
ARTICLE OPEN

Xor-And-Inverter Graphs for Quantum Compilation
Giulia Meuli 1,2✉, Mathias Soeken1 and Giovanni De Micheli1

Quantum compilation is the task of translating a high-level description of a quantum algorithm into a sequence of low-level
quantum operations. We propose and motivate the use of Xor-And-Inverter Graphs (XAG) to specify Boolean functions for quantum
compilation. We present three different XAG-based compilation algorithms to synthesize quantum circuits in the Clifford+ T library,
hence targeting fault-tolerant quantum computing. The algorithms are designed to minimize relevant cost functions, such as the
number of qubits, the T-count, and the T-depth, while allowing the flexibility of exploring different solutions. We present novel
resource estimation results for relevant cryptographic and arithmetic benchmarks. The achieved results show a significant
reduction in both T-count and T-depth when compared with the state-of-the-art.

npj Quantum Information (2022) 8:7 ; https://doi.org/10.1038/s41534-021-00514-y

INTRODUCTION
Different programming languages are currently available to
program quantum computers at a high level of abstraction, with
the purpose of enabling a wide community to exploit their
exceptional computation capabilities. Relevant examples are: Q#
(Microsoft)1, Qiskit (IBM)2, PyQuil/Quil (Rigetti)3, Circ (Google)4,
Quipper5, Scaffold/ScaffCC6, and ProjectQ7. These languages
require fast and reliable methods to compile the program into
hardware-specific low-level quantum operations. The compilation
result is evaluated by the number of qubits used, as well as by the
number and the entity of low-level operations obtained.
Many quantum algorithms, such as Grover’s8, Shor’s9 and

HHL10, require the computation of some combinational logic
functions, e.g., arithmetic functions, which usually need large
amounts of resources to be computed. Methods capable of
generating quantum circuits for such logic designs are needed to
run these algorithms on a quantum computer. For example, HHL
requires the reciprocal operation, which causes a significant
overhead in the number of qubits with respect to the other
components of the algorithm. In some cases, the resources
required to perform logic operations may dominate the overall
resources and exceed the available computing power. Besides,
quantum circuits performing combinational logic, called oracles,
find application in post-quantum cryptography. It has been
shown how Grover’s algorithm can be used to break symmetric
encryption schemes such as the Advanced Encryption Standard
(AES), if the quantum circuit for the encryption function is
known11,12. The number of resources required to break a newly
proposed post-quantum encryption scheme depends on the
resources required to build the corresponding quantum oracle.
Consider for example the categories for public-key schemes
proposed by the National Institute of Standards and Technology
(NIST) in their proposal to standardize post-quantum cryptogra-
phy13. Shor’s algorithm also requires combinational logic and can
be used to construct quantum algorithms for integer factoriza-
tion, finite field discrete logarithms, and elliptic curve discrete
logarithms. As a consequence, cryptosystems based on these
problems cannot be considered secure in a post-quantum
environment.
Even if the technology is nowadays still far from achieving the

system sizes and performances that these applications require,

estimating the resources needed to perform combinational
functions has a relevant impact on the design and applicability
of advanced quantum algorithms. The resource footprint of
these operations, e.g., a large number of quantum operations
and qubits, can exceed the actual resources available, hence
preventing some algorithms to be computed. Consequently,
there is a large interest in compilation methods that minimize
the impact of combinational logic on the cost of quantum
algorithms.
Several research works focus on improving (often manually)

quantum implementations of cryptographic functions. As Shor’s
algorithm can be used to break elliptic curve cryptography,
authors of14 have optimized the required quantum circuit that
computes the costly elliptic curve scalar multiplication. The
authors of ref. 11 present Clifford+ T implementations of AES
(key size 128, 192, and 256) used to evaluate the resources
needed to run an exhaustive key search with Grover’s algorithm.
In ref. 15, authors present resource estimations of quantum pre-
image attacks on SHA-2 and SHA-3. They present quantum
oracles for SHA-256 and SHA3-256. They improve the reversible
implementations derived in ref. 16 and evaluate the cost of
running the attack on a surface code based fault-tolerant
quantum computer. In ref. 17 authors focus on improving the
implementation of the S-box of AES to simplify Grover based key
search. Similarly, authors in ref. 18 provide implementations for
SHA-256 and AES-128, result successively improved by Jaques
et al. 12.
In this work, we focus on the problem of automatically

compiling arbitrary logic functions for fault-tolerant quantum
computing, starting from a multilevel logic network representa-
tion. With respect to the previously cited works, we do not rely on
manual and design-specific optimizations. Our automatic compi-
lation strategies are designed to minimize qubits and gates, with
an emphasis on exploring the trade-off between the two cost
functions. The algorithms are inspired by methods currently
applied in classical multilevel logic synthesis—a 50 years old
research field focused on optimization and mapping of combina-
tional designs19. Algorithms and data structures developed in this
field can be borrowed, adapted, and expanded to the synthesis of
quantum circuits. In particular, we exploit a convenient graph-
based data structure called Xor-And-Inverter Graphs (XAG). As we
target fault-tolerant quantum computing, we compile into the

1Integrated Systems Laboratory, EPFL, Lausanne, Switzerland. 2Synopsys Italia, Silicon Realization Group, Agrate Brianza, Italy. ✉email: meuli@synopsys.com

www.nature.com/npjqi

Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-021-00514-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-021-00514-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-021-00514-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-021-00514-y&domain=pdf
http://orcid.org/0000-0002-6405-5989
http://orcid.org/0000-0002-6405-5989
http://orcid.org/0000-0002-6405-5989
http://orcid.org/0000-0002-6405-5989
http://orcid.org/0000-0002-6405-5989
https://doi.org/10.1038/s41534-021-00514-y
mailto:meuli@synopsys.com
www.nature.com/npjqi

Clifford+ T universal library and focus on the following cost
functions: the T-count—the number of generated T gates; the T-
depth—the maximum number of T gates to be performed
sequentially, also referred to as number of T-stages; and the
number of qubits. We identify how the characteristics of the
network impact the resource footprint of the compiled circuit and
elaborate on how the network could be modified to achieve
better compilation results using state-of-the-art minimization
strategies20,21.
Logic networks are often used as convenient representation

to develop scalable reversible synthesis algorithms22–24. A
recent work25 presents an automatic hierarchical synthesis
method that leverages look-up table (LUT) decomposition. Such
a method has the advantage of being applicable to any logic
network, independently of the Boolean function implemented
by its nodes. More importantly, it enables us to control the
number of generated qubits: the network is decomposed into
several single-output sub-networks whose results are stored into
extra qubits. By controlling the size of the sub-networks, it is
possible to control the extra qubits generated. Nevertheless, the
method is not able to efficiently optimize the gate count.
Typically, when the number of qubits is heavily constrained, the
number of gates significantly increases. This happens because
large sub-networks will be generated and, with no control on
the Boolean functions they implement, they will likely be
compiled into a large circuit. In addition, LUT decomposition
causes a windowing effect: parts of the networks are prevented
from being synthesized together, resulting in more gates. To
address this issue, the work in ref. 26 implements an LUT
decomposition strategy which allows some control on the
grouped logic, reducing the T-count.
The present work is based on a different synthesis approach

