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Abstract—Approximate logic synthesis is an emerging field
that tolerates errors in the synthesized logic circuits for better
optimization quality. Indeed, in many computing problems, the
requirement of preserving the exact functionality either results
in unnecessary overuse of resources or is hardly possible to
meet. The latter case is typical of incompletely specified synthesis
problems, targeting the hardware implementation of a Boolean
function from a partial knowledge of its care set. The missing
elements of the care set are named don’t knows. Previous works
identified information theory-based decomposition strategies as
powerful synthesis tools. Nonetheless, the definition of an auto-
matic method for approximate synthesis is an open problem, and
the approximate counterpart of many logic synthesis techniques
is still missing. In this paper, we extend a disjoint support decom-
position algorithm to target Boolean functions in the presence of
don’t knows. Furthermore, we integrate the decomposition in an
information theory-based synthesis flow. Relative experiments on
the IWLS2020 benchmarks show that, on average, the addition
of the designed decomposition to the flow reduces by 15.81%
the number of gates and by 9.66% the depth.

Index Terms—approximate logic synthesis, disjoint support
decomposition, information theory.

I. INTRODUCTION

Approximate logic synthesis (ALS) is an emerging field
aiming at designing circuits for error-resilient applications.
This feature is present in many computing problems, including
media processing, data mining, and supervised learning [1].
All these applications highly benefit from high-performance
hardware accelerators, but some of them lack a straightforward
implementation due to the incompleteness of specifications.

The vast majority of the existing ALS techniques aim to
devise algorithmic solutions to approximate a circuit repre-
sentation of a Boolean function [2]. However, these meth-
ods cannot be applied to problems where the knowledge of
the function is only partial. Incompletely specified functions
typically occur in supervised learning tasks, for which it is
desirable to realize dedicated hardware. Under a supervised
learning lens, the incomplete specifications correspond to the
training set, while the input-output pairs on which we test the
accuracy of the devised hardware corresponds to the test set.
Our work takes inspiration from the existing literature on the
ALS subfield named learning from examples (LFE) [3]–[6].

The fundamental computing problem addressed in LFE is
learning a Boolean function from an incomplete knowledge of
its care set, named cover. When the cover specifies the output
for all input patterns, it corresponds to a truth table. Otherwise,
it is called incomplete. The input-output pairs belonging to the
care set, and missing in the cover, are named don’t knows.

In literature, several techniques exist for learning Boolean
functions from examples. Oliveira et al. [4] defined two algo-
rithms based on information theory, namely Muesli and Ful-
fringe. While the former assembles Boolean networks bottom-
up, the latter is a decision tree decomposition. Subsequently,
Chatterjee designed a method for learning LUT nodes in a
randomly generated LUT network [5], and Boroumand et al.
[3] exploited it in a variation of the Muesli algorithm. Finally,
the IWLS2020 benchmarks and the solutions proposed by the
competing teams [6] constitute the main existing framework
for evaluating algorithms for LFE. Overall, the main findings
of the aforementioned works are the following:

• Decomposition procedures for the creation of decision
trees are key strategies for tackling the problem.

• Mutual information, introduced in Sec. II, is helpful both
in Muesli-like and in Fulfringe-like algorithms.

• No technique designed so far is effective for all functions.
• Many methods rely on noninterpretable hyperparameters.
• Many approaches use pruning to meet size constraints.

Therefore, the definition of an automatic synthesis method for
approximate circuits remains an open problem [7].

The main contribution of this work is the generalization of
a disjoint support decomposition (DSD) algorithm to Boolean
functions represented by incomplete covers. Compared to
existing literature, it does not rely on noninterpretable hyper-
parameters and reduces the size without pruning. The proposed
procedure combines properties of mutual information and
a decision tree decomposition. We show that adding the
proposed DSD procedure to a synthesis technique improves
its performances. On average, it reduces the size by 15.81%
and the depth by 9.66%.

II. BACKGROUND

Let F : Bn 7→ B be a single-output Boolean function, where
B = {0, 1}. Its support S = {xi}n−1

i=0 is the set of variables
on which F depends. In this paper, we represent Boolean
functions as covers, i.e., lists of input patterns paired with978-1-6654-6700-1/22/$31.00 ©2022 IEEE



the corresponding outputs. We study algorithms to synthesize
multilevel networks from incomplete Boolean covers.

A. Shannon Decomposition

Given a function F and a variable xi ∈ S , the Shannon
Decomposition (SD) of F is

F = xi · Fxi
+ x′

i · Fx′
i

.
= ite(xi, Fxi

, Fx′
i
). (1)

Where Fxi (Fx′
i
) is the positive (negative) cofactor of F , i.e.,

the function of domain S\xi whose cover is the sub-cover
of F , identified by xi = 1 (xi = 0). When the variable is
explicitly stated, we use the notation F1

.
= Fxi

and F0
.
= Fx′

i
.

