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1 Introduction 

Logic synthesis, or, more specifically, technology-independent logic optimization, is 
a step in the VLSI design flow after RTL synthesis and before technology mapping, 
attempting to optimize combinational circuits on technology-independent represen-
tations, such as AND-inverter graphs (AIGs). As a bottom line, the produced result 
of a logic synthesis algorithm must respect the given functionality of the circuit. 
To date, this means that the output circuit should be functionally equivalent to 
the original one, and is usually verified by performing combinational equivalence 
checking (CEC) [5] on the two circuits. However, this requirement might be too 
strong in some cases. Further high-effort optimization can be enabled by relaxing 
the requirement of exact functional equivalence and allowing flexibilities external 
to the combinational circuit under optimization. 

Don’t cares are flexibilities in logic functions or logic networks where output 
values of some (local) functions can be changed without violating the (global) 
specification [3]. Don’t-care conditions may be derived on various scales, from 
interconnections of logic gates within a combinational network [4] to interactions 
between submodules in a system [12]. Computation and utilization of don’t-care 
conditions in combinational logic synthesis have often been formulated using 
incompletely specified functions [2], also known as permissible functions [11]. 
Don’t cares play a central role in logic synthesis. However, due to the intrinsically 
high computational complexity of don’t-care computation, methods to (under-) 
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approximate them were developed [9, 14, 15]. Nowadays, more powerful and 
scalable computation of don’t cares enabled by satisfiability (SAT) solving and 
simulation is commonly used, but consideration of don’t cares is still limited to 
those within a combinational network [10]. 

In contrast to internal don’t cares computed within a network, external don’t cares 
are flexibilities arising from outside of the combinational network under optimiza-
tion, derived from a higher-level perspective of the system. For example, cascaded 
finite-state machines may produce don’t-care input sequences for each other [12]. 
As another example, sometimes the system is partitioned into submodules and 
optimized separately. While their boundaries are intended to be kept, flexibilities 
on the input-output relations of individual submodules due to their interactions are 
allowed. Considering external don’t cares essentially changes the problem from 
optimizing a (completely specified) Boolean function into optimizing a Boolean 
relation. The solution space is enlarged and the problem complexity is much higher; 
thus, there is currently no open-source logic synthesis tool that supports taking and 
utilizing external don’t cares. Nevertheless, with the increased computation power 
affordable nowadays, solving such optimization problems should be possible on 
smaller benchmarks. Moreover, in some applications, users of logic synthesis tools 
crave to optimize their circuit as much as possible and are willing to afford higher 
runtime. 

This paper serves as a pioneer toward support of external don’t cares in logic 
synthesis. During this journey, we will lay the foundation with mathematical 
definitions of don’t-care conditions in general, explore different flavors of external 
don’t cares, view the general problem of logic synthesis from a Boolean relation 
perspective, and finally take the first step of considering external don’t cares in 
logic optimization. We will show with experimental demonstrations that external 
don’t cares indeed open up more optimization opportunities that would have been 
impossible without them. In the end, we will also point out possible directions for 
future research. 

2 Background and Terminologies 

2.1 Boolean Functions and Boolean Relations 

A Boolean variable is a variable taking values in the Boolean domain .B = {0, 1}. 
The (n-dimensional) Boolean space . Bn is an n-ary Cartesian power of the Boolean 
domain. An (n-input, single-output, completely specified) Boolean function is a 
function .f : Bn → B of n Boolean variables. Multi-output Boolean functions can 
be seen as an ordered set of single-output functions. 

A Boolean relation . R is a binary relation over two Boolean spaces .R ⊆ B
n×B

m, 
a domain (. Bn) and a codomain (. Bm). Boolean functions are special cases of Boolean 
relations. More specifically, they can be classified into two types:
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• Completely specified functions are special cases of Boolean relations where the 
relations are functional (i.e., an element in the domain maps into one unique 
element in the codomain) and total (i.e., every element in the domain maps into 
an element in the codomain). When describing Boolean functions as Boolean 
relations, an element in the domain, which is a value assignment to all the 
function’s input variables, is also called a minterm. 

• Incompletely specified functions are Boolean functions for which the output 
values under some minterms are not specified. In other words, for some minterm 
.b ∈ B

n, the output value can be either 0 or 1. An incompletely specified function 
can be represented as a nonfunctional Boolean relation . R having, for some 
minterms . b, both .(b, 0) ∈ R and .(b, 1) ∈ R. 

