
Improving Standard-Cell Design Flow using
Factored Form Optimization

Alessandro Tempia Calvino1,2, Alan Mishchenko3, Herman Schmit4, Ethan Mahintorabi4,
Giovanni De Micheli1, Xiaoqing Xu2

1Integrated Systems Laboratory, EPFL, Lausanne, Switzerland
2X, the moonshot factory, Mountain View, USA

3Department of EECS, University of California, Berkeley, USA
4Google, Mountain View, USA

Abstract—Factored form is a powerful multi-level representa-
tion of a Boolean function that readily translates into an imple-
mentation of the function in CMOS technology. In particular, the
number of literals in a factored form correlates strongly with
the number of transistors in the CMOS implementation. This
paper develops novel methods for optimizing factored forms while
working on the efficient and-inverter graph (AIG) representation
of combinational logic. This is in contrast to the traditional logic
synthesis based on logic networks, and other AIG-based methods
that minimize the AIG nodes count. Experiments show that
applying these methods helps to reduce the area after technology
mapping by an additional 2.8% on average, compared to a high-
effort area-oriented baseline. It is expected that deploying these
methods as part of an industrial standard-cell design flow will
reduce design costs and power consumption. Additionally, this
work enables efficient transistor-level logic synthesis of large
designs with various applications in design automation.

I. INTRODUCTION

A standard-cell design flow aims at transforming a high-
level description of a hardware design into a placed and
routed representation that depends on the target technology. A
design flow consists of numerous steps. In this paper, we focus
on technology-independent synthesis and technology mapping
into standard cells. The goal of these two steps is to meet delay,
area, power, and other constraints by deriving an optimized
circuit representation of the design, which is then placed and
routed, making it suitable for fabrication.

The delay is characterized by the time it takes for a signal
to propagate from inputs to outputs. The area is correlated to
the number of transistors needed to implement the cells that
constitute the design.

It is known [1] that the factored form literal count (FFLC)
correlates with the number of transistors needed to implement
a Boolean function. Thus, past research efforts in technology-
independent synthesis [2], [3] concentrated on synthesizing
small Boolean networks with a minimal FFLC. To our knowl-
edge, this approach is still in use in many EDA tools for
standard-cell designs.

However, in the last few decades, substantial progress has
been made to leverage the simplicity of an and-inverter-
graph (AIG) representation [4] for the technology-independent
synthesis of Boolean networks [5]. The known AIG opti-
mization methods can efficiently synthesize large AIGs while
minimizing the number of AIG nodes and logic levels. This,

however, does not guarantee the minimization of the FFLC.
Consequently, the current technology-independent synthesis
based on AIGs does not work at its best for optimizing
standard-cell-based designs.

In this paper, we propose several efficient AIG-based FFLC
minimization methods that work without converting AIGs into
logic networks, as required by traditional FFLC minimization
techniques [2]. The portfolio FFLC optimization includes (1)
an enhanced Boolean resubstitution [6], (2) a modified version
of AIG rewriting [7] and refactoring, and (3) a dedicated FFLC
minimization that performs AIG re-mapping using a versatile
technology mapper [8]. In the experimental results, we show
up to a 5.3% reduction in the literals count and up to a 7%
improvement in the area after technology mapping compared
to a high-effort area-oriented AIG optimization with no run-
time increase. Additionally, we discuss possible applications
of the presented methods, beyond logic optimization, for
transistor-level synthesis.

II. BACKGROUND

A. Logic representations

Logic representations are key for developing robust EDA
tools. They enable compact data storage in memory and
efficient implementation of optimization algorithms. One of
the first standard representations of Boolean logic was the
Sum-Of-Products (SOP) [2]. An SOP is a two-level repre-
sentation consisting of the logic OR of product terms, which
are logic ANDs of literals (variables or their complements).
This representation was motivated by programmable logic
arrays (PLAs) whose primitives are modeled directly using
SOPs. Because of the simple structure of a two-level circuit,
the optimization problems for SOPs are well understood,
which led to the development of efficient heuristic and exact
minimization methods. A powerful extension of SOPs into a
multi-level representation are factored forms [2]. A factored
form is defined recursively as follows. A literal is a factored
form, and the logic OR or logic AND of two factored forms is
a factored form. Informally, a factored form is an SOP whose
inputs are other SOPs, etc.

