice in
the value of q. Since andshare is at least 1 — if such a shared
sub-group exists, it must consist of at least one AND2 node



— Eq. 1 would be minimized if q is minimized (i.e., assigned
to 0), which refers to the keep share strategy:

gckeep share = gc|q=0

=

p∑
i=1

andi − (p− 1) · andshare + p+ 1
(2)

When merge share is to be adopted, q equals p− 1. Since
all the p groups would be merged with the shared sub-group
ashare kept in them, the garbling cost of the network reduces
to the sum of the garbling costs of these p groups. The gc
under the current situation becomes:

gc|q=p−1 = gcmerge share

=

p∑
i=1

gci =

p∑
i=1

(andi + 1) =

p∑
i=1

andi + p
(3)

Considering that p ≥ 2 and andshare ≥ 1, the difference
between gcmerge share (Eq. 3) and gckeep share (Eq. 2) never
goes negative: since it is a positive correlation with both p and
andshare, it reaches the minimum (0) when p and andshare
are respectively assigned to 2 and 1 (the example in Fig. 3
illustrates exactly such a case). QED

Proposition 1 indicates that an AND2 shall be regarded
as a root node if it is directly followed by more than one
AND2 node. This criterion, together with the two proposed
at the beginning of this sub-section, constitutes our complete
standard to judge whether an AND2 node is the root node of
another group or belongs to an existing group.

With root nodes successfully determined, the border of each
group of AND2s becomes obvious, eliminating the necessity
of figuring out leaves nodes.

B. An Exact Algorithm for Merging

We present an exact algorithm for merging: given a topo-
logically ordered XAG, where all the AND nodes are 2-input,
the algorithm deterministically detects all the opportunities to
merge groups of AND2s into nodes representing wider ANDs,
so as to produce a more compact network that is of lower
garbling cost. The previously proposed criteria for finding the
root nodes of each AND2 group serve as the core of this
algorithm. For clarity, in the psuedocode to be shown below,
we represent the judgment on whether an AND2 node n is a
root node according to the criteria, as is root(n).

The merge function in Algo. 2 takes two parameters: the
node that is judged to be the root node, which later becomes
the primary output of the produced larger-fanin-size AND, and
a set of nodes that are recognized as the leaves of a group,
serving as the inputs to this AND node.

The proposed Algo. 2 has a linear time complexity, as each
AND2 node in the target XAG is to be judged only once
whether it should be regarded as a root node.

V. THE KEY TO LOWER-COST GCS: ONE-HOT GATES

As previously pointed out, OneHot is recognized as the most
MC-compact 3-input gate. In this section, we focus on how
to make use of this observation to generate lower-cost garbled
circuits.

Algorithm 2: To merge AND2 gates in XAGs into
larger-fanin-size AND gates
Input: XAG, xag
Output: compacted XAG

1 foreach nodes n ∈ xag in reverse topological order do
2 if is AND(n) and !is marked(n) then
3 leaves← null
4 determine group recursive(n,n)
5 merge(n,leaves)
6 return xag
7

8 Function determine group recursive(node,root) :
9 if !is marked(node) then

10 if node = root then
11 mark(node)
12 foreach node l ∈ fanins of node do
13 if !is root(l) then
14 determine group recursive(l,root)
15 else
16 if !is root(l) then
17 mark(node)
18 add node into leaves
19 foreach node l ∈ fanins of node do
20 if !is root(l) then
21 determine group recursive(l,root)

A. The Most MC-Compact Logic Primitive

Because

OneHot(0, 0, 0) = OneHot(1, 1, 1) = 0,

and that

HMW (0) = {(0, 0, 0)}, HMW (3) = {(1, 1, 1)},

we have

OneHot(HMW (0)) = OneHot(HMW (3)).

Recall that HMW(i) refers to the input patterns whose Ham-
ming weights are i. This feature enables a OneHot operation
to be interpreted as a mod-3 addition. It is further noticed that
the FMC of a OneHot operation is 2: representing the function
in the algebraic normal form (ANF) [15], abc⊕a⊕ b⊕ c, the
expression indicates that at least 2 AND2 gates are required to
implement it over the {AND, XOR, NOT} basis. Therefore,
while Gamble has the first feature as well, these two features
combine to result in OneHot’s being the most MC-compact
logic primitive.