Given an incompletely specified function as a Boolean relation .R ⊆ B
n × B

m, a  
completely specified function .f : Bn → B

m is compatible with . R if 

.∀b ∈ B
n, (b, f (b)) ∈ R. (1) 

When not explicitly noted, functions in the remaining of this paper refer to single-
output, completely specified Boolean functions. 

2.2 Logic Networks and Functions in a Network 

Logic networks (or simply networks) are technology-independent representations of 
digital circuits. A logic network N is defined by a four-tuple .N = (I, V ,E,O), 
where the two sets .(V ,E) define a directed acyclic graph. The first set I is the set of 
primary inputs (PIs) to the network. Each element in the vertex set V , referred to as 
a node n, models either a logic gate or a PI. Thus, .I ⊆ V . Each element . (ni, no, c)

in the edge set .E ⊆ V × V × B models a wire from node . ni to node . no with a 
complementation tag .c ∈ {0 = regular, 1 = complemented} recording the existence 
of an inverter on the wire. . ni is said to be a fanin of . no and . no is said to be a fanout 
of . ni . Finally, each primary output (PO) in O is a tagged node .(n, c) modeling an 
outgoing wire from a gate or a PI, with or without an inverter. 

Cuts A cut in a network, defined over a given set .R ⊆ V of root nodes, is a set C 
of nodes such that any path from a PI to a root includes a node in C. Let  . CUTS(R)

denote the set of all cuts for the set R: 

.C ∈ CUTS(R) if ∀i ∈ I, r ∈ R,∀p : i
p� r, ∃n ∈ C : n ∈ p. (2) 

When R contains only one node n, .CUTS(R) may be abbreviated as . CUTS(n)

and is also referred to as a cut of n: 

.CUTS(n) � CUTS({n}). (3)
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Conversely, given a set C of nodes, a node n is said to be supported by C if C is 
a cut of n. A  logic cone between a cut .C ∈ CUTS(n) and a node n is the set of all 
nodes on any path from a node in C to n. All nodes in the logic cone are supported 
by C. 

A cut of a network N is a cut where R is the set of nodes referenced by POs: 

.CUTS(N) � CUTS({n : ∃c, (n, c) ∈ O}). (4) 

Given any set R of roots, the identical set .C = R is always a cut by definition; thus, 
such cut is said to be a trivial cut. Also, the set I of PIs is always a cut in a network 
for any possible R. 

Global Function of Nodes Each node n in a network computes a Boolean function 
.fn : B

|I | → B in terms of the PIs, called the node’s global function. To express 
the global functions, a Boolean variable . xi is associated with each PI .i ∈ I . Let  
.x = (x1, . . . , x|I |) be the set of all PI variables. By definition, the function of a PI 
node .i ∈ I is .fi(x) = xi . Then, in a topological order, the functions of all nodes in 
the network can be computed by composing the functions of a node’s fanins with 
the function of the corresponding logic gate. Finally, the PO functions are computed 
by taking the function of a PO node and inverting if the PO is complemented. 

Node Function in Terms of a Cut The function of a node may also be expressed 
in terms of a cut supporting it. Given a node n and a cut .C ∈ CUTS(n), the  local 
function .f C

n : B|C| → B is the Boolean function derived by associating a Boolean 
variable with each node in C and computing the local functions of each node in 
the logic cone between C and n in a topological order. The global functions are a 
special case of local functions using the PI set I as the cut: 

.fn � f I
n . (5) 

2.3 Don’t-Care Conditions 

A don’t care for an incompletely specified function is a minterm for which the 
output value is not specified. In a logic network, although all node functions (in 
terms of any cut) are completely specified, for some nodes, there may be some 
minterms where the output values of their functions are flexible. In other words, the 
function . f C

n of a node n in terms of cut C may be modified by changing its output 
value under some minterms without affecting the global functions of any PO. As 
a consequence, an incompletely specified function where these minterms are don’t 
cares and the output values under the other minterms are the same as . f C

n can be 
used to resynthesize the logic cone between C and n. Two types of internal don’t 
cares, arising from different reasons, may appear in logic networks:
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• Given a cut .C ∈ CUTS(R) supporting a set R of nodes1 and let . x = (x1, . . . , x|C|)
be Boolean variables associated with each node in C, a value assignment . bC ∈
B

|C| to . x (i.e., a minterm of the local functions .f C
n of any node .n ∈ R) is a  

satisfiability don’t care (SDC) if this value combination never appears under any 
PI value assignment: 