Example:

Sum-of-products : ab + ac + ad + cbd

Factored Form : a(b + c + d) + cbd

Another well known data structure for Boolean functions is
the Binary Decision Diagram (BDD) [9] which is a canonical
representation based on if-then-else formulae. With the advent
of large-scale integration, the design size increased and logic
synthesis moved to work on multi-level logic representations.

A multi-level circuit is represented as a Directed Acyclic
Graph (DAG) composed of internal nodes having logic func-
tions, primary inputs, and primary outputs. Generally, multi-
level circuits for both ASIC and FPGA designs tend to be
much smaller, power efficient, and faster, compared to the
two-level counterparts. The functionality of DAGs is expressed
using a small set of primitives, making DAGs easy to manipu-
late. The most common multi-level representation is the And-
Inverter Graph (AIG) [4] where nodes are two-input ANDs.
Recently, other logic representations have been proposed, such
as the Majority-Inverter Graph (MIG) [10].

B. Notations and Definitions

A Boolean function is a mapping from an n-dimensional
Boolean space into a 1-dimensional one: {0, 1}n → {0, 1}.

A Boolean network is modeled as a directed acyclic
graph (DAG) with nodes represented by Boolean functions.
The sources of the graph are the primary inputs (PIs) of the
network, the sinks are the primary outputs (POs). For any node
n, the fanins of n is a set of nodes driving n, i.e. nodes that
have an outgoing edge towards n. Similarly, the fanouts of n
is a set of nodes that are driven by node n, i.e., nodes that
have an incoming edge from n. If there is a path from node
a to node b, then a is in the transitive fanin of b and b is said
to be in the transitive fanout of a. The transitive fanin of b
includes node b and the nodes in its transitive fanin, including
the PIs. The transitive fanout of b includes b and all the nodes
in its transitive fanout including the POs.

The maximum fanout free cone (MFFC) of a node n is a
subset of the transitive fanin of n such that every path from the
nodes in the MFFC to the POs passes through n. Informally,
the MFFC of a node contains the node itself and all the logic
exclusively used by the node. When a node is removed (or
substituted) the logic in the MFFC can also be removed.

A cut C of a node n is a collection of nodes of the network,
called leaves, such that every path from the PIs to node n
passes through at least one leaf. Node n is called the root of
C. The size of a cut is defined as the number of leaves. A cut
is k-feasible if its size does not exceed k. The volume of the
cut is the total number of nodes encountered on all the paths
between the leaves and the root.

A cover of a Boolean network is a set of cuts such that
each node in the network is contained in the volume of at
least one cut and all the cuts in the set are leaves of other cuts
in the set or are rooted in the POs. A cover can be extracted
top-down by selecting cuts starting at the POs and recurring
on the leaves.

C. Logic optimization

Logic optimization is a key step that enables the design
of efficient circuits. Over the years, many techniques working
on DAGs have been proposed. Choosing a few primitives to
represent circuits as DAGs helps navigate through the logic
and extract properties. State-of-the-art methods are primarily
working on And-Inverter Graphs (AIGs). The tool ABC [11]
is considered the state-of-the-art academic tool for logic op-
timization. ABC uses AIGs as the main logic representation.
The most common and powerful optimization algorithms are
resubstitution, rewriting, refactoring, and balancing [6], [7].
Most of the optimization scripts are composed of a combina-
tion of these algorithms:

• Resubstitution: Resubstitution [6], shortened to resub,
(re)expresses the function of a node using other nodes,
called divisors, that are already present in the network.
The transformation is accepted if the new implementation
of a node is better, according to a target metric (e.g., size),
compared to the current implementation of the node in
terms of its immediate fanins. This approach generalizes
to k-resubstitution, which adds k new nodes and removes
at least k + 1 nodes. The removed nodes are the ones
present in the maximum fanout free cone (MFFC) [6] of
the node. The functionality of the new nodes is derived
from a library of primitives used for resubstitution. In the
AIG implementation, added gates are 2-input ANDs with
optional inverters at the inputs/outputs.

