
INTEGRATION, the VLSI journal 89 (2023) 248–260

A
0

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

Accuracy recovery: A decomposition procedure for the synthesis of
partially-specified Boolean functions✩

Andrea Costamagna ∗,1, Giovanni De Micheli1

EPFL, Lausanne, 1015, Switzerland

A R T I C L E I N F O

Keywords:
Accuracy recovery
Partial specifications
Binarized Neural Networks
Disjoint support decomposition

A B S T R A C T

Logic Synthesis From Partial Specifications (LSFPS) is the problem of finding the hardware implementation of
a Boolean function from a partial knowledge of its care set. The elements missing from the specifications are
named don’t knows. The exact solution of LSFPS is the minimum size circuit of the corresponding problem in
which the don’t knows set is void. Hence, in addition to the traditional objective of size minimization, the goal
is to maximize the test accuracy, i.e., the accuracy of the circuit when evaluated over a subset of the don’t knows.
This problem is relevant because efficient solutions can lead to hardware friendly machine learning models, not
relying on black-box approaches. Indeed, LSFPS maps directly to the problem of the automatic generation of
optimized topologies for Binarized Neural Networks. Furthermore, combining the exact solution with modern
logic synthesis techniques would unlock unprecedented optimization capabilities. Previous works proved the
effectiveness of approximate logic synthesis (ALS) for designing circuits with high test accuracy. Nonetheless,
these methods sacrifice accuracy on the specifications, which banishes them from the legitimate candidates
for LSFPS. In this paper, we propose accuracy recovery, a procedure to map an approximate version of the circuit
to a new one that satisfies the exact functionality of the specifications. The proposed approach relies on an
extension of a disjoint support decomposition algorithm. Relative experiments on the IWLS2020 benchmarks
show that, on average, the addition of the designed decomposition to a synthesis flow reduces by 17.38% the
number of gates and by 12.02% the depth. The usage of accuracy recovery, based on such a decomposition,
yields a 95.73% accuracy in the binary MNIST problem, beating the state-of-the-art in ALS of 92.76%.
1. Introduction

Integrating machine learning in IoT devices is a crucial driver of
many technological advancements, including smart agriculture [1],
healthcare [2], and transportation [3]. Currently, computation occurs
mainly in the cloud, and bringing it to the edge would dramatically
reduce the energy consumption [4]. However, embedding logic in edge
devices is challenging due to resource constraints. Interestingly, some
machine learning tasks admit a formulation as a fundamental problem
in logic synthesis. Considering the extensive research done in logic
synthesis for high-performance systems [5], it is worth investigating its
potential role in devising hardware-aware machine learning techniques.

An incompletely specified Boolean function reads

𝐹 ∶ B𝑛 ↦ {0, 1, ∗}𝑚 (1)

✩ This work was supported in part by Synopsys Inc.
In this work, we discuss accuracy recovery: a logic synthesis-inspired methodology for the design of hardware-aware machine learning models.
∗ Corresponding author.
E-mail address: andrea.costamagna@epfl.ch (A. Costamagna).

1 All authors have contributed equally.

where 𝑛 is the number of inputs and 𝑚 is the number of outputs. The
care set of an output is the subset of B𝑛 whose image is 1 or 0. The com-
plement of the care set contains the don’t cares (∗), i.e., minterms whose
output can be chosen based on optimization purposes. Logic Synthesis
From Partial Specifications (LSFPS) introduces the additional concept of
don’t knows (?), i.e., minterms missing from the specifications. Then, a
partially-specified Boolean function reads

𝐹 ∶ B𝑛 ↦ {0, 1, ?, ∗}𝑚 (2)

Fig. 1 offers a pictorial representation of these concepts. LSFPS aims
at designing algorithms for inferring the don’t knows relationships from
the specifications. Ideally, the circuit synthesized from Eqs. (1) and (2)
should be the same. In practice, the information on the specifications
might not be sufficient for inferring the exact functionality, and the
goal becomes to maximize the accuracy over an available subset of
vailable online 26 December 2022
167-9260/© 2022 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.vlsi.2022.12.008
Received 2 October 2022; Received in revised form 3 December 2022; Accepted 22
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

December 2022

https://www.elsevier.com/locate/vlsi
http://www.elsevier.com/locate/vlsi
mailto:andrea.costamagna@epfl.ch
https://doi.org/10.1016/j.vlsi.2022.12.008
https://doi.org/10.1016/j.vlsi.2022.12.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2022.12.008&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Integration 89 (2023) 248–260A. Costamagna and G. De Micheli
Fig. 1. Representations of a partially specified Boolean function: truth table, cover,
and covers of the cofactors.

don’t knows. Under a machine learning lens, the partial specifications
correspond to the training set, and the subset of the don’t knows on which
we test the accuracy of the devised computing system corresponds to
the test set.

Partially-specified functions occur in supervised learning. The state-
of-the-art computing system is the Deep Neural Network (DNN), for
which it is desirable to realize dedicated hardware [6]. Efficient tools
can map the graph structure of DNNs to Boolean circuits, later op-
timized with digital design procedures [7]. However, the quality of
results has a bias originating from the initial topology, heuristically
imposed by the DNN architect. Therefore, there is a rising interest in
understanding which topology is best suited for hardware implemen-
tation [8]. Contrarily to black-box approaches, the goal is the design
of DNN topologies from data [9]. Binarized Neural Networks (BNN)
are DNNs with binary parameters. In BNNs, XNORs replace multiplica-
tions, yielding a superior energy efficiency of their implementation. Re-
cently, Constantinides proved that BNNs are functionally complete [8].
Therefore, they are good candidates for high-performance hardware
implementations. Due to the binary nature of the weights and the
presence of XOR operators, Xor-And-Inverter graphs (XAGs) [10] are in
one-to-one correspondence with BNNs. We investigate methods to syn-
thesize BNN-topologies from data as XAGs. Furthermore, for compar-
isons with existing works, we sometimes consider the representation as
another functionally complete representation: the And-Inverter-Graph
(AIG) [11].

LSFPS is also interesting per se. Indeed, it is the core problem
in simulation-guided resubstitution, a recently proposed optimization
strategy [12]. Currently, this algorithm is limited to optimizing sub-
networks with a limited input size. Hence, the exact solution of LSFPS
for higher numbers of inputs would unlock unprecedented optimization
opportunities. This application provides the first reason why to look for
models that are 100% accurate in the specifications. Indeed, 100% ac-
curacy on the training set is necessary for using the synthesis algorithm
in simulation-guided resubstitution.

Our work takes inspiration from the existing literature in Approxi-
mate Logic Synthesis (ALS). Indeed, traditionally, the supervised learning
problem is accounted among the error-resilient applications, and accu-
racy in the specifications is often sacrificed in favor of generalization.
Oliveira et al. [13] proposed two algorithms based on information
theory, namely MUESLI and FULFRINGE. While the former assembles
Boolean networks bottom-up, the latter is a decision tree decompo-
sition. Subsequently, Chatterjee designed a method for learning LUT
nodes in a randomly generated LUT network [14], and Boroumand
et al. [15] exploited it in a variation of the MUESLI algorithm. Finally,
the IWLS2020 benchmarks and the solutions proposed by the compet-
ing teams [16] constitute the main existing framework for evaluating
algorithms for LSFPS. Overall, the main findings of the aforementioned
works are the following:

1. Decomposition procedures are powerful strategies.
2. Circuits can be assembled one gate at a time.
3. No technique in literature is effective for all functions.
249
4. Many approaches use pruning to meet size constraints.
5. Many approaches have a black-box nature.

Therefore, the definition of an automatic synthesis method in ALS
remains an open problem.

The first contribution of this work is the generalization of a disjoint
support decomposition (DSD) algorithm to the LSFPS problem. Contrarily
to the existing literature, this method targets size minimization without
pruning. Furthermore, it does not rely on non-interpretable hyperpa-
rameters, i.e., it has not a black-box nature. The proposed procedure
combines properties of mutual information and an XAG decomposition.
We show that adding the proposed DSD procedure to a synthesis
technique improves its performance. On average, it reduces the size
by 17.31%, the depth by 11.81%, and increases the test accuracy by
1.11%.

The second contribution of this work is the definition of a technique
that we name accuracy recovery. We show that combining statistics-
based decompositions with existing ALS algorithms constitutes a sys-
tematic way of assembling Boolean networks. The resulting networks
are 100% accurate in the training set. From a supervised learning
perspective, the 100% accuracy in the specifications is valuable in light
of Chatterjee’s analysis of the role of memorization in learning [14].
Furthermore, this feature makes the algorithm applicable to traditional
logic synthesis. We show that by leveraging the concept of accuracy
recovery, it is possible to achieve 95.73% test accuracy in the binary
MNIST problem, beating the ALS state-of-the-art of 92.76%.

The rest of this paper is structured as follows. Section 2 presents
the relevant background. Section 3 describes our DSD algorithm for
partially-specified functions and the concept of accuracy recovery. Sec-
tion 4 shows experimental results. Section 5 concludes the paper.

2. Background

Given 𝐹 ∶ B𝑛 ↦ {0, 1, ∗}, its support 𝐹 = {𝑋𝑖}𝑛−1𝑖=0 is the set of
variables on which 𝐹 depends. In this paper, we represent Boolean
functions as covers, i.e., lists of inputs/output patterns in the care set.
We study algorithms to synthesize multilevel networks from Boolean
covers.

2.1. Top-down synthesis techniques

This subsection reviews decomposition strategies for the synthesis
of Boolean functions

2.1.1. Shannon decomposition
Given a function 𝐹 and a variable 𝑋𝑖 ∈ 𝐹 , the Shannon Decompo-

sition (SD) of 𝐹 is

𝐹 = 𝑋𝑖 ⋅ 𝐹𝑥𝑖 +𝑋′
𝑖 ⋅ 𝐹𝑥′𝑖

≐ 𝚒𝚝𝚎(𝑋𝑖, 𝐹𝑥𝑖 , 𝐹𝑥′𝑖
) (3)

Where 𝐹𝑥𝑖 (𝐹𝑥′𝑖
) is the positive (negative) cofactor of 𝐹 , i.e., the function

of domain 𝐹 ∖𝑋𝑖 whose cover is the sub-cover of 𝐹 , identified by
𝑋𝑖 = ⊤ (𝑋𝑖 = ⊥). When the variable is explicitly stated, we use the
notation 𝐹1 ≐ 𝐹𝑥𝑖 and 𝐹0 ≐ 𝐹𝑥′𝑖

.

2.1.2. Disjoint support decomposition
Performing the DSD of a function 𝐹 corresponds to identifying a set

of functions = {𝐴𝑖}𝑚𝑖=1 (𝑚 < 𝑛) with disjoint supports and a function
𝐺 such that

𝐹 () = 𝐺() (4)

When a truth table is available, such a decomposition can be obtained
by applying two procedures until convergence: top-decomposition and
bottom-decomposition[17,18]. Fig. 2 shows the representation of the
local topological choices resulting from the considered decompositions.