.�bI ∈ B
|I |, (fn(bI ) : n ∈ C) = bC. (6) 

• Given a node n and a cut .C ∈ CUTS(n) and let .x = (x1, . . . , x|C|) be Boolean 
variables associated with each node in C, a value assignment .bC ∈ B

|C| to . x (i.e., 
a minterm of the local function . f C

n ) is an  observability don’t care (ODC) with 
respect to n if none of the PO functions are affected by flipping the output value 
of . f C

n under . bC : 

.∀bI ∈ B
|I |, (fn(bI ) : n ∈ C) = bC �⇒ ∀o ∈ O, f ∗

o (bI ) = fo(bI ), (7) 

where . f ∗
o is the PO function derived by replacing any regular outgoing edge of n 

with a complemented one and replacing any complemented outgoing edge of n 
with a regular one. 

3 Computation of Internal Don’t Cares 

Appearance of “don’t care” as a technical term in the literature dates back to 
as early as the 1980s [3]. Pioneering research attempted to derive don’t cares in 
multi-level networks and use them in two-level minimization to resynthesize part 
of the network [2]. Theories on don’t-care computation were formulated based 
on symbolic computations propagated through the network [4, 11]. Until the late 
1990s, computation of don’t cares had been implemented using binary decision 
diagrams (BDDs). Due to scalability concerns, approximated computation was 
adopted [9], and the compatibility of ODCs was studied to avoid recomputation 
of ODCs in the network once an ODC is used to change the function of a 
node [14]. Since the early 2000s, computation tools of don’t cares have moved from 
BDDs to SAT, enabling using complete, instead of approximate, don’t cares while 
maintaining scalability [10].

1 The supported set R is not involved in the definition of SDCs, so it can, in theory, be empty and 
C is not necessarily a cut. Although one may define and compute SDCs for any set C of nodes, in 
practice, SDCs are only meaningful when C is indeed a cut, as SDCs are used to optimize nodes 
in R. 



38 S.-Y. Lee et al.

In many modern logic synthesis tools, internal don’t cares are derived locally 
(under-approximated) using bit-parallel circuit simulation: 

• To compute the SDCs for a given set C of nodes, we first find another cut 
.C0 ∈ CUTS(C) supporting C. Then, we perform circuit simulation by assigning 
projection functions to nodes in . C0 and obtain the local functions of nodes in C 
in terms of . C0, represented as truth tables. Finally, by analyzing each bit in the 
truth tables, we identify the value combinations at C that do not happen, which 
are the SDCs at C. 

• To compute the ODCs with respect to a node n, we first mark the transitive fanout 
cone of n for a predefined number of levels and collect the set R of nodes having 
fanouts outside of this transitive fanout cone. Then, we find a cut . C ∈ CUTS(R)

supporting R and perform circuit simulation to obtain the local functions . fR of 
nodes in R in terms of C. After adding a temporary inverter at the output of n, we  
perform another simulation to obtain . f ∗

R . Finally, we compare the two simulation 
results to identify the minterms where . fR and . f ∗

R have identical values, which 
are the ODCs with respect to n. 

4 Definition and Representation of External Don’t Cares 

The general problem of technology-independent combinational logic synthesis 
asks for generating a logic network that implements the desired output functions 
and is optimized according to some predefined cost objective. Often, the desired 
functionalities are given as an unoptimized network. Besides improving the cost 
objective, a logic synthesis algorithm must preserve the functionalities of the 
given network. More precisely, the global PO functions must not change after 
optimization. 

However, the desired functionalities may not be completely specified, and 
there may be don’t-care conditions external to the network under synthesis. For 
example, due to the interplay between the network and its environment (other 
cascaded circuits, previous- and next-stage sequential circuits, or user inputs), some 
input value combinations may never appear, or some output values are not used 
(“observed”) under certain conditions. These external don’t cares (EXDCs) can be 
leveraged to further optimize the network. As it is impossible to derive external don’t 
cares from the network alone, they have to be given to a combinational optimization 
algorithm from a higher-level algorithm. 