that enables better control over all the cost functions, which we
introduced for the first time in ref. 27. This approach is based on
identifying repeated patterns in the network, which conveni-
ently translate into quantum circuits with few gates. In
particular, the graph is decomposed into parts that can be
implemented by one single Toffoli gate. Hence, a direct
correlation can be established between the features of the
networks and the cost in terms of T gates (T-count and T-depth)
and number of qubits.
In this work, we present all the latest improvements on XAG-

based compilation, which reflect in the algorithms collected in the
open-source library caterpillar. We propose XAG-based compila-
tion as the method of choice to automatically synthesize quantum
circuits implementing cryptographic and arithmetic logic func-
tions with application in post-quantum cryptography and fault-
tolerant quantum computing. Through the provided detailed
description of the algorithms, the reader can identify (i) the most
suited algorithm and (ii) the best XAG pre-processing steps to be
used with respect to a specific compilation problem.
The first algorithm presented, which was originally proposed in

ref. 27, minimizes the T-count by correlating it with the number of
AND nodes in the XAG (multiplicative complexity). Indeed, the
final circuit achieves the upper-bound in the number of T gates of
four times the multiplicative complexity of the input network. We
demonstrated in ref. 27 an average 20 × reduction in T-count with
respect to LUT-based methods. The second algorithm proposed
minimizes the T-depth by relating it to (i) the maximum number of
levels in the graph with AND nodes, i.e., the multiplicative depth,
and (ii) the number of AND nodes in the same level sharing input
signals. This algorithm achieves a T-depth equal to the multi-
plicative depth of the graph and has been originally used in ref. 28

to synthesize designs with maximum 5 inputs. We provide a
detailed algorithmic description of both algorithms. Furthermore,
we present synthesis results for relevant cryptographic bench-
marks (https://homes.esat.kuleuven.be/~nsmart/MPC/ and http://
cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html), which

can serve as resource estimation for post-quantum attacks. Such
results are compared with the state-of-the-art estimates available
in the literature for some of the designs, showing improvement
with respect to both T-count and T-depth. Differently from ref. 28,
we provide resource estimation results for very large designs,
proving the scalability of the proposed methods. We discuss and
compare the results that the two methods achieve in addition to
explaining how properties of the XAGs can be modified to tune
the obtained results. For example, we identify the node
scheduling as a key tool to minimize the number of qubits when
using the second algorithm.
Finally, in this paper we propose a third compilation algorithm

that performs quantum memory management to explore the
trade-off between qubits and T-count. The number of available
helper qubits can be selected as a parameter of the algorithm,
which will return a valid compilation solution to not exceed the
given qubit constraint, then an optimization procedure reduces
the number of T gates. In particular, it exploits SAT solvers to find
a strategy to fit the logic into a constrained number of qubits. The
idea is to enable the reuse of helper qubits by uncomputing
intermediate results, solving the so-called reversible pebbling
game29. In a previous work30 we introduced the problem of
quantum memory management and proposed a solution based
on SAT. With respect to the first attempt to apply this idea to
XAGs in ref. 27, here we propose to work at a wider level of
granularity. In other words, while the previous method was
enabling computation and uncomputation of every single node
in the XAG separately, in this approach we group selected sets of
nodes together. This allows us to control the overhead in the
number of gates generated when constraining the number of
qubits. We present a SAT encoding that, by reducing the number
of variables and the size of clauses, is applicable to larger designs
and enables a second optimization algorithm to further improve
the T-count of the compiled results. We demonstrate the ability of
this method to trade-off qubits for gates on a selection of our
benchmarks.
In classical logic synthesis, a good method is based on the

synergy between data structure and algorithm, working together
to minimize the target functions. Multilevel logic networks proved
to be both scalable and compact data structures. For example, the
And-Inverter Graph (AIG) is a popular network used both in
academic and industrial frameworks31,32.
In this work, we present different algorithms for the synthesis of

quantum circuits that rely on the convenient representation of the
logic as an XAG. This is a logic network over the gate basis
{∧, ⊕, ¬}, meaning that each node of the network either computes
the 2-input AND operation, the exclusive-OR operation, i.e., the
2-input XOR, or the inversion operation :x ¼ 1� x ¼ x. We use x
to denote the Boolean complement of x ¼ 1� x, and define x0 ¼
x and x1= x. A simple XAG computing the majority-of-three
Boolean function is shown in Fig. 1a.
A Boolean chain is a formal notation for logic networks.

Given primary inputs x1,…xn, a logic network consisting of r
local function is represented by a sequence called Boolean
chain

xi ¼ f iðxi1 ; ¼ ; xiarðf i Þ Þ for n � i � nþ r (1)

where fi is a gate function with ar(fi) inputs and 0 ≤ ij < i for 1 ≤ j ≤
ar(fi) are indexes to primary inputs or previous steps in the
sequence, as defined in ref. 33. An XAG logic network representing
an n-variable Boolean function with inputs x1, …, xn is modeled as
a Boolean chain with steps

xi ¼ xjðiÞ � xkðiÞ or xi ¼ xpðiÞjðiÞ ^ xqðiÞkðiÞ; (2)

for n < i ≤ n+ r, depending on whether the step computes the
2-input XOR or the 2-input AND operation, where r is the number
of steps. The constant values 1 ≤ j(i) < k(i) < i point to input or

G. Meuli et al.

2

npj Quantum Information (2022) 7 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/
http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html

previous steps in the chain. When a step computes the AND
operation, the Boolean constants p(i) and q(i) are used to possibly
complement the gate’s fan-in. Please note that complemented
inputs of XOR gates can be propagated to their outputs, hence we
do not define p(i) and q(i) for the XOR steps. The value of a single-
output function is computed by the last step of the chain f ¼ xpnþr ,
which may be complemented. In the case of multi-output
functions, there will be a set of steps that computes the function’s
values: f o ¼ xpo , where o ∈ O is the list of all the output indices. We
write ∘i= ∧ , if step i computes an AND gate, and ∘i=⊕, if step i
computes an XOR gate.
We define the multiplicative complexity of the logic network as

the number of AND gates it contains: ~c ¼ jfij�i ¼ ^gj. We also
define the multiplicative complexity of the Boolean function, which
is the minimum number of AND nodes required to represent it as
an XAG. Clearly, the multiplicative complexity of a network is an
upper bound on the multiplicative complexity of the Boolean
function it realizes.
In this work, we exploit the fact that every AND node acts on

two multi-input parity functions. When the input to the AND node
is either a primary input, another AND gate, or a network’s output,
the arity of this function is equal to 1. Formally, let the linear
transitive fan-in of a node xi in the logic network be defined using
the recursive function

ltfi ðxiÞ ¼
fxig if i � n or �i ¼ ^ or i 2 O;

ltfi ðxjðiÞÞ 4 ltfi ðxkðiÞÞ otherwise ;

(

(3)

where ‘Δ’ denotes the symmetric difference of two sets. It is easy
to see that all elements in ltfi(xi) are either inputs, outputs, or steps
that compute an AND gate. Figure 4 illustrate an AND node and its
two linear transitive fan-in cones.