Integration 89 (2023) 248–260A. Costamagna and G. De Micheli
Fig. 2. Possible decompositions of a Boolean function.

Top-decomposition:. The top-decomposition identifies when the depen-
dence of 𝐹 on a variable 𝑋𝑖 is of type

𝐺 = 𝑋𝑖 ⊙ 𝑇 (∖𝑋𝑖) (5)

with ⊙ indicating a 2-input function. Hence, all possible top-decompos-
itions can be obtained by listing the special cases of the SD yielding the
functional form of Eq. (5):

1. 𝐹1 = ⊤: 𝐹 = 𝑋𝑖 +𝑋′
𝑖 ⋅ 𝐹0 ⇒ 𝐺 = 𝑋𝑖 ∨ 𝐹0;

2. 𝐹1 = ⊥: 𝐹 = 𝑋′
𝑖 ⋅ 𝐹0 ≐ 𝑋𝑖 < 𝐹0 ⇒ 𝐺 = 𝑋𝑖 < 𝐹0;

3. 𝐹0 = ⊤: 𝐹 = 𝑋′
𝑖 + 𝐹1 ≐ 𝑋𝑖 ≤ 𝐹1 ⇒ 𝐺 = 𝑋𝑖 ≤ 𝐹1;

4. 𝐹0 = ⊥: 𝐹 = 𝑋𝑖 ⋅ 𝐹1 ⇒ 𝐺 = 𝑋𝑖 ∧ 𝐹1;
5. 𝐹1 = 𝐹 ′

0 : 𝐹 = 𝑋′
𝑖 ⋅ 𝐹0 +𝑋𝑖 ⋅ 𝐹 ′

0 ⇒ 𝐺 = 𝑋𝑖 ⊕ 𝐹0.

In these cases, we say that the function is top-decomposable.

Bottom-decomposition:. Suppose that two variables 𝑋𝑖 and 𝑋𝑗 influence
𝐹 uniquely through a 2-input function:

𝐺 = 𝐵(𝑋𝑖 ⊙𝑋𝑗 ,∖{𝑋𝑖, 𝑋𝑗}) (6)

Let us introduce the simplified notation for the cofactors: 𝐹00 ≐ 𝐹𝑥′𝑖𝑥
′
𝑗
,

𝐹01 ≐ 𝐹𝑥′𝑖𝑥𝑗
, 𝐹10 ≐ 𝐹𝑥𝑖𝑥′𝑗

and 𝐹11 ≐ 𝐹𝑥𝑖𝑥𝑗 . For Eq. (6) to be true, one of
the following conditions must hold

1. 𝐹00 ≠ 𝐹01 = 𝐹10 = 𝐹11: 𝐺 = 𝚒𝚝𝚎(𝑋𝑖 +𝑋𝑗 , 𝐹11, 𝐹00);
2. 𝐹01 ≠ 𝐹00 = 𝐹10 = 𝐹11: 𝐺 = 𝚒𝚝𝚎(𝑋𝑖 < 𝑋𝑗 , 𝐹01, 𝐹10);
3. 𝐹10 ≠ 𝐹00 = 𝐹01 = 𝐹11: 𝐺 = 𝚒𝚝𝚎(𝑋𝑖 ≤ 𝑋𝑗 , 𝐹01, 𝐹10);
4. 𝐹11 ≠ 𝐹00 = 𝐹10 = 𝐹01: 𝐺 = 𝚒𝚝𝚎(𝑋𝑖 ⋅𝑋𝑗 , 𝐹11, 𝐹00);
5. 𝐹00 = 𝐹11, 𝐹10 = 𝐹01: 𝐺 = 𝚒𝚝𝚎(𝑋𝑖 ⊕𝑋𝑗 , 𝐹01, 𝐹00).

The comparison of all variable pairs guarantees the detection of bottom-
decomposability and its exploitation.

2.2. Statistical quantities in Boolean functions

Let 𝑋 ∈ B𝑛 be a Boolean random variable having as probability
mass function 𝑝𝑋 (⋅). Its Shannon entropy is

𝐻(𝑋) ≐ −
∑

𝑥∈B⋉
𝑝𝑋 (𝑥) log2 𝑝𝑋 (𝑥) (7)

It quantifies the uncertainty on the value taken by the variable. Given
another Boolean random variable 𝐹 ∈ B𝑚, mutual information originates
from entropy as

𝐼(𝑋;𝐹) = 𝐻(𝐹) −𝐻(𝐹 |𝑋) (8)

It is a measure of the reduction in uncertainty on the target variable
𝐹 , given the knowledge of 𝑋. In this work, we use 𝐹 to indicate
the Boolean variable associated with the output. Instead, we use the
250
Fig. 3. From left to right: cube representation of a three variables function; augmented
Boolean space considering 𝐹 as a variable and labeling each point with the empirical
probability of appearance; projection along 𝑋 = (𝑋0 , 𝐹).

variable 𝑋 ∈ B𝑛 to describe any 𝑛 nodes in the network, possibly
including inputs and output.

Fig. 3 shows how to extract the probability mass function for the
variable 𝑋 = (𝑋0, 𝐹) ∈ B2. In words, we use the empirical frequency as
an estimator of the probability.

2.3. Decomposition from partial specifications

Our work takes also inspiration from the methodologies presented
in the IWLS2020 contest [16]. TEAM 8 proposed a variation of the
C4.5 decision tree learning algorithm [19], adapted for ALS. They
assemble a decision tree by splitting over the variable maximizing
mutual information. If mutual information is lower than a threshold
for all the variables, they perform single variable splitting. This is to say
that they branch for the features such that, after splitting, either of the
following conditions is satisfied:

1. At least one branch is constant.
2. One branch is the complement of the other.

These conditions are strictly related to the top-decomposability condi-
tion discussed in Section 3.3. As far as the second one is concerned,
a rigorous procedure would require to compare all possible minterms
in the specifications of the remainder functions. However, the function
is partially-specified, and an exhaustive test is often impossible. The
policy of TEAM 8 was to consider the condition as satisfied, provided
the absence of any counterexample.

TEAM 8 also proposed a connection between decision tree decom-
positions and Espresso Minimizer [20]. They noticed that Espresso
exploits don’t cares by expanding the minterms in the SOP. The possi-
bility to expand a minterms depends on whether the function presents
the so called nearest neighbor property. Decision trees also leverage this
property by making cuts in the input space. For this reason, they claim
that neither Espresso nor decision trees are able to learn a logic function
from a partial truth table if the nearest neighbor property does not
hold. Our work investigates ways to go beyond the nearest neighbors
limitation while using a decomposition procedure for the synthesis.

2.4. Bottom-up synthesis techniques

This section presents ALS algorithms for the synthesis of Boolean
networks. Each algorithm generates the netlist by adding one gate at
a time. Furthermore, all the algorithms require two steps: a support
selection criterion and a gate generation method. The node addition
continues until termination. The final output of the approximate circuit
is the node whose simulation pattern is closer to the one of the target.

Integration 89 (2023) 248–260A. Costamagna and G. De Micheli
Fig. 4. MUESLI for 𝐹 = 𝑋0𝑋1 +𝑋2𝑋3𝑋4. Since we cannot find any two-input function
having 𝑋5 in the support, we increase the pointer. In this case, 𝑋2𝑋3 enters the netlist.

2.4.1. Muesli
MUESLI is a bottom-up ALS technique relying on mutual informa-

tion [13]. The selection procedure requires filling an active list 𝐴 =
(𝐴1, 𝐴2,…) recursively

𝐴𝑘 = arg max
𝑋𝑖∉𝐴

𝐼(𝐴1,… , 𝐴𝑘−1, 𝑋𝑖;𝐹) 𝐴0 = ∅ (9)

Next, a pointer starts from the most informative variable 𝑋∗. Given
the desired support size ||, the algorithm looks for the remaining
|| − 1 variables with which it is possible to synthesize the node that
best approximates the target function. In the original algorithm, the
node creation method employs the Kernighan–Lin algorithm [21]. If
replacing 𝑋∗ in the active list with the candidate node satisfies a
heuristic criterion, the node is accepted. Otherwise, we increment the
pointer. Fig. 4 presents two steps of an example. For more details, we
refer to the seminal paper [13].

The main limitation of this method is scalability. Indeed, filling
the active list and exploring potential new nodes requires multiple
passes over the specifications. Furthermore, the rigorous application of
MUESLI requires the new-nodes support size to be || = 2. Finally, the
non-scalability limits the possible size of the nodes list, which, in turn,
compromises the accuracy of the synthesized circuit.

2.4.2. Random 𝑘-LUT network
Chatterjee investigated the possibility of achieving high test accuracy

by memorizing the specifications in a random network of 𝑘-inputs look-
up tables (k-LUTs) [14]. We refer to the method as kLUTNET. The
method is agnostic of size minimization, and he observed that such a
model shares with DNNs the accuracy performance benefits resulting
from increasing the depth. This technique is scalable since the support
selection criterion is a random sampling of the nodes, removing the
need for expensive heuristics. As far as node creation is concerned, the
method considers all possible 2𝑘 minterms for the support variables
 = (𝑋𝑠(1),…𝑋𝑠(𝑘)), corresponding to the input patterns that can appear
at the inputs of the 𝑘-LUT. Each minterm can occur multiple times
in the specifications, and each maps to an output value. The idea is
to define two integers, 𝐶𝑚

0 and 𝐶𝑚
1 , counting the number of times the

output is 0 or 1 for minterm 𝑚. Next, the method sets the output value of
the 𝑘-LUT to the most frequently appearing value, and ties are broken
by randomly selecting the bit-value. Fig. 5 shows the steps leading to
a node creation.

The limits of this approach are that despite the goal being to mem-
orize the specifications, achieving 100% accuracy on the specifications
requires unpredictably deep topologies. Furthermore, when the size of
the 𝑘-LUT networks is small, say 2, adding informative new nodes can
become less likely. For instance, in the case of complete specifications,
no random 2-LUT network can find the 2-inputs AND gates for a
functions such as 𝐹 = 𝑋0𝑋1𝑋2𝑋3. In Section 3.1 we discuss how to
overcome this limitation.
251
Fig. 5. Random k-LUT generation for 𝐹 = 𝑋0𝑋1 + 𝑋2𝑋3𝑋4. We derive the counters
for the randomly sampled support. Next, we insert the gate better approximating the
target.

2.4.3. Modified Muesli
The method devised by Boroumand et al. [15] extends MUESLI to

higher numbers of support variables. The variables considered for the
support are a contiguous set of variables in the active list, starting from
the one indicated by a pointer. Hence, this method corresponds to a 𝑘-
LUT network assembly in which a MUESLI-inspired heuristic replaces
the random selection of the support variables.