• Rewriting: Rewriting [7] is a fast greedy algorithm that
aims at minimizing the size of a logic network by
iteratively replacing sub-graphs rooted in a node with
smaller pre-computed structures while preserving the
functionality at the root node. Typically, pre-computed
structures cover all the 4-variable functions classified into
the NPN equivalence classes for compactness [12].

• Refactoring: Refactoring is similar to rewriting. It iterates
over large logic cones rooted in a node and tries to replace
the logic structure of the cone with a factored form of
the root function. The replacement is accepted if there is
an improvement in the selected cost metric (usually the
number of gates) [6], [7].

• Balancing: Balancing is a fast algorithm that reconstructs
logic by balancing the structure using the associative
property such that the logic depth is minimized.

III. FACTORED FORMS IN AIGS

In this section, we describe the relationship between fac-
tored forms (FFs) and and-inverter graphs (AIGs). This allows
us to introduce the notion of factored form literals of an AIG
and propose algorithms to reduce the factored form literal
count (FFLC). Unlike traditional logic synthesis [2], [3], our
approach does not need to convert an AIG into a logic network.
Hence, it offers better scalability on large designs.

One application of AIGs in synthesis is the representation
of DAGs derived by Boolean decomposition or factoring.
In particular, FFs can be represented as syntax trees where

a b̄ ā b

ab̄ + āb

∧ ∧

∨

(a) Factored form

a b

∧ ∧

∧

ab̄ + āb

(b) AIG

Fig. 1: Translation of a factored form of a XOR2 (a) into an
AIG (b). Dashed lines represent negations.

nodes are AND or OR operations, and leaves are literals
(variables or their complements). Thus, FFs can be directly
represented by an AIG by translating ANDs to ANDs, and
ORs to ANDs using De Morgan’s law x∨y = x̄ ∧ ȳ. An AIG
representation of a FF is composed of primary inputs with
multiple fanouts, 2-input AND gates with a single fanout (and
possibly complemented inputs), and an output associated with
a primary input or a 2-input AND. As an example, Figure 1
shows a representation of a XOR2 in FF and its translation
into an AIG. In a FF, the number of literals is given by its
number of leaves. For instance, in Figure 1a the number of
literals is 4. In the AIG representation of FFs, the number of
literals is equal to the fanout count of the inputs of the graph.

AIGs representing combinational logic are not FFs because
AND nodes may have multiple fanouts. Nevertheless, FFs can
be used to cover an AIG. Deriving the FF cover can be done
by a technology mapper.

In this paper, we follow [13] and refer to nodes with a single
fanout as tree nodes, and to nodes with two or more fanouts as
dag nodes. Let us consider an arbitrary AIG. For each primary
output, let us define cuts such that each node in the volume
of cut is a tree node (except for the root) and the leaves are
either dag nodes or primary inputs. Note that this definition is
different from the notion of the MFFC of a node because the
MFFC may contain dag nodes. By definition, each such cut
covers a FF. Using this definition of cuts, we can cover the
whole AIG by recursively creating new cuts from the leaves
of the existing ones. Thus, FFs can cover an AIG and their
number depends on the number of cuts in the cover. Hence,
we can define the FFLC of an AIG as the sum of the literals of
each FF contained in an AIG. Without employing the notion
of the cover, the FFLC of an AIG can be computed using a
simple formula:

FFLC = O + 2×G−M (1)

where O is the number of primary outputs, G is the number
of 2-input nodes, and M is the number of 2-input tree nodes.
Alternatively, the FFLC of an AIG is the sum of the fanout
counts of the primary inputs and dag nodes.