Proposition 2. Given a XAG, there is always an X1G that
represents the same logic function but is of lower or equal
garbling cost.

Proof. According to the definition of MC, when implementing
an arbitrary Boolean function f as a XAG, xagf , whose SMC
is smcf , then there are smcf AND2s in xagf .



Fig. 4: A SMC-optimial XAG of the OneHot function

When the same function is represented as an X1G, we
denote the number of OneHot gates required as #OneHot.
Then, there must be at least one X1G whose #OneHot satisfies
the inequality below:

⌈fmcf
2

⌉ ≤ ⌈smcf
2

⌉ ≤ #OneHot ≤ smcf (4)

Here is how we derived the upper and lower bounds in
Inequality 4: There is a one-to-one correspondence between
an AND2 gate and a OneHot gate, as

AND(a, b) = OneHot(1,¬a,¬b)

where “¬” indicates negation. Therefore, we can convert xagf
into a XOR-OneHot graph (X1G) by simply replacing each
AND2 gate with a OneHot gate, which is the case indicating
the upper bound of #OneHot. A convincing example is the
situation where the target function f is exactly a OneHot
operation: we can represent it as the XAG in Fig. 4, or a
special X1G that consists of only 1 OneHot node. On the
other hand, the fact that each OneHot gate inherently contains
two AND2 gates, as shown in Fig. 4, implies the possibility
to implement the same function in X1G using only ⌈ smcf

2 ⌉
OneHot gates. Notice that any smcf is lower-bounded by
the FMC of the target function f , fmcf , which accounts for
the lower bound of the inequality. It is also obvious that this
minimum is not always achievable, since the relative position
of the 2 AND2 gates contained in each OneHot gate is fixed,
which has undermined their expressiveness.

Considering that the garbling cost of a OneHot gate proves
to be the same as an AND2 gate in previous sections, the
right-hand part of Inequality 4 exactly proves the proposition.

QED

Proposition 2 suggests using OneHot, instead of AND2, as
the logic primitive to model the circuit when searching for
lower-cost garbled circuits. Indeed, even in the worst situation
where #OneHot reaches the upper bound (smcf ), the garbling
cost in total would never exceed the baseline.

B. Cut-Rewriting & Exact-Synthesis Logic Optimization Flow

To support the proposal of adopting X1G over XAG as
the underneath logic representation, we have elaborated a
logic-optimization flow, which is heavily based on two logic
synthesis techniques, exact synthesis and cut rewriting.

Algorithm 3: A cut-rewriting & exact-synthesis logic
optimization flow targeting X1Gs
Input: XAG xag; cut size k
Output: X1G that is functionally equal to xag

1 x1g ← one-to-one transform(xag)
2 #OneHot← count OneHot(x1g)
3 do
4 cuts← compute cuts(x1g, k)
5 foreach cut c ∈ cuts do
6 f ← Boolean function of cut c
7 fmcf ← look up mc(f )
8 for #OneHot′ ← lower bound OneHot to

upper bound OneHot do
9 for #XOR3′ ← lower bound XOR3 to

upper bound XOR3 do
10 c opt←exact syn(#OneHot′,#XOR3′)
11 if c opt ̸= null then
12 rewrite cut c in x1g with c opt

13 while count OneHot(x1g)<#OneHot
14 return x1g

Given allowed logic primitives, a target function, and spec-
ified cost criteria, exact synthesis finds the optimum imple-
mentation of the function [24]. However, the excessive compu-
tational complexity beneath makes this technique prohibitive
and only applicable to small-scale functions. It is therefore
preferable to make use of cut rewriting and exact synthesis in
combination: the former allows us to focus on a small portion
of the whole network at a time, and the latter is in the charge
of providing the optimum solution required by the former to
rewrite the sub-network [20].