3. Synthesis from partial specifications

This section contains the contributions of the paper. Section 3.1
discusses the technique we devised for nodes generation in the investi-
gated ALS algorithms. Section 3.2 presents the analytical considerations
motivating both the methods and the experiments (Section 4). Sec-
tion 3.3 discusses the decomposition technique at the basis of all the
proposed synthesis methods. Finally, Section 3.4 introduces the concept
of accuracy recovery and its usage to map approximate logic into circuits
that meet the specifications.

3.1. Node creation criterion for 2-LUTs

This work targets the synthesis of XAGs due to their role in BNNs.
More precisely, we consider 2-LUT networks, but these models are in
one-to-one correspondence with XAGs. For some functions, Chatterjee’s
node creation might be incapable of finding good nodes for 2-LUT
networks. An example is 𝐹 = 𝑋0𝑋1𝑋2𝑋3. On the other hand, the
limited number of 2-inputs functions makes it doable to explore more
nodes. We equipped the previously discussed ALS algorithms with a
modified version of the node creation method. Fig. 6 shows an example
of the approach.

Given two selected support variables, we consider all their possible
minterms (00, 01, 10, and 11). In Fig. 6, the variables are 𝑋3 and 𝑋2.
For each minterm 𝑚, the counters 𝐶𝑚

1 and 𝐶𝑚
0 report the number of

times the output is 1 or 0, as in Chatterjee’s case. If the cofactor of
the function for a minterm is a tautology/contradiction, we fix the
corresponding LUT bit to 1/0. In the example, this happens for the
minterm 11. Next, we enumerate all possible functions obtainable by
varying the output bit for the remaining minterms. In the example, this
results in 8 possible functions. To each function, we associate a number,
measuring its degree of correlation with the output. This number is the
sum of the number of appearances of each minterm-output pair.

In the example, Chatterjee’s method would select the contradiction
function with 50% probability. Instead, we ignore trivial functions
such as �̃�(𝑋𝑖, 𝑋𝑗) = 𝑋𝑖, 𝑋′

𝑖 , ⊤, ⊥. Furthermore, we sort the nontrivial
functions based on their degree of correlation. Finally, we store the list
of candidate nodes, keeping a pointer to the most correlated one not yet
used. If we introduce the node in the netlist, we increment the pointer.
Compared to the previously discussed methods, this approach allows
us to introduce multiple nodes for the same support. Furthermore, this

Integration 89 (2023) 248–260A. Costamagna and G. De Micheli
Fig. 6. Nodes creation method. We store the non-trivial candidate nodes in a list sorted
by correlation with the output.

Fig. 7. Invariance of mutual information by input negation.

heuristic extends the idea of selecting nodes based on similarity with
the output [14].

In a random 𝑘-LUT network, adding redundant nodes introduces
buffers and inverters at the next layer. These nodes can be helpful when
the nodes selection criterion proceeds in a layer-by-layer fashion, such
as in the cases investigated in the seminal work. As we will see in the
following sections, it makes sense to add non-redundant nodes to use
node creation uniquely to introduce new information.

3.2. Analytical considerations

Mutual information is suitable for quantifying the mutual depen-
dence of the support variables and the output during synthesis. To
motivate its usage in the algorithms, and the proposed experiments,
let us start with the following claim:

Claim 1. Consider two Boolean functions 𝐹 ,𝐺 ∶ B𝑛 ↦ B, and two subsets
of their support 𝑋 ⊆ 𝐹 , �̃� ⊆ 𝐺. If there is an inputs/output negation
𝛾 ∶ (𝐹 , 𝐹) ↦ (𝐺 , 𝐺), and �̃� = 𝛾(𝑋), then 𝐼(𝑋;𝐹) = 𝐼(�̃�;𝐺).

Fig. 7 shows an example of this property in the special case in which
the subset of the support is a unique variable. We prove this claim in
Appendix A.

Two Boolean functions 𝐹 ,𝐺 ∶ B𝑛 ↦ B are NPN equivalent if they can
be obtained from each others by means of an inputs/output negation
and/or an inputs permutation. Each NPN class is identified by one such
function, named representative. Claim 1 directly implies the following:

Claim 2. Consider two NPN-equivalent Boolean functions 𝐹 ,𝐺 ∶ B𝑛 ↦ B.
For each variable 𝑋𝑖 in the support of 𝐹 , there is a variable 𝑋𝑗 in the support
of 𝐺 such that 𝐼(𝑋𝑖;𝐹) = 𝐼(𝑋𝑗 ;𝐺).

These claims are the basis of the devised methods for determining
if a function is disjoint-support-decomposable.
252
3.2.1. Top-decomposition
Suppose that a topological structure depends uniquely on the analy-

sis of a variable 𝑋𝑖 that maximizes 𝐼(𝑋𝑖;𝐹). Then, for all the functions
𝐺 that are NPN-equivalent to 𝐹 , the same structure emerges from the
analysis of the corresponding variable 𝑋𝑗 that maximizes 𝐼(𝑋𝑗 ;𝐺). We
use this result both theoretically and experimentally.

Claim 3. Consider a function 𝐹 that is top-decomposable in 𝑋𝑖: 𝐹 =
𝑋𝑖 ⊙ 𝑇 (𝐹 ∖𝑋𝑖). For any variable 𝑋𝑗 ∈ 𝐹 ∖𝑋𝑖

𝐼(𝑋𝑖;𝐹) ≥ 𝐼(𝑋𝑗 ;𝐹)

The proof of this claim is in Appendix B. Intuitively, if Eq. (5) holds,
the top-decomposable variable alone contains as much information as a
more complicated function of the others. Hence, its mutual information
cannot be lower than the highest among the remaining variables.

3.2.2. Bottom-decomposition
In Appendix C, we prove the following claims:

Claim 4. Consider a function 𝐹 that is bottom decomposable in �̃� =
𝑋𝑖 ⊙𝑋𝑗 . Then, 𝐼(𝑋𝑖;𝐹) = 𝐼(𝑋𝑗 ;𝐹).

Claim 5. Consider a function 𝐹 that is bottom decomposable in �̃� =
𝑋𝑖 ⊙𝑋𝑗 . Then, 𝐼(𝑋𝑖, 𝑋𝑗 ;𝐹) = 𝐼(�̃�;𝐹).

Claim 4 states that the variables are equally informative. Claim 5
indicates that the new node contains the same information as the
variables 𝑋𝑖 and 𝑋𝑗 combined.

3.3. Information theory-based disjoint support decomposition

In this section, we generalize a DSD procedure to LSFPS. The driving
idea is to leverage the results reported in Section 3.2 to detect the
presence of a DSD condition. When the identification is correct, the
resulting circuit is closer to the ideal one, increasing the test accuracy.
Furthermore, DSD targets reducing the size of the circuit, making it a
natural choice as the synthesis algorithm.

3.3.1. Structure of the algorithm
Algorithm 1 is the proposed synthesis technique for

partially-specified functions that integrates the don’t knows-based DSD
decomposition. Three exit conditions are possible, corresponding to the
cases in which all output values are ones (⊤), all output values are
zeros (⊥), or the support size is smaller than max_sup and Chatterjee’s
method can be applied to find a termination node.
Algorithm 1 signal ← Decomposition(, 𝐹)
1: if (𝐹 = ⊤) then
2: return 1
3: else if (𝐹 = ⊥) then
4: return 0
5: else if (|| ≤ max_sup) then
6: return Chatterjee method (, 𝐹)
7: 𝑥 ← choose variable 𝑋 from
8: if (is top-decomposable (𝑋, , 𝐹 , ⊙)) then
9: return 𝑥⊙Decomposition (, 𝐹)

10: else if (is bottom-decomposable (, 𝐹)) then
11: return Decomposition (, 𝐹)
12: 𝑓0 ← Decomposition (∖𝑋,𝐹0)
13: 𝑓1 ← Decomposition (∖𝑋,𝐹1)
14: return 𝑥 ⋅ 𝑓1 + 𝑥′ ⋅ 𝑓0

First, the algorithm tries to perform a top-decomposition step on the
selected variable. In Section 3.3.2 we motivate why, in line with previ-
ous studies [13,16], the maximization of mutual information is an ef-
fective selection criterion. In case of success, is top-decomposable
has also updated the cover, on which we can recursively apply the

Integration 89 (2023) 248–260A. Costamagna and G. De Micheli
Fig. 8. Refinements of the recursion step. DK-SD performs mutual information
maximization. DK-TSD also checks if there is a basic top-decomposability {∧,∨, <,≤}.
The function on the left is top-and-decomposable and the algorithm would recur. DK-
XTSD verifies if there is top-xor-decomposability. DK-DSD adds new nodes based on
their information content.

decomposition method. In case of failure, the algorithm attempts a
bottom-decomposition step. If is bottom-decomposable returns
true, it has also updated the cover and the algorithm calls the recur-
sive procedure. Finally, if none of the previous conditions occurs, the al-
gorithm uses the selected variable to perform a Shannon decomposition
step.

If we ignore lines 8 to 11 in Algorithm 1, and the selection criterion
(line 7) is to take the first variable in the support, the procedure
corresponds to a Shannon decomposition (SD). Instead, a powerful
variable selection criterion is to take the variable maximizing mutual
information. In this latter case, we say that the decomposition is don’t
knows-aware (DK-SD). With the further addition of lines 8 to 9, the
method becomes a top-decomposition. We distinguish two cases: the
one in which the XOR is not considered (DK-TSD), and the one in
which it is considered (DK-XTSD). Finally, the further addition of lines
10 to 11 yield the don’t knows-aware DSD (DK-DSD). Fig. 8 summarizes
the key elements of each recursive step.

3.3.2. Top-decomposition
In Algorithm 1, we first check if the function is top-decomposable

in variable 𝑋. If this is the case, both the support and the cover
are updated, and ⊙ contains the detected 2-input function. Thanks to
Claim 3, we test the top-decomposition condition only on the variable
maximizing mutual information. This choice is advantageous since,
given a cover for 𝑛 variables, it saves 𝑛− 1 cofactors computations and
comparisons at each new call of Algorithm 1. Cases 1 to 4 listed in
Section 2.1.2 amount to check if one of the cofactors is a tautology or
a contradiction.

Detecting the top-xor-decomposition is more delicate. When dealing
with a truth table, the input patterns of the two cofactors coincide, and
the comparison is trivial. On the contrary, given partial specifications,
these sets might even be non-intersecting. Let us now assume that we
treat all the don’t knows as don’t cares. This choice would be prone
to errors since, in the case of void intersection, the algorithm could
perform a top-xor-decomposition that correctly synthesize the partial
specifications but is unrelated to the Boolean structure of the function.