Figure 2a depicts an AIG representation of the 5-input
Boolean function of a partial product of a radix-4 Booth
multiplier [14]. The AIG can be covered using 3 FFs rooted
in the green nodes. The one rooted in f is connected to a,

a c d e b

∧ ∧

∧ ∧ ∧

∧ ∧ ∧ ∧

∧ ∧

∧

f

(a) Initial network: 15 lits

a c d e b

∧ ∧

∧ ∧ ∧

∧ ∧

∧

∧

∧ ∧

∧

f

(b) After resub: 14 lits

Fig. 2: Optimization of an AIG for factored form literals.
Figure (a) shows the initial network. Figure (b) shows the
result with reduced literal count after resubstitution is applied
to the orange node. Nodes in green are roots of factored forms.

e, b, and the other two green nodes. The remaining two FFs
rooted in the green nodes at the bottom are connected to c
and d. The total number of FF literals is 15 and it is given by
Formula 1 (1 + 2 × 12 − 10 = 15) or by adding the fanout
counts of the primary inputs and the two dag nodes in green.

From the definition, it follows that FF literals in an AIG can
be used as an alternative cost function to carry the optimization
of combinational logic. The simple definition of literal count
makes it very efficient to compute.

IV. LOGIC OPTIMIZATION FOR LITERAL COUNT

In this section, we propose optimization algorithms targeting
ASIC designs that can reduce the factored form literal count
in AIGs. We re-formulate Boolean resubstitution, Boolean
rewriting, refactoring, and re-mapping to perform the literal
count minimization. We suppose that each node n in an AIG
has a reference counter showing the number of its fanouts [6].
Reference counting is used for counting nodes in an MFFC and
for efficient addition/removal operations for individual nodes
and their MFFCs. We can also use the reference counters of
the nodes to classify them into tree nodes and dag nodes and
compute the FFLC.

Using Formula 1, we establish how local transformations
affect the FFLC. Generally, if a 2-input dag node is removed
from the graph, 2 literals are saved. If a tree node is removed
from the graph, 1 literal is saved. However, every time a
restructuring step increases the fanout count of a tree node, the
number of tree nodes decreases leading to an FFLC increase
by 1. Consequently, some transformations may decrease AIG
size but increase the FFLC.

For instance, Figure 3 shows a case in which the FFLC
increases due to a node substitution. In the example, the tree
node p is substituted with a new node q. Removing p also
removes any node in the MFFC such as t. Consequently,
two tree nodes are removed decreasing G and M by two,

p

t

q

∧ ∧ ∧

∧

∧

∧ ∧

∧

Fig. 3: Substitution of p using a new node q that increases the
number of factored form literals by one.

and no dag node is transformed into a tree node. Node q
is added starting from 2 tree nodes and substituted into p.
Therefore, one new tree node (q) is added, increasing G and
M by one. After adding a new node, two nodes increase their
fanout counts and become dag nodes. Hence, even though the
AIG size is reduced, the total FFLC increases by one. Other
transformations may increase or keep the AIG size constant
but decrease the FFLC, as shown in Figure 2. This is not
exploited by state-of-the-art methods.

A. Resubstitution for factored form literals

In the standard resubstitution, the improvement is measured
by the difference between the node count removed and added.
The nodes that can be removed are the ones included in the
MFFC. Hence, the improvement is measured as |MFFC| − k
where k is the number of added nodes. Similarly, in resubsti-
tution for literals minimization, the literal saving is given by
the difference between the literal count removed and added.
The change in the number of literals can be computed locally
using node reference counters. The reference counters track the
number of nodes removed/added (MFFC) and the tree nodes
created/removed during the manipulation. Finally, the change
is evaluated using Formula 1. The algorithm employed is a
recursive dereferencing (referencing) that decreases (increases)
the reference counter of a node and recurs over the fanins if the
reference count is 0 (1). In particular, recursive dereferencing
(referencing) is used to measure the MFFC. Literal savings are
measured by recursively dereferencing the node to substitute
(root node) and counting the nodes removed and the change
in the number of tree nodes. Similarly, the creation of new
nodes is measured using recursive referencing.