4.1 External Controllability Don’t Cares (External SDCs) 

Extending the definition of SDC to the input boundary, a value assignment to the 
PIs that will never appear is called an external controllability don’t care (EXCDC). 
These don’t cares are controlled by the environment external to the network.
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Mathematically, EXCDCs are essentially a special case of SDCs where the cut 
C is the set of PIs. The set of EXCDCs of a network N may be given as a function 
.f CDC : B|I | → B: 

.f CDC(bI ) = 1 ⇐⇒ bI is an EXCDC. (8) 

4.2 External Observability Don’t Cares 

Extending the definition of ODCs to the output boundary, external ODCs are 
conditions under which some PO values are not of interest. Depending on the 
reasons of such situations, there are several ways one may wish to define external 
ODCs. 

As a Function of PIs For each PO .o ∈ O, the condition under which the value of o 
is not observed may be specified as a function of PI values. For example, when the 
network describes the transition and output logic of a Mealy finite-state machine, it 
may appear that for some previous states (PIs of the network), an output is not used. 
In this case, the external ODCs are described as a multi-output function . f ODCI :
B

|I | → B
|O|: 

.For each o ∈ O, f ODCI
o (bI ) = 1 ⇐⇒ bI is an EXODC for o. (9) 

As a Function of Other POs For each PO .o ∈ O, the condition under which the 
value of o is not observed may be specified as a function of other PO values. For 
example, when the outputs of the network are used in the next stage as a series of 
cascaded conditional statements such that if a PO of higher priority evaluates to 
1, then the lower-priority POs do not matter. In this case, the external ODCs are 
described as a multi-output function .f ODCO : B|O| → B

|O|: 

.For each o ∈ O, f ODCO
o (bO) = 1 ⇐⇒ bO is an EXODC for o. (10) 

The i-th output of .f ODCO should not depend on its i-th input. Note that in this 
case, the don’t-care conditions depend on the actual implementation of the network. 
Using one ODC to optimize and change the function of a PO may invalidate 
opportunities of using another ODC to optimize some other POs. 

As Equivalence Classes Instead of specifying external ODCs separately for each 
PO, the flexible conditions might be some value combinations of a subset of POs. 
Figure 1 gives an example. Because of the cascaded next-stage logic at the output 
of N , the value combinations .o1 = 0, o2 = 1, and .o1 = 1, o2 = 0 have the 
same effect as seen from the system output (both map into .y1 = 1, y2 = 1; red  
edges). Thus, these two PO value combinations may be classified into the same 
external observability equivalence class (EXOEC), and PI minterms that map to 
one of them are flexible to be re-mapped to either one (pink edges are added).
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N 

o1 o2 

y1 y2 

I 

B|I| B2 (o1, o2) 

00 

01 

10 

11 

B2 (y1, y2) 

00 

01 

10 

11 

Fig. 1 Example of external observability equivalence classes 

More generally, two PO value combinations are observably equivalent (in the same 
EXOEC) if their difference may not be observed when the network is immersed in 
a larger system. By definition, this is an equivalence relation and is reflexive (i.e., 
if a is observably equivalent to b, then b is observably equivalent to a [a and b 
are indistinguishable]), symmetric (i.e., any PO value combination is observably 
equivalent to itself [trivial]), and transitive (i.e., if a is observably equivalent to b 
and b is observably equivalent to c, then a is observably equivalent to c [.a, b and c 
are indistinguishable]). 

EXOECs can be given as a function .f OEC : B2·|O| → B: 

.f OEC(aO, bO) = 1 ⇐⇒ aO and bO are observably equivalent. (11) 

Because .f OEC describes an equivalence relation, it must fulfill the reflexivity, 
symmetry and transitivity properties as described above. 

4.3 Logic Synthesis from a Boolean Relation Perspective 

A logic network computes a multi-output Boolean function at its primary outputs 
(i.e., the collection of PO global functions). Hence, it can be described as a Boolean 
relation. The task of logic synthesis is thus finding an (optimized) network whose 
output function is compatible with a given Boolean relation . R. The presence of 
external don’t cares adds more elements into . R. 

More generally, given a set . C1 of nodes and a cut .C0 ∈ CUTS(C1) supporting it, 
a Boolean relation .R01 can be derived to describe the network functionality between 
. C0 and . C1. Moreover, if . C1 is also a cut supporting another set . C2, another Boolean 
relation .R12 can be derived and cascaded with . R01.
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O 

I 

C0 

C1 

C2 

n 

B|C0| B|C1| 

n = 0  n = 1  

B|C2| 

SDCs 

ODC for n 

Fig. 2 Illustration of Example 1 

Example 1 Let .C1 ∈ CUTS(N) be a cut of the network. Let .C0 = I and let . C2 =
{n : ∃c, (n, c) ∈ O}. We may derive two Boolean relations: 

.R01 = {(b0, f
C0
C1

(b0)) : b0 ∈ B
|C0|}. (12) 

R12 = {(b1, f  C1 
C2 

(b1)) : b1 ∈ B|C1|}, (13) 

where .f
C0
C1

is the function the nodes in . C1 compute in terms of . C0, and similarly for 

. f
C1
C2

. 