Let 0 and 1 be the sets of input minterms defining the sub-
covers of 𝐹0 and 𝐹1. The number of inputs/output patterns they store is
𝑁0= |0| and 𝑁1= |1|. Finally, let 𝑛 be the number of input variables
of the original cover. If for all intersecting patterns it holds that 𝐹0 = 𝐹 ′

1 ,
the goal is to verify if the size of the intersection 𝑁∩ = |0 ∩1|, is
sufficiently large to conclude that the function it top-xor-decomposable.
Assuming a uniform sampling from B𝑛, the probability of 𝑘 intersections
is

𝑃𝑈
𝑘 = P(𝑁∩ = 𝑘) =

(2𝑛−1
𝑘

)(2𝑛−1−𝑘
𝑁0−𝑘

)(2𝑛−1−𝑁0
𝑁1−𝑘

)

(2𝑛−1)(2𝑛−1)
(10)
253

𝑁0 𝑁1
From 𝑃𝑈
𝑘 we compute the standard deviation 𝜎, that we take as an

uncertainty measure for the number of intersections. Then, we check
two conditions:

1. More than one intersection is present, i.e., 𝑁∩ > 1.
2. The probability that the number of intersections is larger than

𝑁∩ is negligible. For a given 𝜖, e.g., 0.001, and considering
fluctuations, ∑𝑁∩+⌈𝜎⌉

𝑘=0 𝑃𝑈
𝑘 ≥ 1 − 𝜖.

Therefore, if 𝐹0 = 𝐹 ′
1 for all intersecting patterns and both conditions

hold, 𝐹 is assumed to be top-xor-decomposable. This heuristic is a
statistically driven filtering criterion. It limits the number of top-xor-
decompositions by filtering out cases that are unlikely to result in
accurate implementations.

So far, we assumed a uniform sampling over the entire Boolean
space. However, portions of the Boolean space might be don’t cares.
In Appendix D, we show that 𝑃𝑈

𝑘 underestimates the intersection prob-
ability. Consequently, if the uniform sampling approximation satisfies
the filter, so does the care-set-based sampling.

3.3.3. Bottom-decomposition
Analogously to the top-xor-decomposition, the bottom-decompos-

ability conditions listed in Section 2.1.2 require the comparison of
partial covers. Again, a viable approach is to treat the don’t knows
as don’t cares. Nonetheless, the same consideration given for the top-
xor-decomposition motivates why this approach results in suboptimal
implementations. Hence, we devised a don’t knows-aware detection
strategy of the bottom-condition leveraging mutual information.

To perform a bottom-decomposition step, we must first check
whether Eq. (6) is valid for at least a pair of variables (𝑋𝑖, 𝑋𝑗). Thanks
to Claim 4 we can focus on the variable pairs that are equally infor-
mative. This observation considerably reduces the number of compu-
tations needed. For each such pair, we use our node creation criterion
(Section 3.1) to obtain a list of candidate nodes �̃� = 𝑋𝑖 ⊙𝑋𝑗 . Claim 5
identifies another necessary condition for bottom-decomposability.
Therefore, we only consider the candidate nodes satisfying 𝐼(�̃�;𝐹) =
𝐼(𝑋𝑖, 𝑋𝑗 ;𝐹). Notice that, in the worst case, we need to consider a
number of pairs which is quadratic in the number of nodes. Therefore,
it is preferable to avoid introducing variables if not needed. For this
reason, we only add the candidate node �̃� if it has the highest mutual
information among all of the variables in the netlist, and among all of
the other candidates. At the next iteration, we branch on this variable.
This criterion gives a guarantee on the convergence of the algorithm.

DK-DSD relies on the estimation of the probability mass function of
each variable from the data. This estimation is possible independently
of the completeness of the specifications. However, the estimation of
the probabilities influences the results, and the equalities in Claims 4
and 5 might fail due to the impossibility of estimating the exact
probability measure. Therefore, we propose a relaxed version of the
technique that we name DK-RDSD, in which we accept that Claims 4
and 5 are satisfied up to a confidence interval.

3.3.4. Time complexity and model complexity
Fig. 8 highlights that the algorithms discussed so far are progressive

refinement of a unique strategy. Let 𝑛 be the number of variables in
the netlist and 𝑁 the number of input–output patterns in the spec-
ifications. In Appendix E, we show that 𝑇𝙳𝙺−𝚇𝚃𝚂𝙳(𝑛,𝑁) = 𝑂(𝑛𝑁) and
𝑇𝙳𝙺−𝙳𝚂𝙳(𝑛,𝑁) = 𝑂(𝑛2𝑁). The more we refine the method, the higher is
the computational complexity.

To motivate the subsequent sections, we discuss the relationship
between the algorithmic refinements and the complexity of the result-
ing model. Fig. 8 shows a result that we will discuss in Section 4.2.1.
The more we refine the strategy, the more we increase the analytical
information on the function. Such information has the twofold benefit
of increasing test accuracy and reducing the network size.

Despite the superior performances of 𝙳𝙺 − 𝙳𝚂𝙳, computing new fea-
tures on the fly results in an algorithm that is not scalable, and a better

Integration 89 (2023) 248–260A. Costamagna and G. De Micheli
Fig. 9. Example of accuracy recovery on top of MUESLI. textttMUESLI generates
the black circuit. Next, the decomposition introduces the blue portion of the circuit,
recycling existing nodes to synthesize the function.

approach should be based on 𝙳𝙺 − 𝚇𝚃𝚂𝙳. We propose accuracy recovery,
which is based on decoupling the two procedures: first we augment the
inputs with engineered features; then we use the fastest decompositions
on the new set of variables to complete the synthesis.

3.4. Accuracy recovery

Previous works in LSFPS claim that approximations are beneficial
for increasing the test accuracy [16]. However, empirical practices and
theoretical results in machine learning show that 100% accuracy on
the specifications can lead to high test accuracy [22]. Our goal is to
design an algorithm for synthesizing BNNs from data. Hence, we focus
on the models capable of memorization. Furthermore, memorizing the
specifications is necessary for using the algorithm in traditional logic
synthesis, in which we must preserve the functionality. This section
introduces accuracy recovery, a procedure leveraging decomposition
techniques (Section 3.3) to map an approximate circuit to a new one,
memorizing the specifications. The approximate circuit provides new
features, and the decomposition strategy automatically selects the most
informative ones among them.

3.4.1. Bridging approximate logic and memorization
ALS methods introduce informative nodes, greedily selected based

on the target function. The resulting circuit is a reservoir of nodes, that
is often an approximate circuit. We employ the previously discussed
decomposition technique to bridge the gap between approximate syn-
thesis and synthesis of the exact functionality. We ignore the bottom
decomposition step due to its computational cost. In principle, the
bottom-up assembly can substitute it. In the experimental section, we
show that this technique can improve the quality of results of existing
ALS techniques.

The direct application of the decomposition procedure on the ap-
proximate network can result in a size explosion due to a sub-optimal
re-usage of resources. To obtain a size-aware decomposition, we assign
a cost to each node. We define the cost as the number of gates in
its transitive fan-in. When using a node for the synthesis, we set the
cost of that node and its transitive fan-in to zero. Then we update the
weights in the network. In this way, every time there is a tie of mutual
information, the selection of the variable with minimum cost enables
prioritizing the re-usage of resources rather than creating redundant
circuitry. Fig. 9 presents an example of the use of MUESLI with our
node creation strategy (Section 3.1), and followed by the accuracy
recovery step. While MUESLI could only achieve a 75% accuracy on
the target, accuracy recovery establishes the exact functionality while
leveraging the precomputed circuitry.

Accuracy recovery is reminiscent of the emerging field of hyper-
dimensional computing [23]. Such a field is promising for designing
machine learning models in resource-constrained environments [24].
254
Fig. 10. Forest-like decomposition preserving memorization. We generate a set of sub-
specifications and we synthesize a circuit for each sub-problem. The final model is a
majority voter capable of memorizing the specifications.

3.4.2. Multiple-output decomposition and forests
The statistical exploration of the available nodes for identifying

candidate variables for the decomposition has a natural application
in the synthesis of multiple-output functions. Indeed, synthesizing the
sub-network for an output introduces newly available nodes in the
system. Then, while synthesizing another output, the method can prefer
logic sharing rather than synthesizing similar functions multiple times.
Recycling pre-synthesized logic makes it possible to target logic sharing
among the outputs. The discussion of the multiple-output case is out of
the scope of this paper, and the strategies developed will be deepened
in future works. However, it is interesting to see how we can apply this
idea to a forest-like decomposition [25].

Fig. 10 represents the procedure. We split the specifications and em-
ploy the decomposition strategy to synthesize one sub-specification at a
time. While synthesizing one of the sub-networks, the circuitry assem-
bled during the previous decomposition steps is available for re-usage.
Finally, we can combine the sub-networks outputs by using a majority
function. We considered the case of 3 and 5 sub-networks. Note that
each sub-network memorizes the associated portion of specifications.
We call this model for VOTER-k. Note that the network in Fig. 10
memorizes the specification. Indeed, each input–output relationship is
covered by the majority of the sub-specifications.

4. Experiments

Section 4.1 presents the experimental evidence of the analytical
claims used in this research. Section 4.2 discusses the results obtained
on the IWLS2020 benchmarks. Finally, Section 4.3 compares our ap-
proach with the ALS state-of-the-art on the binary MNIST classification
problem.

4.1. Analytical considerations

4.1.1. Don’t knows and don’t cares
In this paper, we distinguish don’t knows from don’t cares. In logic

synthesis, the don’t care is a powerful degree of freedom that en-
ables improving the optimization quality. Despite being conceptually
different from a don’t know, it is worth comparing the accuracy of
the circuit obtained by treating the missing patterns as don’t cares or
don’t knows. Indeed, previous works claim that decomposition strategies
might be effective uniquely on functions presenting the nearest neighbors
property [16]. This is because of the similarity between the splitting
criterion of decompositions and the concept of expansion in don’t cares-
based synthesis techniques. Fig. 11 shows the result of the comparison.
Each point of the 𝑥-axis is the representative function of one of the
222 4-inputs NPN classes. Claim 1, 2 and 3 legitimate us to limit the
analysis to this subset of functions. Given the truth table of each such
representative, we sweep over all possible numbers of inputs/output
relations 𝑁𝑒 = 0,… , 16 that could be missing. The number of ways
we can choose the 𝑁 patterns to erase is

(16). We uniformly sample
𝑒 𝑁𝑒

Integration 89 (2023) 248–260A. Costamagna and G. De Micheli
Fig. 11. Accuracy of the synthesized circuit averaged over an ensemble of partially-
specified synthesis problems. Comparison of Espresso Minimizer, DK-XTSD and of
accuracy recovery over the complete set of 2-inputs functions of the inputs.

