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Loading classical data into quantum registers is one of the most important primitives of quantum computing.
While the complexity of preparing a generic quantum state is exponential in the number of qubits, in many
practical tasks the state to prepare has a certain structure that allows for faster preparation. In this paper, we
consider quantum states that can be efficiently represented by (reduced) decision diagrams, a versatile data
structure for the representation and analysis of Boolean functions. We design an algorithm that utilizes the
structure of decision diagrams to prepare their associated quantum states. Our algorithm has a circuit complexity
that is linear in the number of paths in the decision diagram. Numerical experiments show that our algorithm
reduces the circuit complexity by up to 31.85% compared to the state-of-the-art algorithm, when preparing
generic n-qubit states with n3 nonzero amplitudes. Additionally, for states with sparse decision diagrams,
including the initial state of the quantum Byzantine agreement protocol, our algorithm reduces the number of
controlled-NOTs by 86.61–99.9%.
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I. INTRODUCTION

Quantum computers are expected to provide advantages in
several fields such as optimization [1], chemistry [2], machine
learning [3], and materials science [4]. However, the quantum
speedups can be sabotaged if the cost of loading data and
initialization is too high for the quantum computer [3]. There-
fore, minimizing the cost of quantum state preparation (QSP),
the process of preparing quantum states from their classical
descriptions, is a crucial step of quantum computation [5–7].

QSP algorithms for preparing general n-qubit quantum
states have cost that grows exponentially fast in n [6–10]. Here
the cost is quantified by the number of required controlled-
NOT (CNOT) gates, as any quantum circuit can be decomposed
into CNOT gates and single-qubit gates and the number of
single-qubit gates is upper bounded by twice the number of
CNOTs [11]. In this paper, we focus on algorithms that prepare
quantum states in a deterministic manner with no or fixed
ancillary qubit overhead, instead of approximate algorithms
[12–14] or algorithms with n-dependent ancilla size [15–17].

In contrast to general quantum states, in most quantum
computational tasks, the states to prepare are from subfamilies
of n-qubit states, such as uniform quantum states [18,19],
Dicke states [20], and cyclic quantum states [21]. In these
examples, all state subfamilies have classical descriptions
with symmetric structures, which hints at the possibility of
utilizing structured classical descriptions of quantum states
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to achieve efficient QSP. Here we exploit this possibility and
propose a QSP algorithm for quantum states represented by
reduced ordered decision diagrams (DDs). DDs are directed
acyclic graphs over a set of Boolean variables and a nonempty
terminal set with exactly one root node [22]. DDs avoid redun-
dancies and lead to a more compact representation of logic
functions.

In this paper, we consider the preparation of n-qubit quan-
tum states |ϕ〉 = ∑

s∈S αs|s〉, i.e., finding a unitary circuit U
that consists of elementary quantum gates such that U |0〉⊗n =
|ϕ〉. Here the index set S ⊂ {0, 1}n contains every binary
string s such that the amplitude αs of |s〉 is nonzero, and∑

s∈S |αs|2 = 1. Without loss of generality, we assume that ba-
sis states in S are sorted in descending order. For two arbitrary
n-bit strings s and s′, there is a natural order s � s′ if s is no
smaller than s′ when both are regarded as binary numbers. In
this way, we can order the elements of S as s1 � s2 � · · · � sm

and express the state to prepare as

|ϕ〉 =
m∑

i=1

αsi |si〉. (1)

We use DDs to represent the state in Eq. (1), where each
basis state |si〉 and each amplitude αsi are represented by a
path and a terminal node, respectively. We propose an efficient
algorithm that prepares an arbitrary quantum state given its
associated DDs. The cost of our algorithm is O(kn), where
k is the number of paths in the DD. Since k is always upper
bounded by (and can be much smaller than) m, the number of
nonzero amplitudes of the state in the computational basis, our
algorithm efficiently prepares any sparse state with m 	 2n.
Sparse quantum states have many applications for example in
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quantum linear system solvers [23], the quantum Byzantine
agreement (QBA) algorithm [24] for large n, and quantum ma-
chine learning [3]. Additionally, many problems in classical
computing are sparse such as sparse (hyper) graph problems
[25]. To solve them using a quantum computer, we need to
prepare their associated sparse quantum states. In addition,
our algorithm can also efficiently prepare states with sparse
decision diagrams (k 	 2n), even if the states themselves are
not sparse [m = �(2n)].