B. Disjoint Support Decomposition

Performing the DSD of a function F corresponds to identi-
fying a set of functions A = {Ai}m−1

i=0 (m < n) with disjoint
supports and a function G such that

F (S) = G(A). (2)

When a truth table is available, such a decomposition can be
obtained by applying two procedures until convergence: top-
decomposition and bottom-decomposition [8], [9].

1) Top-Decomposition: The top-decomposition identifies
when the dependence of F on a variable xi is of type

G = xi ⊙ T (S\xi), (3)

with ⊙ indicating a 2-input function. Hence, all possible top-
decompositions can be obtained by listing the special cases of
the SD yielding the functional form of Eq.3:

1) F1 = ⊤ : F = xi + x′
i · F0 ⇒ G = xi + F0 ;

2) F1 = ⊥ : F = x′
i · F0

.
= xi < F0 ⇒ G = xi < F0;

3) F0 = ⊤ : F = x′
i + F1

.
= xi ≤ F1 ⇒ G = xi ≤ F1;

4) F0 = ⊥ : F = xi · F1 ⇒ G = xi · F1 ;
5) F1 = F ′

0 : F = x′
i · F0 + xi · F ′

0 ⇒ G = xi ⊕ F0 .

In these cases, we say that the function is top-decomposable.
2) Bottom-Decomposition: Suppose that two variables xi

and xj influence F uniquely through a 2-input function:

G = B(xi ⊙ xj ,S\{xi, xj}). (4)

Let us introduce the simplified notation for the cofactors:
F00

.
= Fx′

ix
′
j
, F01

.
= Fx′

ixj
, F10

.
= Fxix′

j
and F11

.
= Fxixj

.
For Eq.4 to be true, one of the following conditions must hold

1) F00 ̸= F01 = F10 = F11: G = ite(xi + xj , F11, F00);
2) F01 ̸= F00 = F01 = F11: G = ite(xi < xj , F01, F10);
3) F10 ̸= F00 = F01 = F11: G = ite(xi ≤ xj , F01, F10);
4) F11 ̸= F00 = F10 = F01: G = ite( xi · xj , F11, F00);
5) F00 = F11, F10 = F01: G = ite(xi ⊕ xj , F01, F00).

The comparison of all variable pairs guarantees the detection
of the bottom-decomposability condition and its exploitation.

C. Entropy and Mutual Information

Let x be a random variable taking values in X and having
a probability distribution px(·). Its Shannon entropy is

H(x)
.
= −

∑
π∈X

px(π) log2 px(π). (5)

It quantifies the uncertainty on the value taken by the variable.
From this quantity, mutual information is derived as

I(x; f) = H(f)−H(f |x). (6)

It quantifies the reduction in uncertainty on the target variable
f , given the knowledge of x.

D. Chatterjee’s Method

Let us consider a cover and its associated nodes set. For
each node variable, we know its value at each example. Once
k of these variables are selected, say Sk = {xs(1), . . . , xs(k)},
Chatterjee’s method creates a statistically-optimal new node
[5], with support Sk. Each bit pattern π ∈ Bk of Sk can appear
more than once in the examples set. Therefore, C1

π and C0
π are

used to count how many times the output of F is 1 or 0, given
that the variables in Sk take the values specified by π. The
truth table of the new k-LUT node reads

x̃(π) =


1 if C0

π < C1
π

r if C0
π = C1

π

0 if C0
π > C1

π

, π ∈ Bk (7)

where r is a symmetric Bernoulli random number.
This method is helpful to learn a statistically-optimal node

given its support, but it gives no information on which nodes
to select. Due to the exponential size of the k-LUT nodes,
Chatterjee’s method only applies to covers with sufficiently
small support sizes. The seminal paper [5] copes with this
problem by applying it to a randomly generated k-LUT
network. Instead, in this work, we use the procedure in two
cases: the first one is the termination condition of a decision
tree decomposition. The second one is the extraction of the 2-
input function for a method we devised to detect the bottom-
decomposability condition given two variables.

III. INFORMATION THEORY-BASED DISJOINT SUPPORT
DECOMPOSITION

A. Structure of the Algorithm

Algorithm 1 is the proposed synthesis technique for in-
completely specified functions that integrates the don’t knows-
based DSD decomposition. Three exit conditions are possible,
corresponding to the cases in which all output values are
ones (tautology), all output values are zeros (contradiction),
or the support size is smaller than max_sup and Chatterjee’s
method can be applied. This last step is interesting because we
ultimately convert the network to an And Inverter Graph (AIG)
for size evaluation and accuracy checking. If the support size
of the k-LUT node is sufficiently small, the k-LUT to AIG
converter identifies the NPN class of the function and maps
the node to the size optimum subgraph.