To conduct exact synthesis, two parameters are required by
the solver: the aimed numbers of OneHot gates, #OneHot’,
and 3-input XOR (XOR3) gates, #XOR3’, contained in the
network to be synthesized. We adopt XOR3 over XOR2 so that
the fanin size of the allowed logic primitives in the synthesis
problem is consistent. Beware of the difference between the
previously defined #OneHot and #Onehot’: the former denotes
the number of OneHot gates in a logic network, while the latter
is merely a parameter for the exact synthesis solver, which
might be unfeasible if the solver fails to find a solution under
the given parameters; So is the difference between #XOR3
and #XOR3’.

It is necessary to figure out the FMC of the target function
f , fmcf , as its numerical relation between #OneHot is re-
vealed in Inequality 4. We use the spectral classification-based
approach — first, compute the Rademacher-Walsh spectrum
of the target function, then use the obtained coefficients for
classification [25] — to quickly lookup a function’s FMC,
which accounts for the look up mc() function in the pesu-
docode depicting our flow. With fmcf obtained, #OneHot’ is
bounded by the range that Inequality 4 indicates. Additionally,
#XOR3’ is empirically set to be no more than twice the target
number of non-free gates when the FMC is not zero, otherwise



set to 2, as two XOR3s are sufficient to represent any function
with zero FMC.

To leverage powerful XAG-targeted MC-reduction tech-
niques in the literature, our flow takes an optimized XAG
as input. Since we have pointed out that an AND2 gate
can be replaced by a OneHot gate and XOR2(a, b) equals
XOR3(0, a, b), we can trivially transform a XAG into an X1G
by replacing each AND2/XOR2 node with a OneHot/XOR3
node. In the pesudocode, we denote this transformation as the
one-to-one transform() function.

VI. EXPERIMENTAL RESULTS

Extensive experimental evaluations are conducted to vali-
date our proposed ideas for lower-cost garbled circuit gen-
eration: (1) merging small-fanin-size ANDs in XAG, and
(2) adopting X1G rather than XAG as the logic represen-
tation. The evaluations can be divided into two categories:
a lightweight proof-of-concept that benchmarks small-scale
functions, and results on practical benchmark suites.

Our implementations are on top of the logic network library
mockturtle, and the exact synthesis solver is implemented
exploiting the exact synthesis library percy, where MiniSAT
[26] is the underneath SAT solver. Both of them belong to the
EPFL logic synthesis libraries [27]. All the experiments are
carried out on a machine having 256GB RAM and dual Intel
Xeon E5-2680 v3 operating at 2.50 GHz.

A. Four-Input NPN Functions

Evaluation regarding 4-input Boolean functions as the target
functions offers a peek into the effectiveness of these tech-
niques. All 65536 (216) 4-input Boolean functions can be
partitioned into 222 NPN classes. Since the FMCs of these
functions are known [15], to each of them, exact synthesis is
directly applied to generate the optimum implementations in
both XAG and X1G. Optimum means to respectively use the
minimum number of AND2 gates and OneHot gates in these
two cases. More specifically, in this experiment, only line 6-
12 in Algo. 3 are necessary, as we are synthesizing the whole
X1Gs from scratch, instead of rewriting cut by cut.

TABLE II: Experimental results for 4-input NPN functions

Logic representation #functions whose garbling costs are Avg.

0 2 3 4 5 6 garbling cost

XAG (baseline) 5 19 0 108 0 90 4.55
XAG (merged) 5 19 8 101 15 74 4.44

X1G 5 49 0 168 0 0 3.47

In Table II, there are no column counting functions whose
garbling costs are one, as such a case is not possible: if a
function’s FMC is not zero, its garbling cost is at least two,
which is the garbling cost of an AND2 gate or a OneHot gate.
For the same reason, when XAG (baseline) or X1G is adopted
as the logic representation, the result garbling cost is always
even.

The effectiveness of the two proposed ideas disclosed by
the experimental results is in line with our expectations. On
the one hand, using X1G, rather than the baseline XAG, has
effectively reduced the garbling costs by 23.74% on average;
applying the XAG-targeted merging algorithm has also led to
an average garbling cost reduction of 2.42% over the baseline.
Notice that the FMC of any 4-input logic function is at most
3, which means the opportunities for merging AND2s are
very rare in this experiment. Thus, the small gain obtained by
merging is reasonable and does not invalidate our proposal, as
can be learned later from the results on larger-scale benchmark
suites. On the other hand, the runtime costs of the two
proposals are significantly different, which is also consistent
with our understanding: among the involved 222 cases, the
merging procedure on average costs 3.14µs, and synthesizing
optimum X1G takes 3.14s on average, approximately a million
times longer than the former.