This approach also supports filtering rules for candidates to
speed up resubstitution. To simplify the filtering rule, we do
not account for the change in M for the root node when we
compute the savings, because any new node created will inherit
the fanout of the root node leading to a zero change in M for
the root. We can then use the support of the resubstitution
as a filtering rule. For instance, 1-resub adds one node to the
network increasing G by one adding 2 literals. For 2-resub, a
minimum of 3 literals are added (one tree node), and so on.

Figure 2 depicts the FF literal optimization based on re-
substitution on a Booth partial product. The orange node in
Figure 2a is the target node for resubstitution. Figure 2b shows
the result where the total literal count and the number of FFs
needed to cover the AIG are reduced by one. Consequently,

the structure of the graph is more suitable for technology
mapping leading to a 17% area reduction after mapping the
two implementations to a 7nm technology1 [15].

B. Rewriting and refactoring for factored form literals

Rewriting and refactoring are enhanced similarly to resubsti-
tution. Standard rewriting enumerates the 4-input cuts at a root
node to match and evaluate the replacements. Refactoring uses
MFFCs or reconvergence-driven cuts [6]. The improvement of
a replacement is measured by counting the number of nodes
in the cut that can be removed, i.e. the MFFC contained in the
cut, minus the number of nodes added when the structure is
inserted. Rewriting and refactoring for literals minimization
evaluates the reduction equivalently for literals. Savings in
terms of nodes and literals are calculated using the same
method since they are both based on recursive dereferencing
and referencing. This enables the use of both cost functions
with one as a primary cost criterion and the other one as a
tie-breaker. Our implementation of rewriting for FF literals
optimizes for literals primarily and uses node savings as a tie-
breaker. This is motivated by compactness since an AIG with
fewer nodes is easier to manipulate.

C. Mapping for factored form literals

We implemented a global re-mapping method for AIGs
targeting the minimization of FF literals. The method is similar
to cost-based mappers applied to graphs [8]. It consists of cost-
driven mapping, followed by Boolean decomposition of each
cut in the cover into an AIG, which can be seen as re-mapping.
The algorithm works by computing cuts for each node using
the fast cut enumeration procedure [16] and assigning to each
cut a cost based on the FF representation. The FF is computed
using the irredundant SOP (ISOP) extracted from the Boolean
function of the cut. The SOP is then factored using algebraic
or Boolean factoring [17]. Next, the technology mapper selects
a cover to minimize the number of FF literals in the Boolean
functions of the cuts used to cover the AIG.

V. EXPERIMENTS

In this section, we evaluate the factored form optimiza-
tion methods for technology-independent logic synthesis by
showing the literal reductions and the results after technology
mapping. We propose a resynthesis script called compress2ff
for factored form optimization. This script has the same
commands as compress2rs in ABC [6], but each command
is modified to minimize FFLC rather than the node count.
The two scripts have roughly the same runtime because the
FF literal counting has negligible runtime overhead.

We set up our experiments according to one of the use cases
of this novel approach which is the manipulation of optimized
designs for size and literal reduction before technology map-
ping. When performing technology-independent synthesis, we
compare the new script to compress2rs, which is the default
script in ABC for high-effort AIG size minimization [6].

1The first design in (a) has been obtained after synthesis in ABC using the
script compress2rs. We used amap in ABC for technology mapping.

Our baseline consists of two runs of compress2rs to obtain
the initial compact representation of the AIG. Then, we
create two flows: one running compress2rs two times, and the
other running compress2ff two times. Finally, for technology
mapping, we use &nf -R 1000 in ABC for area-oriented
mapping. We use ASAP7 [15] as the target technology library.