Several algorithms have been proposed for sparse quantum
state preparation [26–28] with O(mn) cost. In all of them, the
idea is based on preparing basis states one by one by applying
several CNOTs and one multiple-controlled single-target gate.
De Veras et al. [26] use one ancilla qubit to avoid disturbing
prepared basis states while working on the others. Compared
to [27], their results show that their algorithm performs well
when the number of 1 bits in binary bit string representation of
each basis state is almost 20%, which is a limitation. Malvetti
et al. [27] propose an algorithm to prepare sparse isometries
which include sparse states as well. Gleinig and Hoefler [28]
propose an algorithm that works in the opposite direction, i.e.,
they try to apply some gates to obtain the |0〉⊗n state from
the desired sparse state. They repeat the same procedure in
m iterations. In every iteration, they select two basis states
and merge them into one by applying several CNOTs and one
multiple-controlled single-target gate. Comparing methods in
[27,28], they both perform well with small m, and their circuit
costs are almost the same. However, the idea in [28] is simpler
and its classical runtime, which is O[nm log2(m)], is less than
that of the algorithm in [27], which is O[

( n
log2(m)

) + nm2].
Hence, we regard [28] as the state of the art (SOTA) and
compare our results to it.

Numerical experiments show that our algorithm outper-
forms the state of the art [28]. Depending on the sparsity
m, our algorithm achieves an up to 31.85% reduction of
the CNOT cost. The algorithm works very well for the states
with sparse decision diagram representations, and uses up to
99.97% fewer CNOTs. In addition, our algorithm requires only
one ancilla qubit, in stark contrast to many existing works
[15–17] with ancilla qubits that grow with n.

II. RESULTS

A. Decision diagram representation of quantum states

Our quantum state preparation algorithm works efficiently
by making use of a data structure named a DD. Here we
give a brief introduction to DDs and how they can be used
to represent quantum states.

1. Binary decision tree

A binary decision tree is a rooted, directed, acyclic graph
that represents a Boolean function f = f (x1, x2, . . . , xn). It
consists of a root node, several internal nodes, and several
terminal nodes. The root, usually printed as a square labeled
f , features the start of the tree. The terminal nodes are labeled
0 and 1. The internal nodes, labeled x1, x2, . . . , xn, represent
the variables of f . Two adjacent internal nodes x1 and x2 are
connected by a solid (dotted) arrow called an edge to represent
that the parent node x1 (i.e., the node above) evaluates to 1 (0),

(a)
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x2 x2

10 1 1
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FIG. 1. The decision tree and the decision diagram for f =
x1x2 + x1x2 + x1x2. (a) Binary decision tree. (b) Binary decision
diagram.

and the node x2 is called the one-child (zero-child) of x1. A
terminal node t has no children and is labeled 1 or 0 depending
on the value of f when its variables are evaluated to the values
on the path that contains t . Figure 1(a) shows a binary decision
tree for the Boolean function f = x1x2 + x1x2 + x1x2.

2. Binary decision diagram

A binary decision diagram (BDD) can be obtained from a
binary decision tree by applying a reduction process, follow-
ing the rules below.

(1) Two nodes are merged and their incoming edges are
redirected to the merged node, if (i) they are both terminal
and have the same value or (ii) they are both internal and have
the same subgraphs.

(2) An internal node is eliminated, if its two edges point
to the same child. After elimination, its incoming edges are
redirected to the child.

It is worth mentioning that the reduced tree is also called
a reduced ordered binary decision diagram (ROBDD) but is
commonly referred to as a BDD for simplicity. Figure 1(b)
shows the BDD obtained from the decision tree in Fig. 1(a).
First, three terminal nodes with value 1 merge to one. Next,
node b on the right-hand side of the tree eliminates as both
children are terminal node 1.