B. EPFL Benchmark Suite

Hereafter, we are comparing the gain in garbling-cost re-
duction achieved by the proposed algorithms to the state-of-
the-art, which is collected from three works in the literature
[10] [11] [12], as none of them is dominating the others in
all the benchmarks. Since all these works are adopting XAG
as the logic representation and have reported the numbers of
AND2 gates in the XAGs optimized by their methodologies,
#AND2, we reasonably regard corresponding garbling costs
as 2·#AND2.

As for implementation details, we set the cut size, k, which
is required by Algo. 3, to be 5, as we experimentally figure out
that it strikes a good balance between garbling-cost reduction
and runtime. Furthermore, we adopt the idea of Boolean
function mining, first proposed in [28], as a trick to speed
up the execution of Algo. 3: after the exact synthesis solver
finds the optimum implementation for a cut, the solution would
be stored in a cache and indexed by the function of this
cut. In this way, if the function of a cut is recognized to
be NPN equivalent to an entry of the cache, we can reuse
this previously generated solution, instead of always relying
on the time-consuming exact synthesis technique. We pass
the XAGs optimized by existing works to the proposed two
algorithms as input, except for the cases where the optimized
benchmarks are not available. The aforementioned settings are
applicable to our experiments on all three benchmark suites
that are introduced below.

The EPFL benchmark suite consists of two kinds of com-
binational circuits, arithmetic ones and random/control ones
[29]. Due to their distinguishing features, we have calculated
the geometric means separately.

In the column labeled “max. fanin”, we report the size of
the largest group of AND2s that can be merged into a wider
AND gate. Additionally, since our logic optimization flow for
X1G keeps running until no more gains in garbling cost are
obtained, as can be learned from the do-while loop (line 3-13)
in Algo. 3, we present the number of iterations run in total in
the “ite.” column.



TABLE III: Experimental results for EPFL benchmark suite

Benchmark XAG (baseline) XAG (merged) X1G

garbling cost source max. fanin garbling cost impr. time[s] ite. garbling cost impr. time [s]

adder 256 [11] 2 256 0.00% <0.01 1 256 0.00% 2408.28
barrel shifter 1664 [11] 2 1664 0.00% 0.05 1 1664 0.00% 0.39
divisor 10264 [12] 5 10056 2.03% 1.74 3 9728 5.22% 11464.30
log2 17546 [12] 4 17249 1.69% 5.89 3 16358 6.77% 25234.87
max 1744 [12] 5 1692 2.98% 0.06 2 1656 5.05% 1901.11
multiplier 15170 [12] 4 15092 0.51% 2.95 4 14902 1.77% 6887.82
sine 3918 [12] 4 3810 2.76% 0.25 4 3480 11.18% 12393.11
square-root 10434 [12] 4 10296 1.32% 1.94 4 9942 4.72% 10662.73
square 9192 [12] 4 9121 0.77% 1.40 3 8890 3.29% 7010.90

geometric mean 4503.95 4403.34 2.23% 4311.23 4.28%

round-robin arbiter 2348 [11] 5 2301 2.00% 0.02 3 1658 29.39% 2857.40
ALU control unit 90 [11] 5 85 5.56% <0.01 2 76 29.44% 938.29
coding-cavlc 788 [11] 5 705 10.53% <0.01 2 556 15.56% 8034.96
decoder 656 [11] 2 656 0.00% <0.01 1 656 0.00% 0.01
i2c controller 1114 [11] 4 1048 5.92% <0.01 3 942 15.44% 9653.93
int to float converter 170 [11] 3 157 7.65% <0.01 2 140 17.65% 2306.66
memory controller 9390 [11] 16 8648 7.90% 0.63 2 7578 19.30% 34950.05
priority encoder 646 [11] 8 614 4.95% <0.01 2 544 15.79% 1664.38
look-ahead XY router 186 [11] 9 139 25.27% <0.01 3 120 35.48% 1526.93
voter 8514 [11] 5 8157 4.19% 1.15 5 7186 15.60% 29038.04