Table I shows the experimental results for the designs from
the IWLS’05 benchmark suite [18]. Our methods reduce the
AIG size, factored form literal count (FFLC), and area by
1.6%, 2.3%, and 2.8%, respectively, compared to the baseline.
Instead, the flow that runs compress2rs has a limited improve-
ment of only 0.6% in the AIG size, FFLC, and area compared
to the baseline. In this experiment, we used a strong baseline
to evaluate our methods. Even so, our approach enables further
improvement showing the importance of FFLC optimization.
For a fair comparison, our script mirrors compress2rs without
exploring other FFLC optimization opportunities.

Generally, some designs respond to the FFLC optimization
better than others. The optimization can lead to a significant
improvement in the literal count, AIG size, and area after
mapping for some benchmarks, such as DMA, i2c, systemcaes,
systemcdes, and tv80. For instance, our approach reduces the
area of systemcaes by 7%. For other benchmarks, our flow
does not lead to significantly better results, compared to the
standard flow, such as in des area, ethernet, and vga lcd.
We noticed that our approach is more effective for control
and random logic. On the other hand, arithmetic circuits are
less impacted by the proposed optimization due to structural
regularity. We expect better results with richer standard cell
libraries, which can map large factored forms better.

VI. APPLICATIONS

A. Logic Optimization

In the previous section, we presented novel optimization
algorithms to reduce the FF literal count in combinational
logic, aiming at improving the area after technology mapping
into standard cells. The positive impact of the proposed FF-
based network optimization on the CMOS implementation
offers new opportunities to restructure combinational logic
represented as an AIG while preparing it for technology
mapping. While size is currently the main measure of the
graph complexity for the area, we found that the literal count
is a powerful metric to guide fine-grain optimization leading
to better quality after mapping. Deploying the aforementioned
methods as part of an industrial synthesis flow would improve
power, performance, and area.

B. Transistor-level synthesis

The literal count in FFs is a well-known proxy for transistor
count in CMOS transistor networks. Transistor count is a
fundamental measure that strongly correlates with the area.
Even if transistor count alone does not capture other important
factors affecting area and power, such as transistor ordering,
placement, and routing, it is one of the best indicators.
In particular, FFs describe the serial-parallel connection of
transistors. A serial connection is described using an AND

a c

b d

Z

a b

c d

PU = ab + cd

PD = (a + b)(c + d)

Fig. 4: CMOS network for function Z = (a + b)(c + d) and
the respective pullup (PU) and pulldown (PD) networks.

gate. A parallel connection is described using an OR gate.
This relation allows us to generate CMOS transistor networks
from factored forms. Since the pulldown and pullup networks
in CMOS are complementary, two FFs are needed, one being
the dual of the other. Figure 4 depicts a mapping of a function
in FF into a transistor network.

Since an AIG can contain many FFs, it naturally describes
the connection of transistors in a multi-stage network. Using
this relation, we can extract a transistor-level network after
minimizing the inverters and mapping each FF into CMOS
using the natural translation of factored forms, or using other
methods [19], [20]. This property opens up to transistor-level
synthesis offering flexibility in functionality, not restricted by
standard cell libraries, and compact layout from automated
transistor-level placement and routing approaches [21], [22]. In
particular, the methods discussed in this paper enable efficient
transistor-level optimization and synthesis for large designs
while working directly on an AIG representation thanks to
the correlation between the number of literals and transistors.

As an example, for the Booth partial product function
our approach optimizes and translates the function into a
transistor-level network with 34 transistor after employing
our factored form-based mapper2. Instead, if we map the
function directly to the ASAP7 standard-cell library [15] while
minimizing area, the resulting netlist consists of 40 transistors.
This means that our approach generates a 15% reduction in
transistor count for the Booth partial product implementation,
which generally translates into a similar amount of area
reduction after transistor placement and routing.

Our preliminary tests on transistor-level synthesis show that
some useful transistor-level networks are not included in the
ASAP7 standard cell library. The layout creation of those
transistor-level networks and integration in an industrial flow
is beyond the scope of this paper.