3. Algebraic decision diagram

An algebraic decision diagram (ADD) is the same as a
BDD, except that its terminal nodes can have any values [22].
In other words, BDDs are ADDs the terminal nodes of which
have binary values. We can still apply reduction rules and get a
reduced ordered algebraic decision diagram (ROADD), called
an ADD for short.

4. Quantum states represented by DDs

Rather straightforwardly, an arbitrary n-qubit quantum
state |ϕ〉 = ∑

s∈S αs|s〉 can be represented by a DD: for any
s ∈ S, represent s by a path in the tree and set its internal
nodes to the qubit registers q1, q2, . . . , qn, its edges to solid
or dashed lines depending on the state of the registers, and
its terminal node to αs. We then simplify the decision tree by
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FIG. 2. Decision diagram representation of the quantum state in Example 1. (a) Before applying reduction rules. (b) After applying
reduction rules.

removing all the paths corresponding to s 
∈ S and terminal
nodes the values of which are zero. Next, we further apply the
reduction rules to get a ROADD (called an ADD for short).
When the state is uniform, i.e., all the amplitudes are equal,
the ADD can be simplified to a BDD, where a terminal node
with the binary value 1 indicates that the associated paths
have nonzero amplitudes. Each path p of the reduced DD
corresponds to one or more basis states s ∈ Sp, which is a
subset of S. Denoting by P the set of the paths of the reduced
DD, the state to prepare can be recast in the form

|ϕ〉 =
∑

p∈P

∑

s∈Sp

αs|s〉. (2)

Notice that all basis states s ∈ Sp have the same amplitude.
Example 1. The four-qubit state

|ϕ〉= 1√
4

(|1110〉+
√

2|1001〉+
√

0.5|0010〉+
√

0.5|0000〉)

(3)
has index set S = {1110, 1001, 0010, 0000} and nonzero am-
plitudes { 1√

4
,

√
2√
4
,

√
0.5√
4

,
√

0.5√
4

}. It can be represented by the DD
in Fig. 2(a). We represent each s ∈ S with a binary string of
qubits q1q2q3q4 where q1, q2, q3, and q4 are internal nodes.
Each path shows a basis state s, and the terminal node con-
necting to each path shows its corresponding amplitude. For
example, {s1 = 1110, α = 1√

4
} expresses that we have a path

in which {q1 = 1, q2 = 1, q3 = 1, q4 = 0} that connects to the
terminal node 1√

4
. Further notice that on the right-hand side of

the diagram [Fig. 2(a)] two terminal nodes are equal, which
results in merging them. Furthermore, both left and right
subgraphs of q3 are equal, so this node can be eliminated.
Therefore, the DD can be reduced to the ADD in Fig. 2(b)
which contains three paths instead of four. Actually, the last
two basis states s3 = 0010 and s4 = 0000 correspond to the
same path {q1 = 0, q2 = 0, q4 = 0}.

B. DD-based algorithm for quantum state preparation

In this section, we present our DD-based algorithm for
quantum state preparation. We assume that the quantum state
to prepare is represented by either an ADD or a BDD (when
it is uniform). Using DDs helps us to already have a quantum
state without redundancies, which reduces the circuit cost.

Our algorithm works by preparing the paths in a DD one by
one. For any n-qubit quantum state to prepare, our algorithm
uses only one additional qubit qA as an ancilla, the value of
which is tagged |yes〉 (regarded as |0〉 when used as a control
qubit) or |no〉 (regarded as |1〉 when used as a control qubit).
Intuitively, qA serves as an indicator for whether a path has
been created in the course of the state preparation. Paths that
have been created are marked by qA �→ |yes〉 and, by using
qA as control, we can avoid disturbing the created paths when
creating a new path.

Each target qubit in our quantum state preparation trans-
forms |0〉 to a superposition of α|0〉 + β|1〉, where |α|2 (|β|2)
shows the probability of being zero (one) after measurement.
To achieve this transformation, for some nodes, we need to
apply a gate, called G, which is explained later. Therefore, we
traverse the DD twice: (1) to compute the G gate for each node
and (2) to prepare the quantum state.