Example 1. The network in Fig. 1a, in which dotted lines represent
inversion, implements the majority-of-three function
x1x2x3h i ¼ x1x2 _ x1x3 _ x2x3. The network corresponds to a
Boolean chain with four steps:

x4 ¼ x1 � x2; x5 ¼ x2 � x3;

x6 ¼ x4 ^ x5; x7 ¼ x3 � x6:

For this network

ltfi ðx4Þ ¼ fx1; x2g;
ltfi ðx5Þ ¼ fx2; x3g;
ltfi ðx6Þ ¼ fx6g;
ltfi ðx7Þ ¼ fx3; x6g:

Finally, we introduce the concept of level in the XAG network.
Every step xi of the network, with 1 ≤ i ≤ n+ r is characterized by a
quantity called level and defined as:

LðxiÞ ¼
max
t2C

ðLðtÞÞ þ 1withC :¼ ltfi ðxjðiÞÞ∪ ltfi ðxkðiÞÞ; if i> n

0; otherwise

(

(4)

In other words, a network’s node xi is at level L(xi)= l only if the
node with the maximum level among all the ones in the linear
transitive fan-in cones of xi is at level l− 1. This means that only
AND nodes and outputs count to define the depth of the network,
because only AND and outputs nodes appear in the ltfi sets. We
define maxn < i�nþrLðxiÞ as the multiplicative depth of the network.
In addition to providing a very compact representation for

Boolean functions, XAG networks have another characteristic that
makes them excellent data structures for quantum compilation:
each node represents a logic function for which a convenient
quantum circuit implementation exists. This allows us to recognize
the existence of a dependency between the network character-
istics, e.g., the multiplicative complexity/depth, and the synthe-
sized quantum circuit. It is indeed possible to derive an upper
bound on the number of expensive gates from characteristics of
the XAG.
Given a logic network computing an n-variable Boolean

function f(x), a compilation algorithm finds a quantum circuit that
implements the unitary operation

Uf : xj i yj i 0j ik 7! xj i y � f ðxÞj i 0j ik ; (5)

where k is the number of extra qubits internally used by the circuit
and restored back to 0j i, also referred to as helper qubits. This
circuit is often called oracle. Automatic compilation of logic
designs requires two steps, illustrated in Fig. 1: (i) transforming a
possibly non-reversible Boolean function into a reversible
quantum circuit, and (ii) translating the reversible circuit into a
quantum circuit.
The first step is responsible of mapping the Boolean function

into a reversible circuit. A reversible circuit is a logic representation
characterized by a fixed number of lines that store inputs, outputs,
and intermediate data, acted upon by reversible gates. For
example, Fig. 1b shows the reversible circuit performing the
function specified by the XAG in Fig. 1a. Such circuit is built using
2-input Toffoli gates, CNOT gates, and X gates (or NOT). The Toffoli
gate is characterized by a set of two controls x1, x2 and by a single
target y1. It performs the transformation:

x1j i x2j i y1j i 7! x1j i x2j i y1 � x1x2j i: (6)

In other words, it inverts the target only if the logic AND of the
two controls evaluates to one. In practice, if y1 is initialized to 0j i,
the Toffoli gate performs the AND operation. The CNOT is
specified by a target and by a control qubit: it complements the
target if the state of the control is 1j i. If applied on target in the
state 0j i the CNOT gate copies the state of the control.
Once the Boolean function is expressed using reversible gates, it

needs to be compiled into a quantum circuit. Quantum circuits are
a way to describe quantum programs: a sequence of operations
performed on qubits, represented by quantum gates. We expect
the reader to be familiar with the quantum circuit representation

Fig. 1 The three steps perfomed to compile an XAG representing
the majority-of-three function. a Specification; b corresponding
reversible circuit; c corresponding quantum circuit.

G. Meuli et al.

3

Published in partnership with The University of New South Wales npj Quantum Information (2022) 7

and gate abstractions and refer to ref. 34 for a detailed description.
In fault-tolerant quantum computing, we consider gates from the
Clifford+ T universal library. This consists of the CNOT gate, the
Hadamard gate (H), as well as the T gate, and its inverse T†. The T
gate is particularly expensive to be applied. As a consequence, the
T-count (number of T gates) is a good measure for the cost of a
fault-tolerant implementation of a given quantum program35,36.
Our algorithms exploit well known state-of-the-art quantum

implementations of the 2-input Toffoli gate. The Toffoli gate has a
Clifford+ T implementation that requires 7 T gates37, which is
optimum38,39:

ð7Þ

This implementation has been used to derive the quantum circuit
for the majority-of-three function shown in Fig. 1c. When the
Toffoli gate is computed on a qubit initialized to 0j i, it can be
implemented using 4 T gates, with a T-depth of 2, and without
requiring any additional qubit40,41:

ð8Þ

where HY= SH and Tj i ¼ TH 0j i. Besides, when the result of the
Toffoli is uncomputed, this can be performed without the use of
any T gate, exploiting measurement-based uncomputation40, as
shown:

ð9Þ

There exists also another AND gate implementation with T-
depth= 1, which combines the AND circuit from ref. 41 and the
Toffoli gate implementation with T-depth= 1 in ref. 42. The circuit
requires one extra qubit with respect to the implementation in (8):

ð10Þ

where þj i ¼ H 0j i.

RESULTS
In this section, we report the statistics of the quantum circuits
generated by our XAG-based algorithms. We selected two publicly
available benchmark suites, including arithmetic, cryptographic,
e.g., AES, and floating point operation with applications in post-
quantum cryptography and fault-tolerant quantum computing.
The first benchmark contains the best-known versions of logic

networks in terms of multiplicative complexity and depth,
collected by the Computer Security Resource Center (CSRC) at
the National Institute of Standards and Technology (NIST). We
synthesize: (i) finite field multiplication in GF(26) using irreducible
polynomial x6+ x3+ 1 (m × 6 × 31), multiplication in GF(27) using
irreducible polynomial x7+ x4+ 1 (m × 7 × 41) and using x7+ x3

+ 1 (m × 7 × 31); (ii) binary multiplication with different input sizes
n (bm_n); (iii) a 16-bit and a 8-bit S-box (s16, s8); (iv) finite field
multiplication in GF(28) using the AES polynomial x8+ x4+ x3+ x
+ 1 (×8 × 4 × 31).
In addition, we evaluate our method on a set of circuits used in

the context of Multi-Party Computation and Fully Homomorphic
Encryption. From the benchmarks available online we synthesize:

(i) block ciphers DES in its expanded and non-expanded variant
(the latter meaning that the input key is assumed non-expanded);
(ii) block cipher AES with 128, 192, and 256 key length; (iii)
cryptographic hash functions MD5, Keccak, SHA-256, and SHA-
512; (iv) arithmetic functions such as adders, multipliers, and
comparators; (v) IEEE floating point operations. We pre-process
the XAGs exploiting the toolbox to reduce the multiplicative
complexity proposed by the authors of ref. 20. This enables us to
further improve the provided resource estimates for these
designs.