Figure 2 illustrates the example. According to the definitions in Sect. 2.3, an  
(internal) SDC is an element .b1 ∈ B

|C1| such that 

.�b0 ∈ B
|C0|, (b0, b1) ∈ R01. (14) 

Whereas an (internal) ODC for a node .n ∈ C1 is an element .b0 ∈ B
|C0| such that, 

let .b1 = fC1−{n}(b0) be the values at .C1 − {n} under . b0: 

.if ((b1, 0), b2) ∈ R12, then also ((b1, 1), b2) ∈ R12. (15) 

Generalizing internal and external don’t cares, SDCs are elements in a Boolean 
space (which corresponds to any cut in the network) that are not mapped to by 
any element in a previous-stage Boolean space. In contrast, ODCs arise from two 
elements in a Boolean space that map to the same element in a next-stage Boolean 
space. 

4.4 Boolean Relation as Unified Representation of External 
Don’t Cares 

We observe that none of .f ODCI, f ODCO, f OEC is general enough to express the 
other two. More concretely:
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• .f ODCI cannot be represented using .f ODCO or .f OEC because the latter ones lack 
conditioning on the PI values. There can be multiple PI value combinations 
leading to the same PO value, but only some of them are don’t cares. 

• The example in Fig. 1 cannot be represented using .f ODCI or .f ODCO because the 
condition is not simply ignoring the value of a single PO, but flipping the values 
of both POs. 

It is possible to convert .f ODCO into .f OEC, but the conversion is not straightfor-
ward, nor efficient. Starting from .f OEC(aO, bO) = aO ↔ bO , for each . bO ∈ B

|O|
such that .f ODCO

o (bO) = 1, we make  .f OEC(bO, b∗
O) = 1, where . b∗

O is derived 
by flipping the value corresponding to o in . bO . The complication comes from 
propagating the equivalence and keeping the transitivity property of the equivalence 
relation during the process. 

As discussed in Sect. 4.3, the specification of a logic synthesis problem can 
be seen as a Boolean relation. In the presence of external don’t-care conditions, 
representation using Boolean relations is inevitable because there are more than one 
compatible completely specified multi-output Boolean functions. To represent the 
specification Boolean relation .Rspec, we write its characteristic function, called the 
specification function .f spec : B|I |+|O| → B, which asks if a certain pair of PI and 
PO minterms is in .Rspec: 

. f spec(bI , bO) = 1 ⇐⇒ Under bI , bO is acceptable at POs.

⇐⇒ (bI , bO) ∈ Rspec (16) 

Given an original network . Nori, computing the function . f I
O , and the external 

don’t-care conditions as any subset of representations discussed in this section, . f spec

may be derived: 

. f spec(bI , bO) =f CDC(bI )

∨
∧

o∈O

(
f ODCI

o (bI ) ∨ f ODCO
o (bO)

)

∨ f OEC(f I
O(bI ), bO). (17) 

In Eq. (17), if  .f CDC, .f ODCI, or  .f ODCO are not given, they are substituted with 0 
(i.e., the term is removed); if .f OEC is not given, it is substituted with a negated 
miter function .¬∨

o∈O

(
f I

o (bI ) ⊕ bO

)
. 

A network is compatible if its global PO function .f impl fulfills: 

.∀b ∈ B
|I |, f spec(b, f impl(b)) = 1. (18) 

After logic optimization, a verification step is usually done to ensure the functional 
correctness of the optimized circuit. Classical CEC verifies if the optimized circuit 
computes exactly the same global PO function as the original circuit. However,
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when optimization is performed with external don’t cares, such exact equivalence 
requirement is too strong. Verification must be modified to use a network represent-
ing .f spec instead of a miter network. 

5 Optimization with External Don’t Cares 

To utilize both internal and external don’t-care conditions, a Boolean method, 
which considers Boolean functions of the nodes instead of analyzing the network 
as algebraic expressions (i.e., an algebraic method), must be used. As it is 
computationally too hard to synthesize (or resynthesize) the entire network from 
a Boolean function or Boolean relation, modern Boolean methods often perform 
resynthesis and substitution locally within a smaller region, called a window. 