1. Postorder traversal to compute G gates

We traverse DD in postorder traversal (i.e., visiting one-
child, zero-child, and parent nodes). For each node, we
compute the probability of being one or zero from its
corresponding one-child and zero-child. To compute zero
probability (called p0), for each node, we compute its portion
from the one-child (called t1) and zero-child (called t0) and
then it equals to

p0 = t0
t1 + t0

. (4)
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Algorithm 1 Deterministic Preparation of Quantum States using
DD.

As an example, consider the state in Fig. 2(b); postorder
traversal results in first visiting q4 in the left-hand side. The
portion from the one-child is zero and from the zero-child is
| 1√

4
|2 (as it is amplitude we need to square it). Hence, the

probability of being zero equals to 1/4
0+1/4 = 1. Next, we go

through the upper node q3; the portion from the one-child

comes from the summation of one-child and zero-child por-
tions of q4, which is 0 + 1

4 . The portion from the zero-child
is zero and the zero probability is 0

1/4+0 = 0. By continuing
this procedure we obtain t1 and t0, which are written in the
figure on the edges. Note that we need to consider the effect of
eliminated nodes. If e nodes are eliminated along an edge, the
portion is multiplied by 2e. For example, in the right-hand side
of Fig. 2(b), on the zero-child of q2, one node (q3) is removed,
which results in t0 = 21 × 0.5

4 . Finally, α and β for G gates are
computed by

√
p0 and

√
1 − p0, respectively, which we show

as

G(p0)|0〉 = √
p0|0〉 +

√
1 − p0|1〉. (5)

The above G(p0) can be implemented as a Pauli-y rotation:
G(p0) = Ry[2cos−1(

√
p0)].

2. Preorder traversal to prepare the quantum state

The algorithm begins with an empty quantum circuit and
all qubits initiated as

|no〉qA ⊗ |0〉q1 |0〉q2 ...|0〉qn . (6)

Starting from the root, the algorithm traverses the DD with
preorder traversal (i.e., visiting parent, one-child, and zero-
child nodes). To accomplish the traversal, we need to define
a pointer current_node that points to the current node we are
working on. To navigate through the DD, we define functions
one_child and zero_child which return the child of the current
node regarding solid and dotted edges, respectively. While
traversing through the DD, we compile the state preparation
circuit according to the following rules.

(1) Preparation: If the current node q is an internal node
that is already on a path pi, we do as follows.

(a) If q is a branching node, which means it has both a
zero-child and a one-child, we apply to the quantum circuit
a 2-controlled G(p0) gate [see Eq. (5)] on q with qA and the
last node on the path that has a one-child as control qubits,
where the value of p0 is determined by the postorder traversal.
Otherwise, q either has a one-child or a zero-child. For the
former case, we add a 2-controlled NOT gate on q with qA and
the last node on the path that has a one-child as control qubits.
For the latter case, we do nothing.

(b) In addition, we need to consider the effect of reduced
nodes between node q and its children. A node is reduced
when both its one-child and zero-child point to the same thing.
Hence, the qubit with half probability is zero and with half
probability is 1. If this is the case, we append to the quantum
circuit 2-controlled G( 1

2 ) gates on reduced nodes with qA and
the last node on the path that has a one-child as control qubits.

(c) If q is the parent of the ith terminal node, then we add a
2-controlled phase gate on q with qA and the last node on the
path that has a one-child as control qubits, which adds a phase
ei arg(αi ) to the path state |si〉.

(2) Computing the ancilla: If the current node is a terminal
node, it means that we have prepared the current path. Hence,
we need to compute the ancilla qubit to mark that the current
path is prepared. We append to the quantum circuit a multiple-
controlled-NOT gate on qA with all qubits at branching nodes
on path pi being control.
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FIG. 3. The general structure of the quantum circuit for QSP over DDs.