geometric mean 850.80 785.65 7.66% 681.30 19.92%

As expected, the two proposed two algorithms always pro-
duce networks whose garbling costs are lower than, or equal
to the starting point. Our second observation from Table III
is that the performance of our two proposals are relevant: for
those benchmarks that have plenty of opportunities to conduct
merging, the reduction in garbling costs achieved by the X1G-
targeted logic optimization flow is also generally considerable.
For instance, both our XAG- and X1G-targeted methods
performed best for the look-ahead XY router benchmark. We
explain this observation in terms of the property of OneHot
gates: according to Fig. 4, we know that the two AND2 gates
contained in each OneHot gate are adjacent and can actually
be merged into an AND3 gate if follow the proposed merging
algorithm (Algo. 2). Hence, those cases where we can hardly
make use of OneHot to achieve a lower garbling cost (e.g.,
adder, barrel shifter and decoder) are also the cases where
chances of merging are very few, and vice versa.

We emphasize that our reported runtime shall not be con-
fused with the generation time of garbled circuits, as illustrated
in Section II-C.

C. Cryptographic and MPC Benchmark Suites

The two benchmark suites adopted in this sub-section re-
spectively consist of cryptographic functions, such as block
ciphers1, and well-known MPC tasks, e.g., secure auction and
stable matching problem [10].

According to Table V, there are higher-garbling-cost logic
networks generated by our methods, such as auction N3 W16
and stable matching ks8 s8, which is against our argument
that our proposals are always contributing to lower-cost, at

1Available at: https://homes.esat.kuleuven.be/˜nsmart/MPC/

least equal-cost, compared to the starting points. This is
because, while the best-known results for these cases are all
reported by [10], the optimized benchmarks are not publicly
available, and we, therefore, use the XAGs optimized by [11]
instead as the starting points. For the same reason, there are
cases where ite. is larger than 1 but with a zero or even negative
impr., such as the auction N3 W16 benchmark. In these
cases, there is initially a significant gap between our starting
points and our competing data. For instance, for the stable
matching ks8 s8 benchmark, the garbling cost of our starting
point, collected from [11], is 117446, 25.85% higher than the
reported state-of-the-art. Applying our proposed XAG- and
X1G-targeted algorithms have respectively achieved 6.48%
and 9.84% improvements, considerably narrowing the gap.
Thus, when referring to Table V, we suggest to use column
“max. fanin” and “ite.”, instead of “impr.”, as the reference
for judging whether the proposed algorithms have reduced the
garbling cost of the starting point.

An analysis of the MPC circuits shows that AND gates are
in general far from each other, and this is a likely explanation
for the smaller effectiveness of our methods for these bench-
marks, compared to other benchmark suites. Therefore, it is of
interest to explore the possibility of integrating the preference
for adjacent ANDs into the synthesis procedure.

VII. CONCLUSION

Existing efforts on reducing garbling costs focus on reduc-
ing the number of AND2 gates over XAGs, known as the
MC reduction problem (more specifically, AND2 reduction
problem). However, in this specific context of low-cost GC
generation, it is an open question whether ANDs are preferable
logic primitives to provide MC for target functions. Inspired



TABLE IV: Experimental results for cryptographic benchmark suite

Benchmark XAG (baseline) XAG (merged) X1G

garbling cost source max. fanin garbling cost impr. time[s] ite. garbling cost impr. time[s]