Fig. 12. Qualitative explanation of the difference between don’t know-based and don’t
care-based synthesis: While both rely on the concept of implicants expansion, don’t
knows-awareness dictates more cautious choices.

min(20,
(16
𝑁𝑒

)

) specifications among them. Given such ensemble of vari-
ations of the specifications we apply three synthesis techniques. The
first one is Espresso Minimizer [20], which is don’t cares-based. The
second approach is DK-XTSD. The third approach is accuracy recovery
over a set of variables which augments the input set. The additional
variables are all possible two-input functions we can define using any
pair of inputs. We call this method projection because the procedure
maps the input space into a higher dimensional Boolean space. Overall,
the don’t knows-aware decomposition methods achieve higher accuracy,
showing that the don’t knows-aware technique is more suitable than
don’t care-based approaches for LSFPS. The reason for this is twofold.
On the one hand, the possibility of detecting the top-xor-decomposition
goes beyond the nearest neighbor ’s property. On the other hand, a don’t
care-based optimizer will expand the cover over the missing pattern
whenever this can lead to an optimization benefit. Instead, the don’t
knows-awareness limits the expansion to the cuts statistically selected
from the data. Fig. 12 shows an example of the Boolean cover obtained
using Espresso minimizer and DK-XTSD. Finally, we notice that the
accuracy benefits from projecting the inputs into higher dimensional
spaces. Accuracy recovery succeeds in automatically selecting useful
variables during synthesis.

4.1.2. Top-decomposability and mutual information
To numerically validate Claim 3, we consider three cases of interest

for proving it (see Appendix A): top-xor-decomposable functions (⊕),
top-and-decomposable functions (∧) and top-le-decomposable functions
(≤). We consider a representative for every NPN-4 class. For each
2-inputs gate characterizing the top-decompositions, we create a top-
decomposable function in a fifth variable 𝑋4. Figs. 13(a), 13(b),
and 13(c) show that the mutual information of 𝑋4 always satisfies
Claim 3. This analysis confirms the statement for completely specified
functions. However, it remains to extend the claim to the case of partial
specifications.
255
Fig. 13. Comparison of the mutual information of the variable in 4-inputs
top-decomposable functions.

We numerically verify that maximizing mutual information remains
an efficient filtering criterion for identifying the top-decomposable
variable, even with don’t knows. We repeat the previous experiment on
functions having a smaller support size. We consider the representatives
of the NPN-3 classes. For each representative, we define a top-xor-
decomposable function in a 4th variable, and for each number of
erasable patterns 𝑁𝑒 = 0,… , 16, we consider all the possible

(16
𝑁𝑒

)

ways of erasing them. We use the method devised in Section 3.3.2 to
classify the variable as top-xor-decomposable or not. Fig. 14 shows the
average result for each function and each 𝑁𝑒. The higher the number
of erased patterns, the lower the likelihood that the method classifies it
as a top-xor-decomposable variable. This behavior is desirable because
introducing a top-xor-decomposition in the topology without the data
sustaining the hypothesis would result in an overcomplicated model,
hardly meeting a correct counterpart in the actual functional proper-
ties. Furthermore, in the case of complete specifications, the filtering
procedure always identifies the variable as top-xor-decomposable, as
expected. In this way, the method extends directly to the case of
complete specifications.

Integration 89 (2023) 248–260A. Costamagna and G. De Micheli
Fig. 14. Success rate for the top-xor-decomposability detection. Each line is the 𝐹0
appearing in 𝐹 = 𝑋 ⊕ 𝐹0. For each number of don’t knows, the point is the average
top-xor detection rate over an ensemble of specifications.

4.2. IWLS2020 benchmarks

The IWLS2020 benchmarks consist of 100 single output Boolean
functions from three domains: Arithmetic, Random Logic, and Machine
Learning. The input size varies from 16 to 768, and, for each function,
12800 input–output pairs are available for synthesizing a circuit. Given
a method, we evaluate its efficiency using the accuracy of the generated
network when tested on 6400 input–output pairs not available during
the synthesis phase. The 12800-dimensional list is split in two equally
sized sub-lists. The sub-list named training set contains the specifica-
tions for the synthesis. Instead, the other one, named validation set, is
available to check the performance of the model on unseen data. The
overfit parameter is the average difference between the accuracies of
the validation and the test set. A low overfit indicates high generality.
We propose a comparative study of the techniques that we introduced
in Section 3.3. The experiments were performed on a macOS machine
with 2.2 GHz 6-Core i7 CPU and 16 GB RAM.

4.2.1. Disjoint support decomposition
In this experiment, we compare different decomposition strategies

based on their performance over the IWLS2020 benchmarks. The goal
is to show that introducing don’t knows awareness in decomposition
strategies effectively reduces the circuit size during synthesis while
yielding higher test accuracy. All methods attain 100% accuracy on the
training set,2 making them candidates for accuracy recovery.

Shannon Decomposition (SD) is the simplest approach, and we use
it as a baseline to verify the performance of the other methods. The
second group of techniques comprises the don’t know-aware decompo-
sition strategies (Section 3.3). The main element increasing the average
accuracy with respect to SD is the selection of the branching variable
based on mutual information maximization [19]. Instead, by incremen-
tally refining the DSD procedure, the number of gates decreases, as
we expect from a DSD decomposition. Furthermore, we also observe
an increase in the average test accuracy. This last improvement is
associated to the benefit of detecting analytical features of the Boolean
function. The DSD steps yield the following average improvements: the
test accuracy increases by 1.11%, the number of gates decreases by
17.38%, and the depth decreases by 12.02%.

2 Some benchmarks were created by compressing higher dimensional data.
As a result, 100% accuracy is impossible for them due to contradicting specifi-
cations. However, all the non contradicting specifications are memorized, and
the average accuracy is 100% to the second decimal digit.
256
The last block of the table reports the results for DK-RDSD. This
algorithm is a relaxed version of DK-DSD, in which we acknowledge
that the estimation of the probability mass function is penalized by
incomplete knowledge of the specifications. We relaxed the filters
defined by Claim 4 and 5, considering the equalities to be valid
even in presence of an error of 5% and 1%, respectively. DK-RDSD
often chooses to generate nodes on the fly and branch on them rather
than on the primary inputs. While the relaxation in the filters induces
considerable improvements in accuracy and size, the depth increases,
probably due to unnecessary nodes generated at the leaves of the
decomposition.

Table 1 confirms the complexity analysis of Section 3.3.4.

4.2.2. Don’t cares-based decompositions
In this experiment we continue the don’t cares/don’t knows compar-

ison. We challenge DK-XTSD with more aggressive strategies, that are
don’t care in nature. We show that treating the don’t knows as don’t
cares can lead to memorization. However, only don’t knows-awareness
is suitable for to generalization. Table 2 summarizes the results.

First, we substitute the filter for detecting top-xor decomposability
with a more aggressive criterion. DC-IXTSD is a don’t care-oriented
variant of DK-XTSD that only verifies if there is a contradiction (see
Section 3.3.2). The worsening of the performances motivates the impor-
tance of the filtering criterion. Indeed, adding XORs when not needed
adds layers to the network, does not simplify the function to synthesize
and removes variables from the support that might be useful at later
synthesis stages. In turn, this results in worse performances in terms
of size, depth, accuracy, and time needed to reach the termination
conditions.

The last method in Table 2 explores the entire support set, removing
the variable selection by mutual information maximization. DC-TSD
does not introduce XORs. We label this method as don’t care-oriented
because it does not rely on criteria to select the most statistically rele-
vant variable. We explore the support and perform top decomposition
for the first variable that allows it. As expected, such a myopic choice is
detrimental to size and depth. Furthermore, the runtime shows that less
informed branchings generate subproblems with slower convergence to
the termination condition (see Fig. 2).

4.2.3. Muesli with accuracy recovery
In this experiment, we apply accuracy recovery after approximate

synthesis by the MUESLI algorithm. The first row of Table 3 reports
the quality of the results when using our variant of MUESLI on the
benchmarks. Next, each subsequent block of the table presents the
quality of the results of the networks synthesized with two approaches:
a decomposition procedure, and accuracy recovery using the same de-
composition on the approximate circuits synthesized by MUESLI. The
decompositions considered are the top-xor-decomposition (DK-XTSD),
the forest-like decomposition using the majority-of-3 (VOTER-3), and
the forest-like decomposition using the majority-of-5 (VOTER-5). The
application of accuracy recovery increases the test accuracy of both
MUESLI and of the adopted decomposition procedure. Furthermore,
the availability of informative nodes in the netlist results in a reduction
of the number of gates. For a better comparison with the IWLS2020
contest the networks are represented as And-Inverter Graphs (AIGs).

The results show that the number of levels doubles when combining
MUESLI with the decomposition procedures. The reason is that all
the decomposition procedures actively use the nodes precomputed by
MUESLI as branching variables. Since these nodes span an average
of 32.05 levels, and the last nodes in the approximate system will
be among the first ones to be selected by the decompositions, the
depth of accuracy recovery is, on average, the sum of the depth in the
two methods. We can extend this remark by noticing that VOTER-
5 and VOTER-3 have almost the same runtime and VOTER-5 has a
lower number of gates, despite being the combination of more sub-
problems. The main reason behind this phenomenon is logic sharing.

Integration 89 (2023) 248–260A. Costamagna and G. De Micheli

a
m
t
C

4

s
o
h
w
a
l
e
m
p
c
o
t
c
a
a
l
T
o
A
c
i
c

Table 1
Progressive refinement of DK-DSD.

Method Train Test Gates Levels Overfit Time[s]

SD 100.00 68.58 2274.08 90.66 0.02 1.21

DK-SD 100.00 80.54 1027.74 29.16 0.12 1.05
DK-TSD 100.00 80.54 873.51 25.4 0.12 0.95
DK-XTSD 𝟏𝟎𝟎.𝟎𝟎 𝟖𝟏.𝟎𝟒 𝟖𝟑𝟔.𝟗𝟓 𝟐𝟓.𝟒 𝟎.𝟏𝟎 𝟏.𝟒𝟕
DK-DSD 100.00 81.09 831.53 25.12 0.07 12.26

DK-RDSD 100.00 83.07 731.32 27.9 0.06 40.92
Table 2
Treating the missing patterns as don’t cares.

Method Train Test Gates Levels Overfit Time[s]

DK-XTSD 𝟏𝟎𝟎.𝟎𝟎 𝟖𝟏.𝟎𝟒 𝟖𝟑𝟔.𝟗𝟓 𝟐𝟓.𝟒 𝟎.𝟏𝟎 𝟏.𝟑𝟏

DC-IXTSD 100.00 62.71 2669.27 85.38 0.11 4.76
DC-TSD 100.00 76.23 1455.16 84.58 0.02 19.35
Table 3
Accuracy recovery with MUESLI-based precomputation.
Method Train Test Gates Levels Overfit Time[s]

MUESLI 80.10 78.37 94.90 32.05 0.02 30.06

DK-XTSD 100.00 81.04 840.54 25.66 0.10 1.29
AR-MUESLI 100.00 82.49 837.95 53.99 0.05 31.15

VOTER-3 100.00 82.96 957.13 40.34 0.02 3.65
AR3-MUESLI 100.00 83.57 944.54 61.80 0.08 32.60

VOTER-5 100.00 83.09 945.52 42.75 0.08 3.69
AR5-MUESLI 100.00 83.99 939.73 63.83 0.07 31.61
4

M
d
0
i
e
t
9
a
d

s
t
F
m
o
t
i
l
n
t

o
i
p
s
c
c

The statistics-based decomposition recycles nodes, converging to a solu-
tion quickly, without creating additional circuitry, and while encoding
additional information. We remark that size awareness plays a key role
in size reduction (Section 3.4.1).