This is a recursive traversal where we visit the current
node, one-child, and zero-child, respectively. In other words,
we prepare paths from the largest (p1) to the smallest (pk). In
this way, we can order the elements of P as p1 � p2 � · · · �
pk . As a result, using this traversal we can prepare basis states
in S from the largest (s1) to the smallest (sm). The pseudocode
of the proposed algorithm is shown in Algorithm 1. Note that,
in the postorder traversal, we have already computed p0 values
of G gates corresponding to each node and here we pass it as
an argument to the algorithm. Line 5 of Algorithm 1 shows
the application of rule 2 (computing the ancilla), and lines 8,
11, 14, 16, 19, and 21 illustrate different conditions of rule 1
(preparation). Additionally, we recursively visit the one-child
and zero-child in lines 18 and 23.

Figure 3 shows the general structure of the output quantum
circuit of our algorithm. Note that for preparing p1 the ancilla
qubit is not needed, because there is no other path prepared
before p1. Moreover, as pk is the last path to prepare, we do
not need to compute the ancilla qubit.

Example 2. In this example, we show how to create a
quantum circuit to prepare the state represented in Fig. 2(b).
Preorder traversal helps us to go through three paths presented
by black, red, and blue colors. To compute p0, values of t0 and
t1 are shown in the figure. Starting from the root, we need
to append a G( 1

4 ) gate on q1 that shows the probability of
being zero for this qubit. Going through the black path (p1),
on the next node q2 there exists a branch which requires a
1-controlled G( 2

3 ) gate. This is the first basis state and we do
not need to check the ancilla qubit. Next, on q3 there is not
any branch but it has a one-child, so it is required to append
a CNOT gate with the last |1〉 in the path (q2) as control. Next,

qA : |1〉
q1 : |0〉
q2 : |0〉
q3 : |0〉
q4 : |0〉

G( 1
4 )

G( 2
3 )

G( 1
2 )

p1{s1} p2{s2} p3{s3, s4}

FIG. 4. The generated quantum circuit for preparing the state
presented as DD in Fig. 2(b).

for q4 there is not any branch and there is only a zero-child
that does not require any action. To compute the ancilla qubit,
we need to add a multiple-controlled NOT gate on the ancilla
qubit with two controls on branching nodes which are q1 = 1
and q2 = 1.

Afterward, the traversal returns to q2 and goes through the
red path (p2). It goes to q3, there is not any branch, and there
is only a zero-child that does not require any action. Next,
q4 has a one-child and so we need to add a 2-controlled NOT

gate on q4 with ancilla and q1 which is the last |1〉 in the path
as control qubits. Then, to mark that p2 is prepared, we add
a 2-controlled NOT gate on the ancilla qubit with q1 = 1 and
q2 = 0.

Finally, the algorithm goes back to the root again and
traverses the blue path (p3). q2 has a zero-child and we do
not need to add any gate for it. Next, the q3 is removed
which requires adding a G( 1

2 ) gate that shows with the half
probability it is zero. There is not any last |1〉 in this path
so it only has one control which is the ancilla. Then, q4 has
a zero-child and again we do not need to add any gate for
it. Note that reduced node q3 here helps us to prepare s3

and s4 together. This reduces the number of iterations and
so circuit cost. Moreover, as this path corresponds to the last
basis states s3 and s4, we do not need to compute the ancilla
qubit. Figure 4 shows the generated quantum circuit.

C. Numerical experiments

In this section, we evaluate the proposed algorithm over the
state of the art [28]. Our algorithm is implemented in an open-
source tool, called ANGEL.1 All experiments are conducted on
an Intel Core i7, 2.7 GHz with 16-GB memory.

1. Random states

We evaluate our algorithm on randomly generated states
with different amplitudes. The parameter m denotes the num-
ber of basis states with nonzero amplitudes. We change m
depending on n with different degrees. We compare the size
of the circuits produced by our proposed method (PM) with
the SOTA method presented in [28]. The final circuits consist
of CNOTs and single-qubit gates as elementary quantum gates.
We only consider the number of CNOTs as they are more ex-
pensive than single-qubit gates in the noisy intermediate-scale

1A c + + library for quantum state preparation [29].
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TABLE I. Experimental results for quantum states (QS) that have a sparse DD.