However, in order to leverage the flexibilities provided by external don’t cares, 
these conditions must be propagated from the boundaries of the network inward 
to the windows being resynthesized. For this purpose, we propose to adopt the 
simulation-guided paradigm [7]. In this paradigm, node functions are approximated 
by their simulation signatures, obtained by performing global simulations using a 
non-exhaustive set of simulation patterns (value assignments to primary inputs). 
An optimization flow adopting the simulation-guided paradigm consists of the 
following key steps: 

1. Generate a set of simulation patterns. 
2. Simulate the network to obtain simulation signatures and use the signatures to 

compute optimization candidates. The resynthesis computation can be done in a 
window of any size. Optionally, ODCs may be computed by re-simulating the 
transitive fanout cone, similar to the method described in Sect. 3. 

3. As the simulation is not exhaustive, a candidate needs to be formally verified 
before it can be substituted into the network. This is done by solving a SAT 
instance converted from the network. If a satisfiable assignment is derived by the 
SAT solver, it is a counterexample proving that the candidate produces unwanted 
output under a certain PI assignment. The counterexample is added into the 
simulation patterns. Otherwise, an unsatisfiable result proves that the candidate 
is valid and thus it is used to substitute the original sub-network. 

Using global simulation, internal SDCs are accumulated and propagated within 
the network as missing bit patterns in the simulation signatures. EXCDCs can be 
easily integrated by removing simulation patterns that are don’t cares in Step 1. 
In contrast, EXODCs may only be used when ODC computation is enabled in 
Step 2 and is considered until primary outputs. In such case, ODC computation 
is modified as follows: To compute ODCs of a node n, two  sets  S and . S∗ of PO 
simulation signatures are obtained, one (S) by normal simulation and the other (. S∗) 
by adding an inverter at the output of n. For each bit in the simulation signatures 
(corresponding to a PI simulation pattern), instead of checking if all POs have the 
same value in S and in . S∗, we check if the PO value combination in . S∗ is in the
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Boolean relation .Rspec. The SAT instance in Step 3 also needs to be relaxed to 
take external don’t cares into account. The modified SAT instance now encodes the 
complement of Eq. (18) instead of a miter. A satisfiable assignment to the instance 
is a counterexample violating the Boolean relation .Rspec. 

6 Experimental Demonstration 

To demonstrate the effectiveness of considering external don’t cares in logic 
synthesis, we present some experimental results in this section. As external don’t 
cares are not provided along with commonly used benchmarks, we have to generate 
them by ourselves. The algorithm presented in Sect. 5 is implemented in the open-
source C++ logic synthesis library mockturtle2 [16]. 

We select ten  medium-sized (comparing to other benchmarks in the same 
suite) benchmarks from the IWLS’22 programming contest.3 These benchmarks are 
originally provided as truth tables of PO functions in terms of PIs (i.e., completely 
specified functions). In this experiment, we use the best (smallest in terms of the 
number of gates) synthesized AIGs we have obtained in participation of the contest 
as the starting point. Without external don’t cares, they cannot be optimized any 
further using the highest-effort (using the entire network as windows, considering 
internal ODCs until POs, and no limitation on the size of dependency circuits) 
simulation-guided resubstitution [7]. 

Table 1 summarizes the optimization results using randomly generated external 
don’t cares. All of the 10 benchmarks have 12 PIs and 3 POs. Column #Gates lists 

Table 1 Optimization results of using randomly generated external don’t cares on highly 
optimized benchmarks 

Benchmark EXCDC EXODC Both 

Name #PIs #POs #Gates .Δ % Time .Δ % Time .Δ % Time 

ex70 12 3 263 15 5.70 0.24 0 0.00 0.27 15 5.70 0.35 

ex71 12 3 369 2 0.54 0.70 13 3.52 0.75 13 3.52 0.70 

ex72 12 3 456 83 18.20 2.03 38 8.33 1.80 35 7.68 2.13 

ex73 12 3 208 1 0.48 0.36 1 0.48 0.28 1 0.48 0.24 

ex74 12 3 468 40 8.55 3.78 0 0.00 3.78 37 7.91 3.78 

ex75 12 3 489 78 15.95 1.43 114 23.31 1.20 132 26.99 1.03 

ex76 12 3 246 2 0.81 0.22 1 0.41 0.24 4 1.63 0.27 

ex77 12 3 319 89 27.90 0.37 25 7.84 0.32 98 30.72 0.29 

ex78 12 3 369 42 11.38 0.36 56 15.18 0.35 52 14.09 0.35 

ex79 12 3 365 0 0.00 0.92 20 5.48 0.70 17 4.66 0.78

2 Available: https://github.com/lsils/mockturtle. 
3 https://www.iwls.org/iwls2022/. 

https://github.com/lsils/mockturtle
https://github.com/lsils/mockturtle
https://github.com/lsils/mockturtle
https://github.com/lsils/mockturtle
https://github.com/lsils/mockturtle
https://www.iwls.org/iwls2022/
https://www.iwls.org/iwls2022/
https://www.iwls.org/iwls2022/
https://www.iwls.org/iwls2022/
https://www.iwls.org/iwls2022/
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the number of gates before optimization using EXDCs, columns . Δ list the reduction 
on the number of gates after optimization, columns % list the reduction percentage, 
and columns Time list the runtime in seconds. All benchmarks use the same external 
don’t-care conditions. Column EXCDC is optimized providing only a randomly 
generated .f CDC having 248 minterms evaluating to 1, column EXODC is optimized 
providing only .f ODCO = (f ODCO

y1
= 0, f ODCO

y2
= ¬y1, f

ODCO
y3

= 0), and column 

Both is optimized with both .f CDC and .f ODCO. 
This experiment shows that providing external don’t cares indeed enables further 

optimization opportunities, and that the presented optimization technique works in 
practice. 

7 Conclusion and Future Work 

This paper aims primarily at raising and defining the problem of logic synthesis 
with external don’t cares. It provides a review on the theoretical definition of don’t-
care conditions in general, and identifies different ways of representing external 
don’t cares. An emphasis is made on the relation of don’t cares and Boolean 
relations. Finally, using partial simulation and SAT-based verification, we present 
how external don’t cares may be considered in logic optimization. In conclusion, 
this paper is the first step toward involving external don’t cares in logic synthesis. 
While the theoretical formulations serve as a foundation for future research, 
the optimization technique is still limited in achievable optimization quality and 
scalability. In the following, we discuss some future research directions. 

7.1 Multi-Target Resynthesis 

From the Boolean relation point of view, the classical definition of internal ODCs 
(Eq. 7) is additionally restricted to pairs of elements that only differ in one bit 
(corresponding to the node under consideration) instead of any pair that map to 
the same next-stage minterm. The advantage of this approach is that the don’t-care 
conditions are used to optimize one node at a time without the need to modify 
the other nodes. However, it is possible to generalize this class of don’t cares by 
grouping all elements that map to the same element in the next-stage Boolean space 
together as an OEC and drop the dependency of the definition on a certain node. 
In this case, multiple nodes need to be optimized together and change their output 
values. 

It is shown in [8] that considering the resynthesis problem of multiple nodes 
at the same time is necessary for some optimization opportunities to emerge, 
and the work provides algorithms to describe internal DCs as Boolean relations 
and to resynthesize windows from Boolean relations. The problem of multi-target
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resynthesis specified by a Boolean relation is intrinsically more complex than 
the well-researched single-target resynthesis [6, 13]. While [1] discusses Boolean 
relation solving based on divide and conquer, further investigation still has potential. 
With such Boolean relation solver available, logic optimization with external don’t 
cares can be further enhanced. 

7.2 Propagation and Management of Observability 
Equivalence Classes 

The biggest problem encountered in the utilization of external don’t cares is to 
properly and efficiently propagate these conditions into the network. Propagation 
of EXCDCs by partial simulation is relatively straightforward without scalability 
concern. In contrast, propagation of external ODCs as presented in Sect. 5 is 
not scalable. On the one hand, computation of ODCs involves re-simulating the 
entire transitive fanout cone of the node, and verification with EXODCs requires 
duplicating at least the transitive fanout cone, if not the entire network, in the SAT 
instance. One possibility to address this issue is to develop methods to propagate 
external OECs into a cut in the network. On the other hand, management of the 
OECs is not scalable with respect to the number of POs if PO minterms are explic-
itly represented. Thus, symbolic representations of OECs and their management 
methods (especially, merging equivalence classes according to the transitivity rule) 
need to be developed. 
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