Table 3 also reveals that the contribution dominating time com-
plexity is 𝑇𝙼𝚄𝙴𝚂𝙻𝙸(𝑛,𝑁), i.e., the time needed to generate the initial
pproximate circuit (Appendix E). Therefore, the bottleneck of the
ethod is the time-consuming ALS algorithm employed, motivating

he need to investigate scalable ALS algorithms. Therefore, we consider
hatterjee’s method due to its unmatched scalability.

.2.4. Random LUT network with accuracy recovery
In this experiment, we apply accuracy recovery after approximate

ynthesis by Chatterjee’s method [14]. Table 4 reports the evolution
f the performance when increasing the number of nodes in a unique
idden layer (𝑁 × 1), and when increasing the depth (1024 × 𝐿). Both
ays of introducing new nodes result in an improvement of the test
ccuracy. Furthermore, while increasing the size of the approximate
ogic results in an increase of the accuracy, we do not observe an
xplosion in the number of gates. On the contrary, more accurate
odels resulting from more expressive approximate circuits can even
resent a smaller number of gates thanks to their higher information
ontent. More investigations are needed to better assess the potential
f combining accuracy recovery with 𝑘-LUT networks. Contrarily to
he experiments with MUESLI, in this case we see an increase of the
omputational time in the different settings. The reason is that MUESLI
utomatically generates the approximate netlist and terminates at an
verage of 94.90 gates. Instead, in this case, the lack of a support se-
ection heuristic comes at the cost of fixing an initial random topology.
he decomposition procedure has as number of features the number
f gates in the fixed topology, which is 𝐺 ∈ {1024, 2048, 4096}. In
ppendix E we discussed that 𝑇 = 𝑂(𝐺𝑁). Table 4 confirms this
laim since 𝑇 (𝑛,𝑁, 2𝐺) = 2𝑇 (𝑛,𝑁,𝐺) These results motivate the interest
n developing more advanced ALS procedure, to speed up the initial
257

alculation while increasing the accuracy. t
.3. Binary Mnist

In this experiment, we apply the devised algorithms to the binary
NIST problem. The MNIST database is a set of binary handwritten

igits [26]. Each image is a 28 by 28 matrix, representing a digit from
to 9. The dataset consists of 60000 images for the training and 10000

mages for the test. The binary MNIST problem consists in classifying
ach digit as belonging to one of two classes: The first class contains
he digits from 0 to 4, the second class contains the digits from 5 to
. Table 5 compares four decomposition strategies to the state-of-the-
rt in ALS [14,15]. The policies we used for splitting the specifications
iffer from VOTER-3

Already in the simple form of memorization via XAG decompo-
itions, we achieve higher accuracy than the state-of-the-art. Moving
o VOTER-3 and VOTER-5, we used two different synthesis policies.
or VOTER-3, we used the complete set of attributes defined for the
ethod, i.e., we enabled logic sharing from one sub-specification to the

ther. As discussed before, this increases the accuracy without leading
o a size explosion. Instead, in VOTER-5, we kept each sub-problem
solated. This forces each sub-circuit to learn the specifications without
everaging existing information. This approach results in an increased
umber of gates. But the size remains one order of magnitude smaller
han the size obtained by AR-8LUTNET.

Finally, we created a random 𝑘-LUT network composed of 5 lay-
ers, each containing 1024 8-LUTs (8LUTNET). This is the structure
used by Chatterjee [14]. The application of accuracy recovery to the
approximate circuit increases the test accuracy, and memorizes the
specifications.

It is interesting to notice that the result of AR-8LUTNET depends
n the initial topology. This topology is similar to what we would have
n a classical neural network. If we compare such a model with models
urely generated from data, with no structural bias enforced apriori, we
ee an order-of-magnitude reduction in the number of gates. Therefore,
omparing the hardware-oriented decompositions with AR 8LUTNET
onfirms the interest in developing hardware-aware machine-learning

echniques.

Integration 89 (2023) 248–260A. Costamagna and G. De Micheli
Table 4
Accuracy recovery with Chatterjee’s based precomputation.

Method Train Test Gates Levels Overfit Time[s]

DK-XTSD 100.00 81.04 840.54 25.66 0.10 1.29
1024 × 1 100.00 80.93 817.15 29.69 0.07 5.85

2048 × 1 100.00 81.38 816.62 29.46 0.11 11.37
4096 × 1 100.00 82.36 790.81 28.72 0.17 32.53

1024 × 2 100.00 81.71 854.61 31.75 0.03 10.06
1024 × 4 100.00 81.44 1025.78 34.04 0.05 19.08
T
𝑑
d
s
s
m

𝑍

w
s
t
C
E

𝐻

C
F

P
c
p

A

C
𝑋

𝐼

P
I
c

𝑋

T
t
m
C
T
t
f

T
i
1

Table 5
Binary MNIST: XAGs compared with the state-of-the-art.

Method Train Test Gates Depth Time[s]

VOTER-5 𝟏𝟎𝟎.𝟎𝟎 𝟗𝟓.𝟕𝟑 𝟏𝟑𝟎𝟓𝟒 𝟓𝟖 𝟏𝟎𝟏.𝟒𝟓
VOTER-3 𝟏𝟎𝟎.𝟎𝟎 𝟗𝟑.𝟏𝟑 𝟑𝟕𝟐𝟖 𝟔𝟕 𝟓𝟑.𝟔𝟗𝟒
DK-XTSD 𝟏𝟎𝟎.𝟎𝟎 𝟗𝟐.𝟖𝟒 𝟑𝟏𝟕𝟓 𝟒𝟓 𝟏𝟖.𝟎𝟎
LSE8[15] 94.68 92.76 – – –
AR-8LUTNET 𝟏𝟎𝟎.𝟎𝟎 𝟗𝟏.𝟓𝟓 𝟐𝟓𝟕𝟐𝟎𝟗 𝟏𝟏𝟑 𝟏𝟎𝟎.𝟑𝟐
8LUTNET[14] 99.00 90.00 – – –

5. Conclusions

The proposed DK-DSD procedure is a novel approach to extend the
applicability of DSD to Boolean functions when don’t knows are present.
The method allows us to perform DSD on partial covers of input size
as large as 768. The results show the effectiveness of using mutual
information to synthesize circuits aware of the presence of don’t knows,
as opposed to the approach of treating them as don’t cares. Additionally,
our approach minimizes the number of gates while assembling the
network, thus reducing the need for pruning techniques. Additionally,
we introduced the concept of accuracy recovery, a technique for map-
ping an approximate circuit into a new one that exactly synthesizes
the specifications. We show that this technique enables increasing the
test accuracy of existing ALS methods. Possible applications of accuracy
recovery include designing multiple-output synthesis techniques target-
ing logic sharing, as well as speeding up methods that require many
iterations to converge, such as evolutionary algorithms [27].

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgment

The authors thank Alan Mishchenko, Satrajit Chatterjee, Alessandro
Tempia Calvino, Alessandro Favero, Siang-Yun Lee, Mingfei Yu, Hanyu
Wang, Rassul Bairamkulov, and Dewmini Marakkalage for the fruitful
discussions.

Appendix A. Analytical considerations

In this appendix we prove the claims of Section 3.2

Claim 1. Consider two Boolean functions 𝐹 ,𝐺 ∶ B𝑛 ↦ B, and two subsets
of their support 𝑋 ⊆ 𝐹 , �̃� ⊆ 𝐺. If 𝐺 can be obtained from 𝐹 through an
appropriate inputs/output negation 𝛾 ∶ (𝐹 , 𝐹) ↦ (𝐺 , 𝐺), and �̃� = 𝛾(𝑋),
then 𝐼(𝑋;𝐹) = 𝐼(�̃�;𝐺).
258
Proof. Let 𝑋 ∈ B𝑚 be the combination of 𝑚 Boolean variables in the
support of 𝐹 . Then, Eq. (8) reads

𝐼(𝑋;𝐹) = 𝐻(𝑋) +𝐻(𝐹) −𝐻(𝑋,𝐹) (11)

𝐻(𝑍) = −
∑

𝑧∈B𝑑(𝑍)

𝑝𝑍 (𝑧) log2 𝑝𝑍 (𝑧) (12)

he dimensionalities of the variables are 𝑑(𝑋) = 𝑚, 𝑑(𝐹) = 1, and
(𝑋,𝐹) = 𝑚 + 1. Eq. (12) is local, in the sense that each contribution
epends uniquely on a single B𝑑 point. All the contributions have the
ame functional form and the sum is performed over the entire B𝑑

pace. Let us now consider the variable �̃� ∈ B𝑑 , obtained from 𝑍 by
eans of the negations rule 𝛾, connecting 𝐺 and 𝐹 :

= (𝑍1,… , 𝑍𝑝)
𝛾
←←←←←←→ �̃� = (𝛾1(𝑍1),… , 𝛾𝑝(𝑍𝑝))

here 𝛾𝑖(𝑍𝑖) can be 𝑍𝑖 or 𝑍′
𝑖 , depending on 𝛾. The map 𝛾 is bijective,

o that for each minterm in the original space, 𝛾 identifies a minterm in
he mapped space having the same probability measure 𝑝𝑍 (𝑧) = 𝑝�̃� (�̃�).
laim 1 follows from the bijectivity of the map and the locality of
q. (12)

(𝑍) = 𝐻(�̃�) ⇒ 𝐼(𝑋;𝐹) = 𝐼(𝑋;𝐺) □ (13)

laim 2. Consider two NPN-equivalent Boolean functions 𝐹 ,𝐺 ∶ B𝑛 ↦ B.
or all 𝑋𝑖 ∈ 𝐹 , there is a variable 𝑋𝑗 ∈ 𝐺 such that 𝐼(𝑋𝑖;𝐹)=𝐼(𝑋𝑗 ;𝐺).

roof. Claim 2 follows from the combination of Claim 1 and the
oncept of NPN equivalence. The variables 𝑋𝑖 and 𝑋𝑗 are related by the
ermutations mapping 𝐹 into 𝐺. □

ppendix B. Top-decomposition conditions

laim 3. Consider a function 𝐹 that is top-decomposable in 𝑋𝑖: 𝐹 =
𝑖 ⊙ 𝑇 (𝐹 ∖𝑋𝑖). For any variable 𝑋𝑗 ∈ 𝐹 ∖𝑋𝑖

(𝑋𝑖;𝐹) ≥ 𝐼(𝑋𝑗 ;𝐹)

roof. A function is top-decomposable if it can be written as Eq. (5).
f we consider the top-decomposability conditions we observe that we
an define the following maps:

𝑋𝑖 < 𝑇 = 𝑋′
𝑖 ∧ 𝑇 ↦ 𝑋𝑖 ∧ 𝑇 (14)