PM SOTA
QS n m No. of nodes No. of reduced nodes No. of paths k No. of CNOTs No. of CNOTs Imp. (%)

Set 1 20 n 33 6 2 13 275 95.27
Set 2 20 10n 41 25 5 190 9983 98.10
Set 3 30 n 60 10 4 62 463 86.61
Set 4 30 10n 78 41 9 568 17019 96.66
QBA 20 n3 32 110 18 1165 1361456 99.91
QBA 25 n3 37 123 19 1321 2974248 99.95
QBA 30 n3 44 141 22 1591 5512726 99.97

quantum. But consider that reducing CNOTs means we are
reducing single-qubit gates as well. Figure 5 shows results for
n = 16, 20, 24, and 28. For each combination of parameters
shown in the figure, we sampled ten random states and show
the average values. Each subfigure shows how the number of
CNOTs grows as we increase m as a function of n. For small m,
SOTA is better as it is an efficient idea for sparse states. But by
increasing m our results close to SOTA and finally for m = n3

PM outperforms SOTA up to 31.85, 17.4, 13.1, and 11.4%
for n equal to 16, 20, 25, and 28, respectively. The reason is
that in the DD representation, for large m, there is a better

sharing between basis states which results in a sparse decision
diagram. The results for n = 16 are better than those for larger
values of n because the percentage of nonzero amplitudes is
higher for n = 16. Considering the sparsity condition in [28],
m ∈ o( 2n

n ), these values of m are still sparse. We conclude that
our method is more useful than SOTA for large m.

2. Special states

To show our improvement for small m, we extract special
states the DD representations of which are sparse and the

(a)

0 10n n2 2n2 4n2 8n2 n3 n4

0

1

2

3

4

5
·105

m

#
C

N
O

T
s

PM
SOTA

(b)

0 10n n2 2n2 8n2 1
2n3 n3 n4

0

0.2

0.4

0.6

0.8

1

·106

m

#
C

N
O

T
s

PM
SOTA

(c)

0 10n n2 2n2 8n2 1
2n3 n3 n4

0

0.5

1

1.5

2

·106

m

#
C

N
O

T
s

PM
SOTA

(d)

0 10n n2 2n2 8n2 1
2n3 n3 n4

0

1

2

3

·106

m

#
C

N
O

T
s

PM
SOTA

FIG. 5. Comparison between the CNOT complexities of PM and SOTA. PM is compared to the best-known algorithm (SOTA) in [28] on
random sparse states of n qubits. For different n, we plot the number of CNOT gates required in both algorithms as a function of m, the number
of nonzero amplitudes. It can be seen that PM requires fewer CNOTs in the interval between 2n2 and n3 for n = 16 and 20, and between 8n2

and n3 for n = 25 and 28. Moreover, increasing of m results in reduction of CNOTs. (a) n = 16. (b) n = 20. (c) n = 25. (d) n = 28.
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reduction rules work well on them. These states are mostly
uniform states that share paths better. These states benefit
from the effect of reduced nodes which reduce the number of
paths and branching nodes in each path. This results in reduc-
ing the number of multiple-controlled gates and their control
qubits which is required for computing the ancilla qubit.
Table I shows the average results for such states (set 1, 2, 3,
and 4) in comparison with SOTA. We consider two different
numbers of qubits 20 and 30, and small m = n and 10n. For
each quantum state set, using the proposed method, we extract
results regarding the number of nodes, number of reduced
nodes, number of paths, and number of CNOTs. The number
of reduced nodes shows that we can prepare several basis
states together which reduces the number of CNOTs. Moreover,
the number of paths, which is important in our complexity,
is much less than the number of basis states, which results
in reducing CNOTs. We also extracted the number of CNOTs
by SOTA. Comparison shows that we reduce the number of
CNOTs up to 98%.

QBA represents the quantum version of Byzantine agree-
ment which works in constant time. In this protocol, for n
players, we need to prepare the quantum state

|ϕ〉 = 1√
n3

n3∑

i=1

|i〉 (7)

on n qubits. For large n, this state is sparse. Table I shows
its results. The proposed method prepares this state more
efficiently. As shown in Table I, we reduce the number of
CNOTs by 99.97% for QBA when n = 30. The reason is that
the number of paths is much less than the number of nonzero
basis states.