Improving the T-count versus T-depth
Table 1 shows the synthesis results of the first two proposed
algorithms. Alg. 1 minimizes the T-count, while Alg. 2 minimizes
the T-depth without increasing the number of T gates, but relying
on an increased number of additional qubits. The number of T
gates achieved is equal to 4 times the multiplicative complexity of
the network for both algorithms. The second algorithm obtains a
T-depth equal to the multiplicative depth of the network. The last
two columns of Table 1 compare the algorithms by reporting: the
percentage of absolute change in T-depth (%Td) and in number of
qubits (%Q) of Alg. 2 with respect to Alg. 1.
Figure 2 compares the results automatically obtained using Alg.

2 with some resource estimates available in the literature11,12,15,17.
The comparison shows a significant reduction in both T-count and
T-depth, while facing a less significant increase in number of
qubits. Nevetheless, it is important to note that once mapped into
an error-correcting code, T gates require a large amount of
dedicated qubits. Note that the authors of ref. 17 only report the
number of Toffoli gates and the Toffoli-depth. We obtain the
corresponding T-count and T-depth by considering the Clifford+T
implementation of the Toffoli gate with 7 T gates and a T-depth
equal to 3, which is optimal38.

Qubits/T-count trade-off
In this section, we show the results generated by our third
algorithm to manage the memory resources during the compila-
tion of the logic design. Our method allows us to force the
compilation to synthesize a circuit with a limited number of helper
qubits. Figure 3 shows the compilation results obtained setting
the number of available helper qubits to different values, for a
selection of designs. The plots show on the x-axis the number of
qubits, and on the y-axis the obtained T-count. For every fixed
number of qubits we report two points: the non-optimized and
the optimized results. The latter obtained by running a post-
optimization procedure encoded as a SAT problem on the initial
(non-optimized) result. It can be seen how the procedure allows us
to choose between different qubit/T-count trade-off solutions and
how the optimization manages to minimize the T-count.

DISCUSSION
In the last section, we reported the specifics of quantum circuits
compiled using our three XAG-based algorithms. In particular, the
first two techniques achieve results that are predictable by
inspecting the characteristics of the logic network. In details, given
a logic network characterized by a multiplicative complexity ~c, i.e.,
the number of AND nodes, and by a multiplicative depth:

● both algorithms achieve a T-count equal to 4~c;
● Alg. 2 achieves a T-depth equal to the multiplicative depth;
● the qubit overhead to achieve such T-depth depends on the

number of shared inputs in the linear transitive fan-ins of the
AND nodes in a level.

This suggests that improving a network with respect to the
named parameters can strongly and positively impact the

G. Meuli et al.

4

npj Quantum Information (2022) 7 Published in partnership with The University of New South Wales

synthesized quantum circuits, e.g., as done in ref. 21, to reduce the
T-depth by reducing the multiplicative depth of the network.
Inspecting the results of the comparison in Table 1 reveals a

trade-off between T-depth and number of qubits. Indeed, while
Alg. 1 is far from achieving the T-depth performances of Alg. 2, it
requires fewer qubits. There are two reasons for the increase in
qubits which characterizes Alg. 2. The first one is that it employs
the AND implementation characterized by a single T-stage and
presented in Section “Introduction” (10), which requires one qubit
more than implementation (8) used by Alg. 1. This means that the

compilation will request this extra qubit whenever a AND node is
computed. In addition, the implementation of AND nodes used by
the second algorithm is characterized by a T gate applied to the
controls, as well as to the target qubit. For this reason, if two AND
nodes share the same input signal, the corresponding quantum
circuit will have a T-depth equal to 2, as each AND implementation
will add a T gate to the shared qubit. If all the AND nodes at the
same level of an XAG do not share any input, they can be
computed within a single T-stage. In order to achieve this result,
our second algorithm copies inputs that are shared among more

Table 1. Compilation results.