Algorithm 1 signal ← Decomposition(S, F )
1: if ( F = ⊤ ) then
2: return 1
3: else if ( F = ⊥ ) then
4: return 0
5: else if ( |S| ≤ max_sup ) then
6: return Chatterjee method (S, F )
7: x← choose variable x from S
8: if ( is top-decomposable (x,S, F,⊙) ) then
9: return x⊙Decomposition (S, F )

10: else if ( is bottom-decomposable (S, F ) ) then
11: return Decomposition (S, F )
12: f0 ← Decomposition (S\x, F0)
13: f1 ← Decomposition (S\x, F1)
14: return x · f1 + x′ · f0

If we ignore lines 5 to 6 and 8 to 11 in Algorithm 1, the
procedure corresponds to a Shannon decomposition. Previous
studies [4], [6] show that maximizing mutual information is
a good criterion for selecting the variable at each SD step.
We refer to the combination of this decomposition procedure
with the additional termination condition of lines 5 to 6 as
Information theory-based Shannon Decomposition (ISD).

With the further addition of lines 8 to 11, we name
the method Information theory-based DSD (IDSD). First,
the algorithm tries to perform a top-decomposition step
on the selected variable. In Sec. III-B1 we motivate why,
also for this case, the maximization of mutual information
is an effective selection criterion. In case of success, is
top-decomposable has also updated the cover, on which
we can recursively apply the decomposition method. In case
of failure, the algorithm attempts a bottom-decomposition
step. If is bottom-decomposable returns true, it has
also updated the cover and the algorithm calls the recursive
procedure. Finally, if none of the previous conditions occurs,
the algorithm uses the selected variable to perform a SD step.

B. Don’t Knows-based Disjoint Support Decomposition

1) Top-Decomposition: In Algorithm 1, we first check if
the function is top-decomposable in variable x. If this is
the case, both the support and the cover are updated, and
⊙ contains the detected 2-input function. We test the top-
decomposition condition only on the variable maximizing the
mutual information. Indeed, if Eq. 3 holds, the single variable
alone contains as much information as a more complicated
function of the others. Hence, its mutual information cannot
be lower than the highest among the remaining variables. This
choice is advantageous since, given a cover for n variables,
it saves n − 1 cofactors computations and comparisons at
each new call of Algorithm 1. Once chosen the variable,
the designed top-decomposition follows closely the approach
described for truth tables. Cases 1 to 4 listed in Subsection
II-B1 amount to check if one of the cofactors is a tautology or
a contradiction. On the other hand, the incompleteness of the
cover complicates case 5, i.e., the top XOR-decomposition.

When dealing with a truth table, the input patterns of the
two sub-covers associated with the cofactors coincide, and the
comparison is trivial. On the contrary, given an incomplete
cover, these sets are incomplete and they might even be non-
intersecting. Hence, treating the don’t knows as don’t cares
is prone to errors since, in the case of void intersection,
the algorithm could perform a top XOR-decomposition that
correctly synthesize the partial specifications but is unrelated
to the Boolean structure of the function.

Let Π0 and Π1 be the sets of input patterns defining the
sub-covers of F0 and F1. The number of examples they store
is N0 = |Π0| and N1 = |Π1|. Finally, let n be the number
of input variables of the original cover. If for all intersecting
patterns F0 = F ′

1, the goal is to verify if N∩= |Π0 ∩Π1|, the
size of the intersection, is sufficiently large to conclude that
case 5 holds. Assuming a uniform sampling from the space of
the input patterns, the probability of k intersections is

Pk = P(N∩ = k) =

(
2n−1

k

)(
2n−1−k
N0−k

)(
2n−1−N0

N1−k

)(
2n−1

N0

)(
2n−1

N1

) . (8)

From Pk we compute the standard deviation σ, that we take as
an uncertainty measure for the number of intersections. Then,
we check that two conditions apply:

• More than one intersection is present, i.e., N∩ > 1.
• The probability that the number of intersections is larger

than N∩ is negligible. For a given ϵ, e.g., 0.001, and
considering fluctuations, this reads

∑N∩+⌈σ⌉
k=0 Pk ≥ 1−ϵ.

Therefore, if F0 = F ′
1 for all intersecting patterns and both

conditions hold, F is assumed to satisfy case 5. This heuristic
is a statistically driven selective criterion. It limits the number
of top-XOR decompositions by filtering out cases that are
likely to result in not-accurate implementations.

2) Bottom-Decomposition: Analogously to the top XOR-
decomposition, cases 1 to 5 listed in Sec. II-B2 require the
comparison of incomplete covers. Again, a trivial approach is
to treat the don’t knows as don’t cares. Nonetheless, the same
consideration given for the top XOR-decomposition motivates
why this approach results in suboptimal implementations.
Hence, we devised a don’t knows-aware detection strategy of
the bottom-condition leveraging mutual information.