D. Algorithm performance

1. Correctness

First we explain how our algorithm prepares an arbitrary
n-qubit state, given by Eq. (2), without any approximation
error. It is enough to show that, starting from the initial state
|no〉qA ⊗ |0〉⊗n, in each iteration, in which the path pi ∈ P is
traversed, we create a part |yes〉 ⊗ ∑

s∈Spi
αs|s〉 of the target

state, where Spi is the collection of basis states that are merged
into path pi in the creation of a DD.

Meanwhile, we keep the prepared parts |yes〉 ⊗∑
j<i

∑
s∈Sp j

αs|s〉 untouched. (Remember that p1 � p2 �
· · · � pk .) In this way, after traversing the last path pk , we
end up with |yes〉 ⊗ ∑k

j=1

∑
s∈Sp j

αs|s〉 as desired, where

the system is in the target state and is uncorrelated with the
ancillary qubit qA.

To see how this is achieved in each iteration, first, notice
that a path is uniquely characterized by its branching nodes
and their values. For example, the path 000101 can be speci-
fied by q1 = 0, q4 = 1, q5 = 0, and q6 = 1, as in between q1

and q4 we adopt the convention that both q2 and q3 take the
same value as q1. Therefore, it is enough to prepare a branch
without altering other branches, by acting on each node using
its preceding branching nodes as the control. In our algorithm
(more precisely, in the preparation rule), we further reduce the
cost by the following crucial observation: When working on a
qubit q in pi, consider its closest ancestor the value of which

is 1 in pi, denoted by q̃. Since the sequence p1, p2, . . . , pk

is also ordered, only those completed parts (i.e., the partial
state

∑
j<i

∑
s∈Sp j

αs|s〉) corresponding to paths p1, . . . , pi−1

can have q̃ = |1〉. On the other hand, for those paths where
q̃ = |1〉, they have already been completed and thus are tagged
|yes〉 (regarded as |0〉 when used as a control qubit) on qA.
Therefore, it is sufficient to use two qubits (q̃ and qA) as the
control to make sure that other completed parts are unaltered
in the course of preparing the ith part. As a result, we can
complete the ith part without affecting the prepared paths
by following the preparation rule of the algorithm. Since the
branching nodes uniquely determine a path, we can flip the
value of qA of the ith part from |no〉 to |yes〉 by following the
computing the ancilla rule.

2. Circuit complexity

In a DD, pi and pi−1 may share a common subpath; there-
fore, we do not need to start preparation from the root for
every pi. This helps us to append fewer gates and reduces the
number of CNOTs and single-qubit gates.

Our idea is based on a DD which we use as a reduced
ordered BDD or ADD to represent the quantum state. Using
them allows us to have a compact representation for the state
and to remove redundancies that reduce circuit cost in the
preparation. Moreover, reduced nodes help us to prepare some
basis states together. Hence, in contrast to the previous works
in which the number of basis states (m) is considered in the
circuit complexity, the number of paths (k) is important in our
complexity, and always

k � m. (8)

According to Sec. II B, preparing a path is divided into two
parts: preparing the path and computing the ancilla qubit. As
a quantum circuit, it requires a sequence of 2-controlled gates
to prepare the corresponding basis state (or basis states), and
a multiple-controlled NOT gate to compute the ancilla qubit.

To compute the circuit complexity, we need to compute
the number of 2-controlled gates for the first part, and the
number of controls for the second part. The number of 2-
controlled gates depends on the number of branching nodes
in the path, and the number of one-children in the path of
the corresponding basis state. Moreover, in the DD, paths
overlap and we prepare each basis state from the last com-
mon node with the previous basis state instead of starting
from the root. Considering this optimization, our algorithm
reduces the number of 2-controlled gates. But in the worst
case we require n 2-controlled gates. Decomposition of each
2-controlled gates requires four or six CNOTs, and so we need
O(n) CNOTs. For the second part, the number of controls is
equal to the number of branching nodes in the path. Then, we
make use of the method proposed in [30] to decompose the
multiple-controlled NOT gate using O(n) CNOT gates and one
ancilla. We repeat the same procedure for k paths and so, in
total, the number of CNOTs is equal to