Alg.1 Alg.2 Comparison

benchmark I O AND XOR Tca Td Q Td Q %Td %Q

mcustom 16 8 27 79 108 8 51 1 116 12.50 227.45

mx6x31 12 6 27 30 108 6 45 1 112 16.67 248.89

mx7x41 14 7 40 44 160 7 61 1 164 14.29 268.85

mx7x31 14 7 40 45 160 7 61 1 164 14.29 268.85

s16 17 16 113 333 452 48 146 8 283 16.67 193.84

bm-10 20 19 52 102 208 12 89 1 218 8.33 244.94

bm-11 22 21 78 108 312 12 119 1 322 8.33 270.59

bm-12 24 23 81 126 324 12 126 1 332 8.33 263.49

bm-15 30 29 117 195 468 18 174 1 482 5.56 277.01

bm-20 40 39 208 314 832 24 285 1 850 4.17 298.25

bm-30 60 59 351 687 1404 36 468 1 1448 2.78 309.40

bm-40 80 79 624 1079 2496 48 781 1 2554 2.08 327.02

bm-50 100 99 676 1847 2704 72 873 1 2774 1.39 317.75

bm-60 120 119 1053 2253 4212 72 1290 1 4284 1.39 332.09

bm-70 140 139 1432 2985 5728 72 1709 1 5856 1.39 342.66

bm-80 160 159 1872 3494 7488 96 2189 1 7582 1.04 346.37

bm-90 180 179 1989 4561 7956 126 2346 1 8104 0.79 345.44

bm-100 200 199 2704 5143 10,816 144 3101 1 10,950 0.69 353.11

s8 9 8 32 81 128 28 49 6 63 21.43 128.57

x8x4x31 16 8 48 69 192 8 72 1 194 12.50 269.44

DES-expanded 832 64 9205 13,136 36,820 2070 10,101 214 10,352 10.34 102.48

DES-non-expanded 128 64 9048 13,092 36,192 2186 9240 202 9464 9.24 102.42

adder-32bit 64 33 32 150 128 33 129 32 130 96.97 100.78

adder-64bit 128 65 64 284 256 65 257 64 258 98.46 100.39

comparator-32bit-lt 64 1 92 95 368 21 156 20 182 95.24 116.67

comparator-32bit-lteq 64 1 92 97 368 20 156 19 182 95.00 116.67

md5 512 128 9367 29,729 37,468 7561 10,007 1283 10,619 16.97 106.12

mult-32x32 64 64 1689 4723 6756 324 1816 64 1816 19.75 100.00

Keccak-f 1600 1600 38,400 115,200 153,600 30,209 41,600 24 44,798 0.08 107.69

AES-128 256 128 6400 28,176 25,600 874 6976 60 7133 6.86 102.25

AES-192 320 128 7168 32,080 28,672 830 7808 72 7870 8.67 100.79

AES-256 384 128 8832 39,008 35,328 900 9536 84 9598 9.33 100.65

SHA-256 768 256 22,573 109,746 90,292 14,411 23,597 1607 23,597 11.15 100.00

SHA-512 1536 512 57,947 284,286 231,788 40,172 59,995 3304 59,995 8.22 100.00

FP-add 128 64 5346 5629 21,384 2460 5538 235 5541 9.55 100.05

FP-div 128 64 70,599 44,959 282,396 25,649 70,792 3604 72,563 14.05 102.50

FP-eq 128 64 315 356 1260 10 506 9 526 90.00 103.95

FP-f2i 64 64 1458 1421 5832 593 1586 94 1683 15.85 106.12

FP-mul 128 64 18,874 10,290 75,496 1988 19,066 118 20,907 5.94 109.66

FP-sqrt 64 64 76,925 57,165 307,700 44,782 77,054 6498 79,589 14.51 103.29

aBoth algorithms achieve the same T-count.

G. Meuli et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2022) 7

AND nodes in a level on new qubits. Hence, the compilation will
request a new qubit whenever inputs are shared among AND
nodes at the same level in the XAG. In conclusion, if we sum the
number of AND nodes in a level with the number of shared inputs
among them, we obtain a quantity equal to the number of helper
qubits required to compile that level. Since helper qubits are
cleaned-up after all the nodes in the level are computed, the level
for which this amount is greater will dominate and give the total
number of helper qubits for the synthesis of the entire network.
Further details on the algorithm, including detailed pseudo-code,
can be found in Section “Methods”.
We chose to report in Table 1 the two extremes that can be

reached using our constructive algorithms. It is also possible to
obtain results ‘in-between’, i.e., a smaller improvement in T-depth
and a smaller qubit overhead with respect to Alg. 2, e.g., by
modifying Alg. 1 to use the implementation with T-depth equal to
one. In addition, as the connectivity of each AND node in a level
has an impact on the T depth, different results can be found by
changing how the level of each node is computed. For example, it

is possible to change the scheduling of the nodes to reduce the T
depth while minimizing the qubit overhead of Alg. 2.
Our third algorithm focuses on exploring the trade-off between

T-count and number of qubits. Figure 3 shows how our method is
capable of providing different compiled solutions, by taking the
number of helper qubits as a parameter. Our method finds the
best way of reusing memory space, by computing and
uncomputing helper qubits that store intermediate results. This
problem corresponds to the reversible pebbling game. The
problem complexity has been studied in ref. 43, where the author
proves that finding the minimum number of pebbles is PSPACE-
complete, as in the case of the non-reversible pebbling game.
Besides, the problem is PSPACE-hard to approximate up to an
additive constant44. An explicit asymptotic expression for the best
time-space product is given in ref. 45. This is a global problem,
hard to approximate and decompose, hence difficult to be tackled
by heuristic techniques. Here, the problem is encoded as a SAT
problem and solved globally, returning a valid memory clean-up

Fig. 2 Resource estimates for AES-128/192/256 and SHA-256 compared with the state-of-the art: Jaques et al.12, Grassl et al.11,
Langenberg et al.17 and Amy et al.15. a Histogram comparing the number of T gates; b histogram comparing the T-depth; c histogram
comparing the number of qubits.

G. Meuli et al.

6

npj Quantum Information (2022) 7 Published in partnership with The University of New South Wales

strategy that guarantees the upper bound on the number of
helper qubits while also aiming to minimize the T-count.
With respect to the SAT-based technique in ref. 27, the algorithm

proposed in this work exploits a completely different SAT
encoding, which is more compact in both number of variables
and clauses. With this method it is possible to obtain competitive
results for larger designs while guaranteeing better results for
smaller designs. For example, consider the compilation of the
small design s8 on 20 helper qubits: our method achieves a T-
count of 164 while the results in ref. 27 show a T-count of
about 280.
In Fig. 3 we show non-optimized versus optimized pebbling

solutions. The non-optimized solution is provided by the SAT
solver without any constraints on the number of T gates
generated. The optimized solution is obtained starting from the
initial solution and running optimization rounds, which iteratively
add clauses to the SAT problem to minimize the T-count. The
more time is spent in the optimization procedure the better the
solution. The optimized points shown in Fig. 3 are either optimal
or the best result found after 1 and a half hours of running the
optimization procedure on a machine with two Intel Xeon E5-2680
v3 (Haswell) CPUs with 2.5 GHz clock frequency and 16 GB of main
memory.
The optimization procedure removes unnecessary steps that

the solver may insert in the solution. Indeed, none of the clauses
used to encode the problem prevents the solver to uncompute
nodes even if the limit in pebbles is not reached. Preventing this at
the encoding level requires a non-practical increase in the size of

the SAT problem. The optimization reveals the trade off between
qubits and T-count.

METHODS
Algorithm 1: minimizing the T-count
Our first algorithm achieves an upper bound on the number of T gates that
is proportional to the multiplicative complexity of the input network ~c.
Indeed, the final quantum circuit has 4~cT gates.
The key insight is that each AND node in the logic network is driven by

two multi-input parity functions of variables which are either inputs or
other AND nodes in the lower levels of the logic network. Figure 4 shows
the node xi and the two parity functions with the respective linear

Fig. 3 Results of pebbling selected logic networks using different number of pebbles: comparison between optimized and non-
optimized solutions. Results of pebbling a circuit implementing a binary multiplication; b a 64-bit addition; c IEEE floating point equality; d a
32-bit comparator.

Fig. 4 Illustration of the general idea in which the fan-in nodes of
an AND gate are considered as large XOR gates, computed in-
place using CNOT gates. a An AND step in an XAG network; b
corresponding compiled quantum circuit.

G. Meuli et al.

7

Published in partnership with The University of New South Wales npj Quantum Information (2022) 7

transitive fan-ins. The polarity variables p(i) and q(i) take into account
possible inversion of the inputs of the AND node. The pseudo-code of the
algorithm is provided by Alg. 1. Since the algorithm dedicates one helper
qubit for each node of the XAG to store its computed Boolean function, we
use nodes’ identifiers, e.g. xi, as parameters for quantum operations, e.g.,
NOT(xi), meaning that the operation is performed on the corresponding
qubits.
Lines 19–22 show that, at first, it computes all the steps of the network

that perform the AND (or compute an output) using the function compute.
Then all the intermediate results are restored to 0j i by uncomputing
‘compute’. In lines 23–24 NOT gates are placed on negated outputs. The
function compute (lines 2–18) builds the circuit for each step xi as
illustrated in Fig. 4. In particular, it identifies two qubits corresponding to
nodes in the ltfi cones that are not shared between the cones, namely t1
and t2. Then, the parity functions are computed in-place onto these qubits
t1 and t2. Then, the complemented edges are evaluated and NOT gates are
applied if necessary (see Fig. 4). In lines 13–14 the step xi is finally
computed on a new qubit, using a CNOT gate in case of an XOR output or
the implementation of the AND node described in (8), which has T-count
equal to 4 and T-depth equal to 2, otherwise. Finally, the parity functions
are uncomputed.