To perform a bottom-decomposition step, we first need to
verify if there exist a pair of variables (xi, xj) appearing in
function F only as in Eq. 4. Such variables, if present, are
equally informative. Hence, we can limit the analysis to the
pairs satisfying I(xi; f) = I(xj ; f). This observation allows
us to reduce considerably the number of calculations needed.
For each pair, we use Chatterjee’s method to find the new node
x̃ = xi⊙xj . Then, for Eq. 4 to be valid, it must be necessarily
true that

I(x̃; f) = I(xi, xj ; f), (9)
I(x̃; f) = I(x̃, xi; f) = I(x̃, xj ; f) = I(x̃, xi, xj ; f). (10)

Eq. 9 states that the new node contains the same informa-
tion as variables xi and xj combined. Eq. 10 indicates that
combining x̃ with any variable of its support does not yield



any appreciable advantage. If Eq. 9 and Eq. 10 hold, we
filter out a candidate node that is likely to be redundant
by requiring that I(x̃; f) > I(xi; f). Finally, we verify if
I(x̃; f) ≥ maxx I(x; f). Indeed, the presence of a more
informative node may prevent the optimal node x̃ from being
identified. Since the detection of the bottom-decomposability
condition is followed by the irreversible substitution of (xi, xj)
with x̃, it is better to first branch on argmaxx I(x; f).

IV. EXPERIMENTAL RESULTS

The IWLS2020 benchmarks consist of 100 single output
Boolean functions from three domains: Arithmetic, Random
Logic, and Machine Learning. The input size varies from 16
to 768, and, for each function, 12800 input-output pairs are
available for synthesizing an AIG network. Given a method,
we evaluate its efficiency using the accuracy of the generated
network when tested on 6400 input-output pairs not available
during the synthesis phase. The 12800-dimensional list is split
in two equally sized sub-lists. While the one named training
set is the cover for the synthesis phase, there is no strict
indication on the other, i.e., the validation set. The overfit
parameter is the average difference between the accuracies of
the validation and the test set. We did not use the validation
set for the synthesis. This choice results in a low overfit, which
indicates the high generality of the networks.

We propose a comparative study of the techniques discussed
in Section III. The experiments were performed on a Linux
machine with 1.8 GHz i7-8550U CPU and 8 GB RAM.

As a baseline, we synthesized the IWLS2020 benchmarks
using SD and ISD. In Table I we compare the average of the
results of these strategies with the ones of IDSD. Adding the
DSD steps to ISD gives the following average improvements:
the test accuracy increases by 1.34%, the number of gates
decreases by 15.81%, and the depth decreases by 9.66%. We
only report the average of the improvements since the data
from which we computed them is a table with 100 entries.

TABLE I
METHODS COMPARISON

comparison Performances
method test[%] gates levels overfit[%] time[s]

SD 64.96 6189.64 140.61 0.14 6.54
ISD 80.43 1162.23 72.54 0.18 3.36

IDSD 81.14 958.19 68.58 0.11 73.07
dcDSD 60.39 6405.97 316.39 0.02 84.04
SOA 88.69 2517.66 39.96 1.86 -

Table I also shows the worsening of the performances when
performing DSD with don’t knows treated as don’t cares
(dcDSD). This observation strengthens the assumption that
don’t cares-based methods are not effective in LFE tasks as
they have not been built with generalization in mind [3].

Figure 1 compares the test accuracies of SD, ISD, IDSD,
and dcDSD. Benchmark 74 is particularly informative as it
corresponds to a 16-input XOR. The accuracy of ISD is
50.75%, meaning that the network performs random guesses.
Instead, the application of IDSD yields the synthesis of the

Fig. 1. Test Accuracies of SD, ISD, IDSD, and don’t cares-based DSD.

exact functionality, also lowering the number of gates from
6346 to 45. Hence, the top-decomposition method correctly
identifies the XOR structure. In Table I, we also reported the
results for the state-of-the-art (SOA) [6]. One should notice
that the authors used a portfolio approach and post-optimized
the network. On the contrary, since our goal is to show
the effectiveness of the IDSD procedure, used as a unique
technique, we did not perform any post-optimization.

V. CONCLUSIONS

The proposed IDSD procedure is a novel approach to extend
the applicability of DSD to incomplete covers when don’t
knows are present. The method allows us to effectively perform
DSD on incomplete covers of input size as large as 768. The
results show the effectiveness of using mutual information
to synthesize circuits aware of the presence of don’t knows,
as opposed to the trivial approach of treating them as don’t
cares. Additionally, our approach minimizes the number of
gates while assembling the network, thus reducing the need
for pruning techniques. Future works will focus on extending
IDSD to the multiple-output case, leveraging the statistical
nature of the method to maximize the shared logic.
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