2The transistor-level network generated is not included in the ASAP7
standard cell library [15]. It is a custom implementation at the transistor level
assuming a pullup/pulldown network structure, as shown in Figure 4, and
transistor stacking limits.

TABLE I: Experimental results for factored form literals optimization and technology mapping

Benchmark Baseline: 2×compress2rs ABC: 2×compress2rs Factored form opt: 2×compress2ff
Size FFLC Depth Area Delay Size FFLC Depth Area Delay Size FFLC Depth Area Delay

ac97 ctrl 10203 13039 10 7012.21 100.42 10145 12971 10 6976.53 99.33 10175 12979 10 6831.41 109.19
aes core 19493 24738 23 14012.98 245.4 19167 24511 24 13864.05 244.74 19210 23972 23 13702.23 233.87
des area 4274 5177 32 2835.45 295.91 4263 5162 32 2825.57 295.63 4255 5093 32 2856.12 289.84
des perf 67904 99730 28 60836.15 292.37 67141 99000 28 60431.14 287.44 67145 95820 30 59012.16 294.43
DMA 21974 26614 26 14254.06 240.5 21954 26589 26 14242.05 253.43 21358 25706 26 13533.02 247.11
DSP 37559 47734 100 26216.06 958.63 37068 47187 103 25927.76 998.47 36849 46561 98 25573.38 866.02
ethernet 55708 69226 34 35478.61 427.08 55659 69160 34 35482.25 441.46 55600 69011 34 35382.93 435.39
i2c 858 1136 19 648.46 188.32 849 1124 19 642.85 188.32 832 1087 19 604.65 188.32
mem ctrl 7983 10410 44 5717.15 417.43 7881 10303 46 5675.89 458.48 7815 10150 45 5624.12 385.83
pci bridge32 16092 20628 46 11262.44 505.24 16077 20616 46 11252.62 505.24 16014 20477 47 11210.79 556.1
RISC 60048 75005 100 40591.26 1055.71 59723 74631 105 40332.13 1034.93 59012 73260 101 39634.05 1126.49
sasc 546 729 9 430.9 101.77 546 729 9 430.9 101.77 542 722 9 426.24 108.77
simple spi 732 961 19 548.09 154.85 731 960 20 548.05 155.43 728 950 19 544.11 187.98
spi 3112 3797 32 2096.5 303.82 3070 3736 32 2062.54 307.17 3055 3692 31 2035.31 294.66
ss pcm 389 497 9 301.26 70.78 389 497 9 301.26 70.78 389 497 9 298.22 70.78
systemcaes 9582 11542 38 7002.48 426.35 9548 11444 40 7007.27 453.54 9307 11157 38 6512.72 423.49
systemcdes 2276 3252 28 1872.14 333.19 2256 3231 28 1851.12 290.58 2164 3061 27 1727.16 309.89
tv80 6856 8603 48 4752.52 417.16 6768 8507 53 4664.8 456.63 6506 8158 49 4449.26 411.61
usb funct 12582 16145 36 8920.83 329.01 12509 16059 41 8854.99 374.44 12482 15986 41 8801.6 407.19
usb phy 347 524 10 307.72 104.98 347 524 10 307.72 104.98 346 512 10 297.72 104.98
vga lcd 88633 112806 35 59943.02 353.96 88628 112802 35 59933.86 346.89 88616 112747 35 59755.3 339.89
wb conmax 37146 43041 18 20746.44 195.03 36640 42338 18 20442.97 213.27 36258 41476 20 20144.39 193.95

Geomean 7508.1 9662.5 27.3 5382.8 273.8 7460.1 9605.6 27.9 5351.4 278.8 7387.8 9435.6 27.7 5232.7 278.3
Ratio 1.000 1.000 1.000 1.000 1.000 0.994 0.994 1.023 0.994 1.018 0.984 0.977 1.013 0.972 1.016

VII. CONCLUSION

This work presents novel methods for minimizing the fac-
tored form literal count (FFLC) of AIGs representing combi-
national logic. Unlike traditional FFLC minimization methods,
our approach does not convert an AIG into a logic network
offering better scalability. Since the FFLC is a proxy for the
number of transistors and the number of transistors strongly
correlates with the area, our method has a positive impact
when mapping to standard cells. We employ our methods in a
synthesis flow showing an average reduction in the number of
literals of 2.3% which translates into an area improvement of
2.8% after technology mapping over highly optimized designs.
Additionally, we discuss how the proposed methods enable
transistor-level optimization for large designs.