AES (Key Expansion) 10880 [11] 3 10560 2.94% 7.13 2 10240 5.88% 6825.42
AES (No Key Expansion 13600 [11] 3 13200 2.94% 10.16 2 12800 5.88% 15417.69
DES (Key Expansion) 13830 [12] 7 13479 2.54% 5.32 2 13144 4.87% 40162.40
DES (No Key Expansion) 13666 [12] 7 13340 2.39% 4.95 4 12984 4.99% 25369.60
MD5 18734 [11] 2 18734 0.00% 14.58 1 18734 0.00% 10936.36
SHA-1 22966 [12] 5 22873 0.40% 31.11 2 22688 1.21% 8225.44
SHA-256 52928 [12] 6 52128 1.51% 137.18 6 50540 4.51% 9942.18
Comp. 32-bit Signed LTEQ 174 [12] 5 159 8.62% <0.01 3 140 19.54% 1135.75
Comp. 32-bit Signed LT 168 [12] 7 149 11.31% <0.01 3 130 22.62% 1286.35
Comp. 32-bit Unsigned LTEQ 174 [12] 5 159 8.62% <0.01 3 140 19.54% 1151.97
Comp. 32-bit Unsigned LT 168 [12] 7 149 11.31% <0.01 3 130 22.62% 1254.59

geometric mean 3322.25 3160.45 4.87% 2970.95 10.57%

TABLE V: Experimental results for MPC benchmark suite

Benchmark XAG (baseline) XAG (merged) X1G

garbling cost source max. fanin garbling cost impr. time[s] ite. garbling cost impr. time[s]

auction N2 W16 194 [11] 2 194 0.00% <0.01 1 194 0.00% 1327.60
auction N2 W32 386 [11] 2 386 0.00% <0.01 1 386 0.00% 1305.30
auction N3 W16 456 [10] 2 464 -1.75% <0.01 2 460 -0.88% 1468.07
auction N3 W32 908 [10] 2 912 -0.44% 0.02 2 908 0.00% 1466.40
auction N4 W16 984 [10] 2 990 -0.61% 0.02 2 986 -0.20% 1866.93
auction N4 W32 1950 [11] 2 1950 0.00% 0.10 2 1946 0.21% 1873.25
NNS K1 N8 1108 [11] 2 1108 0.00% 0.05 2 1104 0.36% 2490.47
NNS K1 N16 2320 [10] 2 2324 -0.17% 0.21 2 2312 0.34% 2490.13
NNS K2 N8 1762 [11] 4 1739 1.31% 0.13 2 1698 3.63% 2269.80
NNS K2 N16 3838 [11] 4 3783 1.43% 0.57 2 3692 3.80% 2754.43
NNS K3 N8 2120 [11] 3 2114 0.28% 0.21 2 2092 1.32% 2622.72
NNS K3 N16 4788 [11] 3 4774 0.29% 1.04 2 4724 1.34% 3049.39
voting N1 M3 14 [11] 2 14 0.00% <0.01 1 14 0.00% 122.61
voting N1 M4 30 [11] 3 29 3.33% <0.01 2 28 6.67% 143.92
voting N2 M2 42 [11] 3 41 2.38% <0.01 2 40 4.76% 1007.06
voting N2 M3 110 [11] 2 110 0.00% <0.01 1 110 0.00% 1590.82
voting N2 M4 208 [11] 2 208 0.00% <0.01 1 208 0.00% 2077.66
voting N3 M4 550 [11] 2 550 0.00% <0.01 3 546 0.73% 2231.78
stable matching ks4 s8 32002 [11] 13 30040 6.13% 7.87 3 28284 11.62% 22264.70
stable matching ks8 s8 93320 [10] 19 109836 -17.70% 102.66 3 105890 -13.46% 35663.77

geometric mean 780.06 781.54 -1.90% 769.87 1.31%

by garbling gadget, we explore the possibility of using other
symmetric logic gates, instead of AND2 gates. Based on a
thorough study of 3-input symmetric logic gates, we make
two proposals to reduce garbling costs: (1) merging AND2s in
XAGs into wider ANDs, and (2) using X1G as the logic repre-
sentation. The two proposals present two technical orientations
to solve this problem and each of them stresses different
aspects: the former strikes a good balance between gain and
runtime cost, while the latter emphasizes particularly gain.
Extensive evaluation of various benchmark suites demonstrates
that our proposals have achieved significant improvement:
compared to best-known results, our elaborated XAG- and
X1G-targeted flows have respectively reduced the garbling
costs by up to 25.27% and 35.48%; For the random/control
circuits in the EPFL benchmark suite, the flows have achieved
improvements of 7.66% and 19.92% on average.
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