𝑖 ∨ 𝑇 = (𝑋′
𝑖 ∧ 𝑇 ′)′ ↦ 𝑋𝑖 ≤ 𝑇 = (𝑋𝑖 ∧ 𝑇 ′)′ (15)

hese formulas have both an experimental and a theoretical implica-
ion. Experimentally, since we want to understand if 𝑋𝑖 maximizes
utual information, we can focus on the functions {∧,≤}, because
laim 2 and Eqs. (14) and (15) imply that the same holds for {<,∨}.
his motivates the plots in Section 4.1.2. Theoretically, Claim 3 needs
o be proven only for {∧, ⊕} and considering all possible remainder
unctions 𝑇 ∶ B𝑛−1 ↦ B.

op-Xor decomposable. Let 𝐹 = 𝑋𝑖⊕𝑇 , with 𝑋𝑗 being another variable
n the support. For a completely specified function, 𝑝𝑋𝑖

(1) = 𝑝𝑋𝑖
(0) =

∕2. Consequently, 𝐻(𝐹) = 1 and 𝐻(𝑋) = 𝐻(𝑋) = 1. Furthermore,
𝑖 𝑗

Integration 89 (2023) 248–260A. Costamagna and G. De Micheli

T

A

C

W

𝐻

A

f
l

t
f
a
a

t
f
o
𝑆

𝑃

A
t

t

A

a
n
s
v
t

w
t
t

𝑇

F
o
a
n
w

𝑇

W
v

𝑇

l

𝑇

C
k
i

𝐻(𝑋𝑗 |𝐹) = 1 since 𝑝𝑋𝑗 |𝐹 = 1∕2. Hence, using the symmetry of mutual
information, we obtain

𝐼(𝑋𝑗 ;𝐹) = 𝐻(𝑋𝑗) −𝐻(𝑋𝑗 |𝐹) = 0 (16)

he non-negativity of 𝐼(𝑋𝑗 ;𝐹) yields 𝐼(𝑋𝑖;𝐹)≥𝐼(𝑋𝑗 ;𝐹).

Top-and decomposable. Mutual information can be written as a function
of four variables: 𝑝0|0𝐹 |𝑋 = 𝑝𝐹 |𝑋 (0|0), 𝑝

0|1
𝐹 |𝑋 = 𝑝𝐹 |𝑋 (0|1), 𝑝0𝐹 = 𝑝𝐹 (0) and

𝑝0𝑋 = 𝑝𝑋 (0). We consider the single variable probabilities as parameters,
𝐼 = 𝐼(𝑝0|1𝐹 |𝑋 , 𝑝

𝐹 |𝑋
0|0 ; 𝑝0𝐹 , 𝑝

0
𝑋). By direct computation, it is possible to

identify the parametric space of possible solutions in the (𝑝0|1𝐹 |𝑋 , 𝑝
0|0
𝐹 |𝑋)

plane, that is the line

𝑝0𝐹 =
∑

𝑥
𝑝𝐹 |𝑋 (0|𝑥)𝑝𝑋 (𝑥) → 𝑝0|0𝐹 |𝑋 = 𝛼 − 𝛽𝑝0|1𝐹 |𝑋 (17)

where 𝛼 = 𝑝0𝐹 ∕𝑝
0
𝑋 and 𝛽 = (1 − 𝑝0𝐹)∕(1 − 𝑝0𝑋). In this way, we obtain a

1-variable function parametrized by 𝑝0𝐹 and 𝑝0𝑋 . By direct computation
of the second derivative we obtain

𝜕2
𝑝0|1𝐹 |𝑋

=
𝛽2𝑝0𝑋

(𝛼 − 𝛽𝑝0|1𝐹 |𝑋)(1 − 𝛼 + 𝛽𝑝0|1𝐹 |𝑋)
+

𝛽2(1 − 𝑝0𝑋)

𝑝0|1𝐹 |𝑋 (1 − 𝑝0|1𝐹 |𝑋)
(18)

All the quantities appearing are probabilities. Hence, as expected,
𝜕2
𝑝0|1𝐹 |𝑋

𝐼 > 0, that proves that mutual information is concave along the

constraint. Therefore, it is maximized at the extremes of the support,
that corresponds to 𝑝0|1𝐹 |𝑋𝑖

= 1, 𝑝0|0𝐹 |𝑋𝑖
= 1. Since we are proving the result

for the AND function, 𝑝0|0𝐹 |𝑋𝑖
≥ 𝑝0|1𝐹 |𝑋𝑗

, 𝑗 = 0,… , 𝑛 − 1, that leads to the
conclusion that the variable maximizing mutual information is the one
for which 𝑝0|0𝐹 |𝑋 = 1, i.e., the top-and-decomposable variable. □

ppendix C. Bottom decomposition conditions

In this section we prove the main results used in Section 3.3.3.

laim 4. Consider a function 𝐹 that is bottom decomposable in �̃� =
𝑋𝑖 ⊙𝑋𝑗 . Then, 𝐼(𝑋𝑖;𝐹) = 𝐼(𝑋𝑗 ;𝐹).

Proof. Considering Eq. (6), there are two cases:

1. If ⊙ ∈ {∧,∨, ⊕}, the result follows from the invariance of the
function under variables swap 𝑋𝑖 ↔ 𝑋𝑗 .

2. If ⊙ ∈ {<,≤} we define the function 𝐺, obtained from 𝐹 by
the input inversion mapping {<,≤} ↦ {∧,∨}. The result follows
from Claim 1. □

Claim 5. Consider a function 𝐹 that is bottom decomposable in �̃� =
𝑋𝑖 ⊙𝑋𝑗 . Then, 𝐼(𝑋𝑖, 𝑋𝑗 ;𝐹) = 𝐼(�̃�;𝐹).

Proof. Proving this claim corresponds to show that 𝐻(𝐹 |�̃�) =
𝐻(𝐹 |𝑋𝑖, 𝑋𝑗). We start by rewriting 𝑝𝐹 |�̃� :

𝑝𝐹 |�̃� =

∑

𝑥𝑖𝑥𝑗
𝑝𝐹𝑋𝑖𝑋𝑗 �̃�

𝑝�̃�
=

∑

𝑥𝑖𝑥𝑗
𝑝𝐹𝑋𝑖𝑋𝑗

𝛿�̃�,𝑥𝑖⊙𝑥𝑗

𝑝�̃�
(19)

e insert this function in the conditional entropy, obtaining

(𝐹 |�̃�) =
∑

𝑥𝑖 ,𝑥𝑗 ,𝑓
𝑝𝐹𝑋𝑖𝑋𝑗

∑

�̃�
𝛿�̃�,𝑥𝑖⊙𝑥𝑗 log 𝑝𝐹 |�̃� =

=
∑

𝑥𝑖 ,𝑥𝑗

𝑝𝑋𝑖𝑋𝑗

∑

𝑓
𝑝𝐹 |𝑋𝑖𝑋𝑗

log 𝑝𝐹 |𝑋𝑖𝑋𝑗
=

= 𝐻(𝐹 |𝑋𝑖𝑋𝑗) □

ppendix D. Worst case for the XOR filter

In this section, we prove that, in cases of interest, the devised
ilters for the top-xor-decomposition are based on worst-case analysis,
259

egitimating their use. The basic assumption behind the filter for the 𝑇
op-xor-decomposition is that the input cubes are sampled uniformly
rom the entire Boolean space. When considering the cofactors for

variable, the probability of 𝑘 intersections of the reduced cubes
ppearing in the cofactors is 𝑃𝑈

𝑘 , reported in Eq. (10).
On the other hand, a more precise assumption would be to consider

he cubes as being sampled uniformly from the care set of the Boolean
unction. Hence, if we define 𝑆𝑈 = 2𝑛−1 as the size of the Boolean space
f the cofactors support, the corresponding quantity for the care set is
𝐶𝑆 ≤ 𝑆𝑈 , and the probabilities to compare read

𝜇
𝑘 =

(𝑆𝜇
𝑘

)(𝑆𝜇−𝑘
𝑁0−𝑘

)(𝑆𝜇−𝑁0
𝑁1−𝑘

)

(𝑆𝜇
𝑁0

)(𝑆𝜇
𝑁1

)

𝜇 = 𝑈,𝐶𝑆. (20)

Our method is legitimate if we can show that
𝑁
∑

𝑘=0
𝑃𝑈
𝑘 ≥ 𝛼 ⇒

𝑁
∑

𝑘=0
𝑃𝐶𝑆
𝑘 ≥ 𝛼 (21)

sufficient condition for this to be true is that 𝑃𝐶𝑆
𝑘 ≥ 𝑃𝑈

𝑘 . We consider
he limiting case of small intersection size, i.e., 𝑆𝑈 ≫𝑁0, 𝑁1 ≫ 𝑘 and
𝑆𝐶𝑆 ≫𝑁0, 𝑁1≫𝑘. This condition is of practical interest since it is the
one that could lead to erroneous assumptions. By approximating the
Binomial coefficients as

(𝑁
𝑘

)

≈ 𝑁𝑘

𝑘! , we obtain

𝑃𝐶𝑆
𝑘

𝑃𝑈
𝑘

→

(

𝑆𝑈
𝑆𝐶𝑆

)𝑘
≥ 1 ∀𝑘 ≥ 0. (22)

hat proves the sufficient condition.

ppendix E. Time complexity analysis

In this section, we derive the computational complexity of the main
lgorithms of this paper. We start from 𝙳𝙺 − 𝚇𝚃𝚂𝙳. Let 𝑛 be the initial
umber of variables in the netlist. The worst case for DK-XTSD is the
ynthesis of a function in which each decomposition step removes one
ariable from the support and splits the data into two halves. We use
he time needed to compute the mutual information 𝐼(𝑋;𝐹) as the

unit time, with 𝑋,𝐹 ∈ B. If 𝑁 is the initially available number of
input–output pairs, the recursion defining the time complexity reads

𝑇 (𝑛,𝑁) = 2𝑇
(

𝑛 − 1, 𝑁
2

)

+ 𝑛 +𝑁 (23)

here 𝑛 is the time needed for computing mutual information for
he variables in the support. Instead, 𝑁 is the time needed to check
op-xor-decomposability. Finally, we obtain

𝙳𝙺−𝚇𝚃𝚂𝙳(𝑛) = 𝑂(𝑛𝑁) (24)

or what concerns 𝙳𝙺 − 𝙳𝚂𝙳, the most expensive part is to go through all
f the variable pairs. Hence, we consider a fictitious function for which,
t each iteration, all of the variables have equal mutual information, a
ew variable is added, and the dataset is split in two halves. In this
ay, the recursion for time complexity becomes

(𝑛,𝑁) = 2𝑇
(

𝑛, 𝑁
2

)

+ 𝑛 +𝑁 + 𝐴
(

𝑛
2

)

+ 𝑛 log 𝑛 (25)

here 𝐴 is some constant and 𝑛 log 𝑛 is the time needed to sort the
ariables by mutual information. This yields the time complexity

𝙳𝙺−𝙳𝚂𝙳(𝑛) = 𝑂(𝑛2𝑁) (26)

Finally, accuracy recovery creates 𝐺 nodes bottom-up (), and it
ater performs a decomposition . Hence,

𝐴𝑅(𝑛,𝑁) = 𝑇(𝑛,𝑁) + 𝑇(𝐺,𝑁) (27)

onsidering the bottom-up strategies discussed in this work, the cost of
LUTNET of a fixed topology is linear in the number of gates. Hence,

f the topology has 𝐺 gates
𝚔𝙻𝚄𝚃𝙽𝙴𝚃+𝙳𝙺−𝚇𝚃𝚂𝙳(𝑛,𝑁,𝐺) = 𝑂(𝐺𝑁) (28)

Integration 89 (2023) 248–260A. Costamagna and G. De Micheli
Instead, it is harder to define the computational complexity of MUESLI
since there is no guarantee of convergence. However, if we fix a
threshold to a number of gates 𝐺, the worst time complexity reads
𝑇𝙼𝚄𝙴𝚂𝙻𝙸 = 𝑂(𝐺2), yielding

𝑇𝙼𝚄𝙴𝚂𝙻𝙸+𝙳𝙺−𝚇𝚃𝚂𝙳(𝑛,𝑁,𝐺) = 𝑂(max(𝐺2, 𝐺𝑁)) (29)

References

[1] Muhammad Ayaz, Mohammad Ammad-Uddin, Zubair Sharif, Ali Mansour, El-
Hadi M Aggoune, Internet-of-Things (IoT)-based smart agriculture: Toward
making the fields talk, IEEE Access 7 (2019) 129551–129583.