Algorithm 1. Low T-count compilation algorithm.

Note that we assume that L1 ≠ L2. If this is not the case, it means that the
functions computed by fan-in to the AND gate are equal, making the AND
gate redundant. Also, note that the intersection of L1 and L2 may not be
empty. Since we want to compute the value of L1 in-place on some signal
t1 ∈ L1, we must ensure that L1⊈ L2. If the latter condition applies, it is
sufficient to swap L1 and L2.
In addition, when L2⊆ L1, the value computed by L2 could be reused to

compute L1. This is achieved by modifying the elements in L1 such that
L1= (L1\L2) ∪ {xk}. An example is shown in Fig. 5. In this case ltfi(xj) includes
ltfi(xk) and ltfi(xj)\ltfi(xk)= {t0}. This leads to a reduction in the number of
CNOT operations.

Algorithm 2: minimizing the T-depth
Our second algorithm targets the reduction of the T-depth. Unlike the
previous algorithm, it uses the implementation of the AND operation that
has 4 T gates, 4 qubits, and 1 T-stage (10).
We refer to Xl= {xi∣L(xi)= l}, as the set of all the nodes at level l. The key

idea is that if two AND nodes in the same level do not share any of their
input in the ltfi sets, then they can be computed with only one T-stage
using implementation (10). Obviously, this is not always the case, as AND
nodes often share the same inputs. To overcome this problem, the
algorithm copies every overlapping set of inputs on a new helper qubit.
This procedure, described in Alg. 2, obtains circuits with a number of T-
stages equal to the multiplicative depth of the networks. While the
previously described algorithm proceeds in topological order, this one
proceeds level by level (see lines 10–17). For each level, the function
copy_overlaps assigns to each node a set of two qubits on which it
computes the parities of the two fan-in cones, defining the mapping CP. If
the node shares some inputs with another, a new qubit will be assigned to
compute the corresponding parity function, otherwise a qubit correspond-
ing to a node in the fan-in cone is used. This means that if a node xi∈ Xl
has inputs t1, t3, t5 (on qubits q1, q3, q5) in common with node xj∈ Xl, then a
new qubit qi will be used as target of three CNOT gates with the shared
input qubits as controls. As it can be seen in line 11, the copies are
performed before computing any of the nodes in the level, thus allowing
the actual AND implementations to act on non-overlapping qubits,
resulting in a single T-stage. Once the copies are being computed, each
node is passed to the function compute_on_copies (lines 1–9) which uses
the qubits associated by the mapping CP to each fan-in parity function as
controls to compute the AND. Once all AND nodes in the level are
computed, the parities are uncomputed (lines 14). Finally the levels in the
XAG are uncomputed from top to bottom. Every node, independently from
having shared fan-ins can be uncomputed without using copies (lines
15–17), applying the function compute defined in Alg. 1. Finally in lines
18–end NOT gates are placed on complemented outputs. An illustrative
example is shown in Fig. 6, where the algorithm is applied to a simple level
Xl= xi, xs with one overlapping input t0, such that ltfi(xj(i)) ∩ ltfi(xk(s))= {} and
ltfi(xj(s))= ltfi(xk(i))= {t0}. The figure shows how the overlapping input is
copied to a new qubit before computing the parity functions: then the two
AND can be computed in parallel with a T-depth equal to 1.

Fig. 5 A special configuration with one transitive fan-in included
in the other. a A special AND step in an XAG network; b
corresponding compiled quantum circuit.

Fig. 6 Compilation of an XAG level with two AND nodes using
algorithm 2. a XAG level with AND nodes xi and xs; b compiled
quantum circuit with a single T-stage.

G. Meuli et al.

8

npj Quantum Information (2022) 7 Published in partnership with The University of New South Wales

Algorithm 2. Low T-depth compilation algorithm.

Algorithm 3: minimizing the number of qubits
All the algorithms described so far compute and uncompute every AND
node at most once, and the compiled circuit is uniquely determined by the
features of the input network. In this section, we show a method that,
instead, allows us to explore the solution space, by enabling to compute
and uncompute nodes several times.
The third algorithm seeks the best strategy to uncompute the

intermediate results in order to optimize the memory usage. The problem
is equivalent to the reversible pebbling game. The game is played on a
directed acyclic graph (DAG) using a limited number of pebbles. The player
places or removes pebbles from the DAG nodes according to certain rules:
a pebble can be placed (removed) from a node only if all the inputs of that
node have a pebble. The game is won when pebbles are only placed on
the network’s output. The set of moves that leads to a winning
configuration is called pebbling strategy. Every pebble in the game
corresponds to a helper qubit. The move of placing a pebble on a node
corresponds to computing the logic of that node on this helper qubit.
When a pebble is removed, it corresponds to uncomputing the value
stored on the helper qubit. As a consequence, the pebbling strategy
directly corresponds to a set of compute/uncompute operations. The
definition of a winning configuration (no pebbles on internal nodes)
guarantees that performing this set of operations uncomputes all
intermediate results. As demonstrated in ref. 30, SAT solvers can be used
to solve the reversible pebbling game and find a synthesis strategy for any
Boolean function represented using a DAG.
The compilation problem is transformed into the following problem:

Problem 1
Given a DAG and a number of pebbles, find a valid pebbling strategy using
the minimum number of moves.
To address this problem using a SAT solver, it needs to be decomposed

into many SAT problems:

Problem 2
Given a DAG and P pebbles, does a valid pebbling strategy with K
moves exist?
The solver can either find a solution and return a pebbling strategy, or

state that no solution exists. In order to solve problem 1, when the SAT
solver returns unsat, K is incremented and the solver is asked to find a
strategy again. This is done until a satisfying solution is found. Since K is
incremented at each step, once a solution is found, it is guaranteed to be
the one with the smallest K.