No. of CNOTs = k × O(n). (9)

3. Time complexity

We traverse the DD twice to first compute G gates and
secondly prepare the quantum state. As we visit each node

022617-7



MOZAFARI, DE MICHELI, AND YANG PHYSICAL REVIEW A 106, 022617 (2022)

once, each traversal is linear in the number of nodes, and such
a number increases mildly (but not always) with problem size
(i.e., qubits). The number of nodes depends on the number
of paths and the number of qubits in each path. Hence, the
number of nodes is always less than kn as there exist sharing
nodes at least for the root. As a result, the classical runtime is
less than 2kn, which is less than the time required by the state
of the art [28].

III. DISCUSSION

In this paper, we have proposed an algorithm to prepare
quantum states deterministically. Our idea is based on prepar-
ing basis states one by one instead of operating one by one
on the qubits. The latter is the key idea in general quantum
state preparation algorithms. We have utilized DDs to rep-
resent quantum states in an efficient way. This allows our
algorithm to be dependent on the number of paths where
related works [26–28] are dependent on the number of basis
states. We prepare the paths from the largest to the smallest
regarding their binary bit strings. To do so, we traverse the
DD in the preorder traversal. Through this traversal, we visit
nodes on a path. For each node, depending on the existence
of its two children (i.e., the branching node), we decide to
either append 2-controlled single-target gates with different
targets or just skip that. Upon preparing the path, an ancilla
qubit is computed by adding a multiple-controlled NOT gate
with the number of controls equal to the number of branching
nodes in the path. Considering the decomposition method in
[30], preparing each path and computing the ancilla qubit
require O(n) CNOTs. As a result, the final circuit cost depends
on the number of paths and equals O(kn). Using DDs helps
us to have a compact representation of the state vector by
reducing redundancies. The main advantages of our DD-based
approach are as follows.

(1) For preparing each path, we do not need to start from
the root node. We go back to the last common node with the
previous path.

(2) When there are redundant nodes, removing them causes
merging basis states to the same path and we can prepare them
together. This helps in two ways. First, it reduces the number
of iterations (k). Second, it reduces the number of branching
nodes in paths which decreases the number of control qubits
for computing the ancilla qubit.

Experimental results show that our idea works well for
sparse DDs in which the numbers of paths and branching
nodes are reduced. A sparse DD will be achieved when either
m is small or m is not small but basis states share paths and
can be prepared together. Hence, our algorithm besides SOTA
works very well to prepare sparse states and states with sparse
DDs. As future work, we can consider variable reordering in
DDs to get a more sparse DD.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

FIG. 6. Coupling map for the IBM Q Tokyo. Here 0, 1, . . . , 19
stand for physical qubits, and the edges indicate their connectivity.

As a concluding remark, we note that analyses in this paper
are done assuming full connectivity between qubits, whereas
a realistic quantum processing unit (QPU) is often subject to
limited qubit connectivity. In the following, we compare our
algorithm to SOTA with an example that takes into account
the limited qubit connectivity.

Example 3. Consider preparing a uniform-amplitude quan-
tum state corresponding to

S = {1000, 0100, 0011, 0010, 0001, 0000}. (10)

To prepare it on a QPU with full qubit connectivity, our
method and SOTA require 10 and 12 CNOTs, respectively.
When preparing it on IBM’s 20-qubit Tokyo with a coupling
map as shown in Fig. 6, the cost depends on the mapping from
logical qubits to physical qubits, which we choose to be

{q1 → 0, q2 → 1, q3 → 6, q4 → 7}, qA → 2. (11)

Under this mapping, compiling the circuit generated by our
method and compiling the one generated by SOTA both result
in two extra SWAP gates. As each SWAP is decomposed into
three CNOTs, the final numbers of CNOTs for our method and
SOTA are 16 and 18, respectively. Hence, for this example,
our method outperforms SOTA both before and after the
compilation.

The algorithm that we discussed in this paper
is part of the ANGEL library [29], in the path
“include/angel/quantum_state_preparation/.” ANGEL is a
c + + open-source library for quantum state preparation.
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