[2] Arijit Ukil, Soma Bandyoapdhyay, Chetanya Puri, Arpan Pal, IoT healthcare
analytics: The importance of anomaly detection, in: 2016 IEEE 30th International
Conference on Advanced Information Networking and Applications, AINA, IEEE,
2016, pp. 994–997.

[3] Fotios Zantalis, Grigorios Koulouras, Sotiris Karabetsos, Dionisis Kandris, A
review of machine learning and IoT in smart transportation, Future Internet 11
(4) (2019) 94.

[4] Jozef Mocnej, Martin Miškuf, Peter Papcun, Iveta Zolotová, Impact of edge
computing paradigm on energy consumption in IoT, IFAC-PapersOnLine 51 (6)
(2018) 162–167.

[5] Giovanni De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill
Higher Education, 1994.

[6] Jeff Heaton, Ian goodfellow, yoshua bengio, and aaron courville: Deep learning,
2018.

[7] Farah Fahim, Benjamin Hawks, Christian Herwig, James Hirschauer, Sergo
Jindariani, Nhan Tran, Luca P Carloni, Giuseppe Di Guglielmo, Philip Harris,
Jeffrey Krupa, et al., Hls4ml: An open-source codesign workflow to empower
scientific low-power machine learning devices, 2021, arXiv preprint arXiv:2103.
05579.

[8] George A. Constantinides, Rethinking arithmetic for deep neural networks, Phil.
Trans. R. Soc. A 378 (2166) (2020) 20190051.

[9] Barret Zoph, Quoc V. Le, Neural architecture search with reinforcement learning,
2016, arXiv preprint arXiv:1611.01578.

[10] Giulia Meuli, Mathias Soeken, Giovanni De Micheli, Xor-and-inverter graphs for
quantum compilation, Npj Quantum Inform. 8 (1) (2022) 1–11.

[11] Alan Mishchenko, Satrajit Chatterjee, Roland Jiang, Robert K Brayton, FRAIGs:
A Unifying Representation for Logic Synthesis and Verification, ERL Technical
Report, 2005.

[12] Siang-Yun Lee, Heinz Riener, Alan Mishchenko, Robert K Brayton, Giovanni
De Micheli, A simulation-guided paradigm for logic synthesis and verification,
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (2021) 1.

[13] Arlindo L. Oliveira, Alberto Sangiovanni-Vincentelli, Learning complex boolean
functions: Algorithms and applications, in: NIPS, 1993, pp. 911–918.

[14] Satrajit Chatterjee, Learning and memorization, in: International Conference on
Machine Learning, PMLR, 2018, pp. 755–763.

[15] Sina Boroumand, Christos-Savvas Bouganis, George A Constantinides, Learning
boolean circuits from examples for approximate logic synthesis, in: Proceedings
of the 26th Asia and South Pacific Design Automation Conference, 2021, pp.
524–529.

[16] Shubham Rai, Walter Lau Neto, Yukio Miyasaka, Xinpei Zhang, Mingfei Yu,
Qingyang Yi Masahiro Fujita, Guilherme B Manske, Matheus F Pontes, Leomar S
Junior, Marilton S de Aguiar, et al., Logic synthesis meets machine learning:
Trading exactness for generalization, 2020, arXiv preprint arXiv:2012.02530.
260
[17] Zhufei Chu, Mathias Soeken, Yinshui Xia, Lunyao Wang, Giovanni De Micheli,
Advanced functional decomposition using majority and its applications, IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 39 (8) (2019) 1621–1634.

[18] Valeria Bertacco, Maurizio Damiani, The disjunctive decomposition of logic
functions, in: Iccad, vol. 97, 1997, pp. 78–82.

[19] J. Ross Quinlan, C4. 5: Programs for Machine Learning, Elsevier, 2014.
[20] Patrick Mcgeer, Jagesh Sanghavi, Robert Brayton, Alberto Sangiovanni Vincen-

telli, ESPRESSO-SIGNATURE: A new exact minimizer for logic functions, in:
Proceedings of the 30th International Design Automation Conference, 1993, pp.
618–624.

[21] Brian W. Kernighan, Shen Lin, An efficient heuristic procedure for partitioning
graphs, Bell Syst. Tech. J. 49 (2) (1970) 291–307.

[22] Mikhail Belkin, Daniel Hsu, Siyuan Ma, Soumik Mandal, Reconciling modern
machine-learning practice and the classical bias–variance trade-off, Proc. Natl.
Acad. Sci. 116 (32) (2019) 15849–15854.

[23] Lulu Ge, Keshab K. Parhi, Classification using hyperdimensional computing: A
review, IEEE Circuits Syst. Mag. 20 (2) (2020) 30–47.

[24] Partha Pratim Ray, A review on TinyML: State-of-the-art and prospects, J. King
Saud Univ.-Comput. Inform. Sci. (2021).

[25] Tin Kam Ho, Random decision forests, in: Proceedings of 3rd International
Conference on Document Analysis and Recognition, vol. 1, IEEE, 1995, pp.
278–282.

[26] Yann LeCun, The MNIST database of handwritten digits, 1998, http://yann.lecun.
com/exdb/mnist/.

[27] Julian Francis Miller, Simon L. Harding, Cartesian genetic programming, in: Pro-
ceedings of the 11th Annual Conference Companion on Genetic and Evolutionary
Computation Conference: Late Breaking Papers, 2009, pp. 3489–3512.

Andrea Costamagna received the B.Sc. degree in physical
engineering from the Politecnico di Torino, Turin, Italy,
in 2018, the joint M.Sc. degree in physics of complex
systems from Politecnico di Torino (Italy) and Univer-
sité Paris-Saclay (France) in 2020, and the M.Sc. degree
in nanotechnologies for ICTs from Politecnico di Torino,
Turin, Italy, in 2021. Currently, he is working toward the
Ph.D. degree at the Integrated Systems Laboratory at EPFL,
Switzerland. His research interests include logic synthesis
and statistical machine learning.

Giovanni De Micheli (Fellow, IEEE) is a research scientist
in electronics and computer science. He is credited for
the invention of the Network on Chip design automation
paradigm and for the creation of algorithms and design
tools for Electronic Design Automation (EDA). He is Pro-
fessor and Director of the Integrated Systems Laboratory at
EPFL Lausanne, Switzerland. Previously, he was Professor
of Electrical Engineering at Stanford University. Prof. De
Micheli is a Fellow of ACM , AAAS and IEEE, a member
of the Academia Europaea and an International Honorary
member of the American Academy of Arts and Sciences. His
current research interests include several aspects of design
technologies for integrated circuits and systems, such as
synthesis for emerging technologies.

http://refhub.elsevier.com/S0167-9260(22)00179-1/sb1
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb1
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb1
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb1
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb1
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb2
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb2
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb2
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb2
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb2
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb2
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb2
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb3
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb3
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb3
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb3
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb3
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb4
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb4
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb4
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb4
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb4
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb5
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb5
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb5
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb6
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb6
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb6
http://arxiv.org/abs/2103.05579
http://arxiv.org/abs/2103.05579
http://arxiv.org/abs/2103.05579
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb8
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb8
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb8
http://arxiv.org/abs/1611.01578
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb10
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb10
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb10
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb11
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb11
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb11
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb11
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb11
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb12
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb12
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb12
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb12
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb12
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb13
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb13
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb13
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb14
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb14
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb14
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb15
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb15
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb15
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb15
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb15
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb15
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb15
http://arxiv.org/abs/2012.02530
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb17
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb17
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb17
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb17
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb17
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb18
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb18
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb18
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb19
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb20
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb20
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb20
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb20
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb20
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb20
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb20
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb21
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb21
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb21
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb22
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb22
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb22
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb22
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb22
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb23
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb23
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb23
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb24
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb24
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb24
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb25
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb25
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb25
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb25
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb25
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb27
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb27
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb27
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb27
http://refhub.elsevier.com/S0167-9260(22)00179-1/sb27

	Accuracy recovery: A decomposition procedure for the synthesis of partially-specified Boolean functions
	Introduction
	Background
	Top-Down Synthesis Techniques
	Shannon Decomposition
	Disjoint Support Decomposition

	Statistical Quantities in Boolean Functions
	Decomposition from Partial Specifications
	Bottom-Up Synthesis Techniques
	Muesli
	Random k-LUT network
	Modified Muesli

	Synthesis From Partial Specifications
	Node Creation Criterion for 2-LUTs
	Analytical Considerations
	Top-Decomposition
	Bottom-Decomposition

	Information Theory-Based Disjoint Support Decomposition
	Structure of the Algorithm
	Top-Decomposition
	Bottom-Decomposition
	Time Complexity and Model Complexity

	Accuracy Recovery
	Bridging Approximate Logic and Memorization
	Multiple-Output Decomposition and Forests

	Experiments
	Analytical Considerations
	Don't Knows and Don't Cares
	Top-Decomposability and Mutual Information

	IWLS2020 Benchmarks
	Disjoint Support Decomposition
	Don't Cares-Based Decompositions
	Muesli With Accuracy Recovery
	Random LUT Network with Accuracy Recovery

	Binary Mnist

	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	Appendix A. Analytical Considerations
	Appendix B. Top-Decomposition Conditions
	Appendix C. Bottom Decomposition Conditions
	Appendix D. Worst case for the XOR filter
	Appendix E. Time Complexity Analysis
	References