SAT encoding. Here we give a quick overview of the basic encoding. The
input DAG G= (V, E) figures nodes computing output values and we refer
to them as elements of the set O⊆ V. Note that the primary inputs are not
nodes of the DAG. Problem 2 is encoded in terms of the pebble state
variables pv,i. For v ∈ V and 0 ≤ i ≤ K, those are Boolean variables that
evaluate to true if the node v is pebbled at time i. Note that the SAT
formula encodes K+ 1 pebble configurations with K steps describing the
transition from one configuration to the other. The following set of clauses
describes the reversible pebbling problem:

● Initial and final clauses. At time 0 all the nodes are unpebbled and at
time K all the outputs need to be pebbled and all the intermediate
results unpebbled^
v2V

pv;0 ^
^
v2O

pv;K ^
^
v∉O

pv;K

● Move clauses. If a node is pebbled or unpebbled at time i+ 1, then all
its children are pebbled at time i and time i+ 1:

K̂

i¼1

^
ðv;wÞ2E

ððpv;i � pv;iþ1Þ ! ðpw;i ^ pw;iþ1ÞÞ

● Cardinality clauses. At each step, at most P pebbles are used:

K̂

i¼0

ð
X
v2V

pv;i � PÞ

Example 2. Figure 7 illustrates how a network with only AND nodes can be
compiled as a reversible network of Toffoli gates out of a pebbling solution
with 3 pebbles and 6 steps. Note that the final circuit will use only 2 helper
qubits, which is the number of pebbles used, minus the number of
outputs. The overall width will be equal to 7: the number of inputs plus the
number of pebbles.
XAGs are DAGs in which each node computes the AND or the XOR

function. It follows that it is possible to play the reversible pebbling game
directly on the XAG, as done in ref. 27. Nevertheless, this does not exploit
the structural properties of the XAG. In addition, the SAT encoding
required for a similar approach must be capable of discriminating between
the different properties of the XAG node. For example, several clauses are
required to enable in-place computing of XOR nodes. The resulting SAT
problem features many variables and clauses and is only applicable to
small designs.
For these reasons, we choose to construct a different DAG from the XAG,

which we call abstract graph. Each AND node (and its two input parity
functions) corresponds to a box node of the abstract graph, as shown in
and Fig. 8. Once a strategy for pebbling the abstract graph is found, each
time a pebble is placed on a box node which compresses xi the compute
(xi) function will be called, while whenever a pebble is removed from a
node, the compute†(xi) function will be called to uncompute the node.

Optimizing the pebbling solution
While the XAG is compressed into the abstract graph we lose some
information about the number of quantum gates required to compute
each node. Indeed, the strategy found would not take into account the fact
that one box node requires more gates to be performed than another. In
addition, the SAT encoding of the standard reversible pebbling game does
not include any clause that controls the number of moves, which reflects in
the number of generated T gates. An optimization step is introduced to
overcome both problems.
The key idea is that it is possible to associate a weight with each box

node of the abstract graph wv, which is equal to the number of inputs to
the node itself. Indeed, the number of inputs are related to the number of
CNOT gates that are needed to compute the parity functions ‘hidden’ in
the compressed node. Then, we define a new set of variables for the SAT
encoding: activation variables av,i. For v ∈ V and 0 < i ≤ K, those are Boolean
variables that evaluate to true if the node v has changed its state at time i.
Once a weight-agnostic solution has been found, the following quantity

G. Meuli et al.

9

Published in partnership with The University of New South Wales npj Quantum Information (2022) 7

represent the total weight of the strategy:

Ws ¼
XK
i¼1

X
v2V

wvav;i (11)

The SAT solver is then asked to find a solution with a total weight W=
Ws− 1 by adding a cardinality clause that expresses equation (11). This
procedure is repeated until the solver returns ‘unsat’ or hits a timeout.
As shown in the result section, this optimization procedure succeeds at

reducing the number of T gates with respect to the initial solution. This
result can be achieved even if every node has weight equal to one. Indeed,
the optimization introduces a cardinality constraint on the activation
variables, hence eliminates all the pebbling moves that are not
fundamental to terminate the game. As a consequence, fewer helper
qubits are required. If the weights are set to reflect the actual size of the
parity functions, then the number of CNOT in the solution is reduced.

DATA AVAILABILITY
The circuits we synthesized have been collected by the NIST and the University of
Yale (http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html) and by the
Department of Electrical Engineering (ESAT) at KU Leuven (https://homes.esat.
kuleuven.be/~nsmart/MPC/). For some entries of our benchmark we used circuit
implementations with low multiplicative complexity obtained at EPFL and available
online at https://github.com/lsils/date2020_experiments.

CODE AVAILABILITY
All the algorithms that we discussed in this work are part of the C++ open-source
library caterpillar (https://github.com/gmeuli/caterpillar), which is one of the LSI logic
synthesis libraries46.

Received: 14 August 2020; Accepted: 3 December 2021;

REFERENCES
1. Svore, K. M. et al. Q#: Enabling scalable quantum computing and development

with a high-level DSL. In Real World Domain Specific Languages Workshop,
7:1–7:10 (2018).

2. Aleksandrowicz, G. et al. Qiskit: An Open-source Framework for Quantum Com-
puting (2019). Zenodo. https://doi.org/10.5281/zenodo.2562111.

3. Smith, R. S., Curtis, M. J. & Zeng, W. J. A practical quantum instruction set
architecture. Preprint at https://arxiv.org/abs/1608.03355 (2017).

4. Ho, A. & Bacon, D. Announcing Cirq: An open source framework for NISQ algo-
rithms. Google AI Blog (2018).

5. Green, A. S., Lumsdaine, P. L., Ross, N. J., Selinger, P. & Valiron, B. Quipper: a
scalable quantum programming language. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, 333–342 (2013).

6. Javadi-Abhari, A. et al. ScaffCC: a framework for compilation and analysis of
quantum computing programs. Proceedings of the 11th ACM Conference on
Computing Frontiers, CF 2014 (2014).

7. Steiger, D. S., Häner, T. & Troyer, M. ProjectQ: an open source software framework
for quantum computing. Quantum 2, 49 (2018).

8. Grover, L. K. Quantum computers can search arbitrarily large databases by a
single query. Phys. Rev. Lett. 79, 4709 (1997).

9. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Rev. 41, 303–332 (1999).

10. Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of
equations. Phys. Rev. Lett. 103, 150502 (2009).

11. Grassl, M., Langenberg, B., Roetteler, M. & Steinwandt, R. Applying Grover’s
algorithm to AES: quantum resource estimates. In: Post-Quantum Cryptography.
PQCrypto 2016 (ed. Takagi, T.), vol. 9606, 29–43 (2016).

12. Jaques, S., Naehrig, M., Roetteler, M. & Virdia, F. Implementing grover oracles for
quantum key search on AES and LowMC. In Annual Int’l Conf. on the Theory and
Applications of Cryptographic Techniques, 280–310 (Springer, 2020).

13. NIST. Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process (2016). Online at https://csrc.nist.gov/
CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-
submission-requirements-august2018.pdf.

14. Häner, T., Jaques, S., Naehrig, M., Roetteler, M. & Soeken, M. Improved quantum
circuits for elliptic curve discrete logarithms. In Int’l Conf. on Post-Quantum
Cryptography, 425–444 (Springer, 2020).

15. Amy, M. et al. Estimating the cost of generic quantum pre-image attacks on sha-2
and sha-3. In: Selected Areas in Cryptography – SAC 2016. (eds. Avanzi, R. & Heys,
H.), vol. 10532, 317–337 (2017).

16. Parent, A., Roetteler, M. & Svore, K. M. Reversible circuit compilation with space
constraints. Preprint at https://arxiv.org/abs/1510.00377 (2015).