REFERENCES

[1] R. L. Ashenhurst, “The decomposition of switching functions,” in Proc.
Int. Symp. on the Theory of Switching, 1957.

[2] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, “MIS:
A multiple-level logic optimization system,” IEEE Trans. CAD, 1987.

[3] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“SIS: A system for sequential circuit synthesis,” tech. rep., EECS
Department, University of California, Berkeley, 1992.

[4] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean
reasoning for equivalence checking and functional property verification,”
IEEE Trans. CAD, vol. 21, pp. 1377–1394, 2002.

[5] P. Bjesse and A. Boralv, “DAG-aware circuit compression for formal
verification,” in IEEE/ACM ICCAD, 2004.

[6] A. Mishchenko and R. Brayton, “Scalable logic synthesis using a simple
circuit structure,” in Proc. IWLS, 2006.

[7] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting: a fresh look at combinational logic synthesis,” in Proc. DAC,
2006.

[8] A. T. Calvino, H. Riener, S. Rai, A. Kumar, and G. De Micheli,
“A versatile mapping approach for technology mapping and graph
optimization,” in ASP-DAC, 2022.

[9] Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Trans. on Computers, no. 8, pp. 677–691, 1986.

[10] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A new paradigm for logic optimization,” IEEE Trans. CAD, vol. 35,
no. 5, 2016.

[11] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Computer Aided Verification (T. Touili, B. Cook,
and P. Jackson, eds.), 2010.

[12] L. Benini and G. De Micheli, “A survey of Boolean matching techniques
for library binding,” ACM Trans. Design Autom. Electr. Syst., July 1997.

[13] S. Chatterjee, A. Mishchenko, and R. Brayton, “Factor cuts,” in
IEEE/ACM ICCAD, 2006.

[14] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,
2nd edition. USA: Oxford University Press, 2010.

[15] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “ASAP7: A 7-nm finFET predictive
process design kit,” Microelectronics Journal, 2016.

[16] P. Pan and C.-C. Lin, “A new retiming-based technology mapping algo-
rithm for LUT-based FPGAs,” in Proc. ACM/SIGDA Sixth International
Symposium on FPGA, 1998.

[17] R. Brayton and C. McMullen, “The decomposition and factorization of
boolean expression,” in Proc. ISCAS, 1982.

[18] “IWLS 2005 benchmarks.” http://iwls.org/iwls2005/benchmarks.html.
Accessed: 2022-11-21.

[19] F. Mailhot and G. DeMicheli, “Automatic layout and optimization of
static CMOS cells,” in Proceedings 1988 IEEE International Conference
on Computer Design: VLSI, 1988.

[20] V. N. Possani, V. Callegaro, A. I. Reis, R. P. Ribas, F. de Souza Marques,
and L. S. da Rosa, “Graph-based transistor network generation method
for supergate design,” IEEE Trans. VLSI Systems, 2016.

[21] T.-C. Lee, C.-Y. Yang, and Y.-L. Li, “ITPlace: Machine learning-based
delay-aware transistor placement for standard cell synthesis,” in Proc.
ICCAD, 2020.

[22] D. Lee, D. Park, C.-T. Ho, I. Kang, H. Kim, S. Gao, B. Lin, and C.-K.
Cheng, “SP&R: SMT-based simultaneous place-and-route for standard
cell synthesis of advanced nodes,” IEEE Trans. CAD, 2021.