17. Langenberg, B., Pham, H. & Steinwandt, R. Reducing the cost of implementing the
advanced encryption standard as a quantum circuit. IEEE Trans. Quantum Eng. 1,
1–12 (2020).

18. Kim, P., Han, D. & Jeong, K. C. Time-space complexity of quantum search algo-
rithms in symmetric cryptanalysis: applying to AES and SHA-2. Quantum Inf.
Process. 17, 339 (2018).

19. Brayton, R. K., Hachtel, G. D. & Sangiovanni-Vincentelli, A. L. Multilevel logic
synthesis. Proc. IEEE 78, 264–300 (1990).

Fig. 7 Illustration of a pebbling strategy using 3 pebbles and 6 moves. a Input DAG; b–g pebbling moves where dark nodes are pebbled; h
the corresponding compiled reversible circuit of Toffoli gates.

Fig. 8 Illustration of how sections of the XAG are compressed in a
box node of the abstract network.

G. Meuli et al.

10

npj Quantum Information (2022) 7 Published in partnership with The University of New South Wales

http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://github.com/lsils/date2020_experiments
https://github.com/gmeuli/caterpillar
https://doi.org/10.5281/zenodo.2562111
https://arxiv.org/abs/1608.03355
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://arxiv.org/abs/1510.00377

20. Testa, E., Soeken, M., Riener, H., Amaru, L. & De Micheli, G. A logic synthesis
toolbox for reducing the multiplicative complexity in logic networks. In Design,
Automation and Test in Europe Conference (2020).

21. Häner, T. & Soeken, M. Lowering the T-depth of quantum circuits by reducing the
multiplicative depth of logic networks. Preprint at https://arxiv.org/abs/
2006.03845 (2020).

22. Rawski, M. Application of functional decomposition in synthesis of reversible
circuits. In Reversible Computation. RC 2015. (eds. Krivine, J. & Stefani, J. B.), vol.
9138, 285–290 (2015).

23. Markov, I. L. & Saeedi, M. Faster quantum number factoring via circuit synthesis.
Phys. Rev. A 87, 012310 (2013).

24. Shende, V. V., Prasad, A. K., Markov, I. L. & Hayes, J. P. Synthesis of reversible logic
circuits. IEEE Trans. Comput. Aided Design Integrated Circuits Syst. 22, 710–722 (2003).

25. Soeken, M., Roetteler, M., Wiebe, N. & De Micheli, G. LUT-based hierarchical
reversible logic synthesis. IEEE Trans. Comput. Aided Design Integrated Circuits Syst.
38, 1675–1688 (2018).

26. Meuli, G., Soeken, M., Roetteler, M. & De Micheli, G. ROS: Resource constrained
oracle synthesis for quantum circuits. In Quantum Physics and Logic (2019).

27. Meuli, G., Soeken, M., Campbell, E., Roetteler, M. & De Micheli, G. The role of
multiplicative complexity in compiling low T-count oracle circuits. Int’l Conf. on
Computer-Aided Design (2019).

28. Meuli, G., Soeken, M., Roetteler, M. & De Micheli, G. Enumerating optimal quantum
circuits using spectral classification. In Int’l Symp. on Circuits and Systems (2020).

29. Bennett, C. H. Time/space trade-offs for reversible computation. SIAM J. Comput.
18, 766–776 (1989).

30. Meuli, G., Soeken, M., Roetteler, M., Bjorner, N. & Micheli, G. D. Reversible pebbling
game for quantum memory management. In Design, Automation and Test in
Europe Conference, 288–291 (2019).

31. Brayton, R. & Mishchenko, A. ABC: An academic industrial-strength verification
tool. In Int’l Conf. on Computer Aided Verification, 24–40 (Springer, 2010).

32. Synopsys. Design compiler graphical. Online at https://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
(2020). Accessed Apr 2020.

33. Knuth, D. E. The Art of Computer Programming, vol. 4A (Addison-Wesley, 2011).
34. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information

(Cambridge University Press, 2000).
35. Campbell, E. T. & Howard, M. Unified framework for magic state distillation and

multiqubit gate synthesis with reduced resource cost. Phys. Rev. A 95, 022316
(2017).

36. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes:
Towards practical large-scale quantum computation. Phys. Rev. A 86, 032324
(2012).

37. Maslov, D. Advantages of using relative-phase Toffoli gates with an application to
multiple control Toffoli optimization. Phys. Rev. A 93, 022311 (2016).

38. Amy, M., Maslov, D., Mosca, M. & Roetteler, M. A meet-in-the-middle algorithm for
fast synthesis of depth-optimal quantum circuits. IEEE Trans. CAD Integrated Cir-
cuits Syst. 32, 818–830 (2013).

39. Gosset, D., Kliuchnikov, V., Mosca, M. & Russo, V. An algorithm for the T-count.
Quantum Inf. Comput. 14, 1261–1276 (2014).

40. Jones, C. Low-overhead constructions for the fault-tolerant Toffoli gate. Phys. Rev.
A 87, 022328 (2013).

41. Gidney, C. Halving the cost of quantum addition. Quantum 2, 10–22331 (2018).
42. Selinger, P. Quantum circuits of T-depth one. Phys. Rev. A 87, 042302 (2013).

43. Chan, S. M. Pebble games and complexity. Ph.D. thesis, University of California,
Berkeley (2013).

44. Chan, S. M., Lauria, M., Nordstrom, J. & Vinyals, M. Hardness of approximation in
PSPACE and separation results for pebble games. In 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, 466–485 (2015).

45. Knill, E. An analysis of Bennett’s pebble game. Preprint at https://arxiv.org/abs/
math/9508218 (1995).

46. Soeken, M. et al. The EPFL logic synthesis libraries. Preprint at https://arxiv.org/
abs/1805.05121 (2018).

ACKNOWLEDGEMENTS
This research was supported by the Swiss National Science Foundation (200021-
169084 MAJesty).

AUTHOR CONTRIBUTIONS
G.M. and M.S. conceived the algorithms and planned the experimental evaluation.
G.M. implemented the algorithms, performed the experiments and analyzed the
data. G.D.M. coordinated the project. G.M. wrote the manuscript. All authors revised
and approved the content of the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Giulia Meuli.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

G. Meuli et al.

11

Published in partnership with The University of New South Wales npj Quantum Information (2022) 7

https://arxiv.org/abs/2006.03845
https://arxiv.org/abs/2006.03845
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://arxiv.org/abs/math/9508218
https://arxiv.org/abs/math/9508218
https://arxiv.org/abs/1805.05121
https://arxiv.org/abs/1805.05121
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Xor-And-Inverter Graphs for Quantum Compilation
	Introduction
	Results
	Improving the T-nobreakcount versus T-nobreakdepth
	Qubits/T-count trade-off

	Discussion
	Methods
	Algorithm 1: minimizing the T-nobreakcount
	Algorithm 2: minimizing the T-nobreakdepth
	Algorithm 3: minimizing the number of qubits
	SAT encoding

	Optimizing the pebbling solution

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION

