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Abstract— Universal and fault-tolerant quantum computation
is a promising new paradigm that may efficiently conquer difficult
computation tasks beyond the reach of classical computation.
It motivates the development of various quantum technologies.
The rapid progress of quantum technologies accelerates the
realization of quantum computers. In this paper, we survey
the recent advances in quantum technologies and quantum
computation from the design automation perspective.

Index Terms— Design automation, quantum computation,
quantum technology.

I. INTRODUCTION

IN MOORE’S era during the previous half-century, the
exponential growth of capacities of computing systems

has sustained the semiconductor and information technology
industries in transforming our daily lives. As the downscaling
of transistor sizes approaches the physical limit at the atomic
level, Moore’s law, which predicted the number of transistors
on a chip doubles every 18 to 24 months, is no longer
valid. Nevertheless, the end of Moore’s era and the demand
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Fig. 1. Abstraction stack of classical/quantum computation.

for big data processing of intelligent systems gave birth to
innovative design and technology solutions. For computing
devices, more Moore (CMOS) and more than Moore (beyond
CMOS) alternatives are under intensive research. For com-
puting systems, new architectures (beyond the conventional
von Neumann architecture) and new computation paradigms
(beyond the classical Turing machine model) are under exten-
sive exploration.

Quantum computation (QC) is an essential new computing
paradigm in post-Moore information technology. The extraor-
dinary quantum properties, primarily superposition and entan-
glement, offer computation and information processing power
beyond the reach of classical computers. Quantum algorithms
of various sorts for computations of number factorization [1],
solution search [2], quantum simulation [3], annealing [4], lin-
ear and differential equation solving [5], [6], etc., are available.
They provide provable speed up over classical computation
for various applications such as cryptanalysis, constraint solv-
ing, combinatorial optimization, and machine learning. Even
though quantum computers are not expected to replace classi-
cal computers entirely, they are crucial technologies for certain
computation accelerations. Consequently, the promise of these
quantum algorithms has primarily motivated the extensive
developments of quantum hardware and quantum software.

The abstraction stack of quantum computation is similar
to that of classical computation as shown in Fig. 1. A more
detailed and quantum-specific view on architecture is proposed
in [7]. For quantum hardware, both general-purpose quantum
processors, e.g., [8], and special-purpose quantum processors,
e.g., [9], are under active development. The former follows the
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Fig. 2. Software compilation and hardware synthesis for quantum computation.

unitary-gate-based quantum circuit computation model [10],
[11], and the latter follows the Ising-model-like annealing
procedure [4]. Recent advancements in quantum computer
realization have demonstrated quantum advantage [8], show-
ing the advantage of quantum computation over classical
computation in a physical experiment. While building large-
scale fault-tolerant universal quantum computation remains a
long-term challenge, quantum computers based on the noisy
intermediate-scale quantum (NISQ) technology [12] are avail-
able and exploited in different applications [13], for example,
notably, quantum simulations for chemical systems [14], mate-
rial science [15] and drug discovery [16]. Various physical
implementations of quantum processors based on supercon-
ducting quantum devices [17], [18], semiconductor quantum
dots [19], trapped ions [20], photonics [21], etc., have been
proposed and demonstrated. Each competing technology has
its advantages and disadvantages. To fully explore the poten-
tials of various realization means, circuits and systems need
to be built based on different technologies. Also, circuits and
systems interfacing quantum and classical data processing are
crucial for scalable quantum computation [22], [23].

For quantum software, a full stack of software engineering
is indispensable to release the full power of quantum
computing. To date, quantum computation programming
languages [24], operating systems [25], compilers [26], [27],
[28], [29], [30], and application programs [31] are emerging.
Quantum software engineering requires domain knowledge
at different abstraction levels. In particular, compiling a
quantum algorithm or application into a format executable
on a quantum processor requires transforming a high-level
programming language code into a low-level quantum
assembly code, which consists of a sequence of unitary
operations represented as quantum circuits. The compilation
requires high-level, logic-gate-level, and physical-level
synthesis of design automation techniques. Also, the design
of quantum algorithms and circuits has to be verified
for correctness. Formal verification [32], simulation [33],
and emulation [34] are vital, especially because quantum
computers are intrinsically probabilistic and noisy. Many
conventional electronic design automation (EDA) techniques
for integrated circuit design can be applied and extended for
quantum circuit compilation [35], [36].

In addition to the hardware and software aspects of quantum
computing, there are important threads of developments in
quantum-inspired computing systems and the hybrid quantum-
classical computation. Even though fault-tolerant quantum
computers are not yet ready, the concept of quantum compu-
tation itself has triggered innovative solutions that overcome
conventional computation barriers. There are quantum-inspired
architectures [37], [38] and algorithms [39] that improve
classical computers and algorithms. Classical and quantum
computations together may mutually fertilize each other and
further advance our knowledge and practice of computation.

Engineering the computation systems largely requires vari-
ous backgrounds in physics, computer science, electrical engi-
neering, among others. This survey intends to summarize some
key developments of design automation methods for quantum
hardware and software engineering and provide helpful guides
for the readers’ further exploration.

The scope of this paper covers the aspects of quantum soft-
ware compilation and quantum hardware synthesis, as shown
in Fig. 2. We primarily focus on general-purpose quantum
computation and leave out the subject of quantum annealing.
The rest of this paper is organized as follows. Section II first
provides the background of quantum processor architecture.
Given the instruction set architecture (ISA), i.e., primitive
quantum gates, provided by a quantum processor architec-
ture, quantum software compilation can be carried out. The
literature on quantum software compilation is then surveyed
in Section IV. Then Section V reviews quantum technologies
and design automation methods for quantum design. Finally,
Section VI concludes this survey.

II. QUANTUM PROCESSOR ARCHITECTURE

QCs, with their particular device physics, will require
specific instruction sets, organization, and hardware to be
developed into useful systems that successfully harness the
power of quantum mechanics. Some examples of emerging
qubit technology include discrete energy levels within super-
conducting circuits [8], [40], [41], ions trapped by surround-
ing electrodes [42], [43], [44], neutral atoms secured with
optical tweezers [45], [46], and photons travelling through
free space or waveguides [47], [48]. Each of these platforms
have their unique strengths and methods for implementing
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logical computation, but none has become the obvious choice
for the standard quantum computing platform. All of the
aforementioned systems, however, must account for several
similar architectural constraints in order to apply quantum
superposition, interference, and entanglement for significant
computational speedups in solving select problems.

A. No-Cloning of Qubits
Although basis states, or qubits in the fixed state of either |0�

or |1� can be duplicated, unknown qubit superposition cannot
be copied. This fundamental quantum principle is referred to
as the “no cloning theorem” [49], and it has serious impli-
cations on the way quantum information is to be processed
and stored. In classical computation, the ability to copy bits is
frequently exploited within computation, by memory, and for
error correction. In quantum software and hardware, however,
we loose the ability to replicate data because observing,
or measuring, quantum state causes its collapse into classical
information. As a result, the design of quantum memory must
differ significantly from classical memory hierarchies – quan-
tum data must be actively moved to and from stored and cannot
be recovered once read. Additionally, quantum error correction
relies on actively applying state transformations on unknown
qubit states for stabilization rather than relying on techniques
such as either refresh cycles or with copies that perform a
majority vote among copies of bits like in classical schemes.

B. Probabilistic Measurement
A key feature that defines qubits from classical bits is their

ability to hold superpositions of states. Upon measurement,
superpositions collapse into classical states: |ψ� = α|0�+β|1�
collapses to either 0 or 1. A single measurement of the final
state transformed by a quantum circuit cannot provide ade-
quate insight about the circuit’s true output. A more complete
picture of the circuit’s probabilistic quantum state output must
be extracted through multiple measurements that develop a
distribution. From the statistics associated with this distrib-
ution, quantum state can be inferred. Developing complete
state information is possible through quantum tomography,
but O(22n) measurements are required for complete state
estimation. This amount of measurement might be prohibitive
for practical QC use. An efficient quantum program will ensure
that the correct outcome has a higher likelihood of being
observed through subroutines such as amplitude amplification.
However, the probabilistic nature of quantum information does
not completely rule out the chance of seeing an incorrect
output. Other external factors, such as system noise or errors
on state preparation, gate evolution, and measurement, can also
result in an undesired circuit result. Thus, many runs, or shots,
of a quantum algorithm may be required in order to build
statistical confidence in a result. Depending on the algorithm,
the number of required circuit shots can be in the thousands.

C. Physical Realization of Quantum Information
The principles of quantum informatics are well defined, but

means to physically realize qubits and quantum operations
are necessary to make the exciting theoretical promise of
quantum computation a reality. According to Di Vincenzo,

specific criteria are required for physical quantum architectures
to host quantum computation [50]. These conditions include
containing well characterized qubits that can be initialized
into known states, long coherence times for holding quantum
information, the ability to realize quantum gates and measure-
ment, and the ability to interact stationary, or compute, qubits
with flying qubits, or those used for communication. Currently,
a variety of quantum technologies can encode logical qubits
within different media. We call a physical implementation of
a radix-2 unit of information a physical qubit. Since today’s
quantum devices lack error correction, each logical qubit
within an algorithm is implemented with one physical qubit
in a machine. These NISQ devices are error prone and are up
to hundreds of qubits in size [12].

D. Dependence on Classical Processing

For the foreseeable future, quantum resources will be
hybrid devices that will require some amount of classical
co-processing. For example, in the near-term, variational
algorithms [51], [52] will require classical subroutines for
optimizing quantum algorithm parameters and moving closer
to desired solutions. In the fault-tolerant regime, classical
programs will be required to implement the supporting math-
ematics required for applications such as Shor’s quantum
factoring [1]. In addition, classical processing will be required
for quantum algorithm compilation and optimization as well as
for low-level device control. Because of a QCs dependence on
classical logic, quantum architecture must be designed to allow
for seamless integration with classical infrastructure hosts the
quantum processing unit.

E. Multi-Qubit Interaction

To leverage entanglement within algorithms, a feature that
provides many quantum algorithms with advantage, qubits
must have the ability to communicate and interact. Therefore,
quantum state must be able to be mobile by either physically
relocating qubits or through transferring quantum state through
intermediate qubits if physical qubits are in fixed locations.
Additionally, in the cases where large-scale entanglement is
required, complex, multi-qubit operations will need to be
physically realized by operators that are native to a specific
quantum machine. In NISQ computing, qubit-qubit commu-
nication is often limited to nearest-neighbors. An important
consideration in near-term quantum devices and beyond will
be reducing communication overheads associated with multi-
qubit interactions.

F. Qubit Sensitivity

Classical programs running on classical hardware infre-
quently worry about failures in data storage or logic oper-
ations. Additionally, failures are rarely injected from the
environment unless the classical device is subject to extreme
conditions. A significant amount of development has allowed
classical computers to be robust to errors. However, qubits
are extremely sensitive to external noise and currently suffer
from high error rates that corrupt computation. As an attempt
to limit the amount of external environmental influence on
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today’s QCs, many implementations require that the QC
operate near absolute-zero temperatures. Despite external con-
ditions that introduce minimal heat to the quantum system,
quantum systems still suffer from detrimental as a result of
imperfect control [53], device defects [54], [55], and cross
talk [56]. This noise stemming from imprecision at the physi-
cal level causes operational errors that cause gates performed
on qubits to diverge from their intended logic and retention
errors that limit the duration of time that qubits can hold state
information [57].

III. QUANTUM PROGRAMMING LANGUAGES

Quantum programming languages can be roughly divided
into two categories: Languages designed for programming the
computers of today (like those operated by IBM, Google, IonQ
and Rigetti computing) and those designed for future devices
with error-corrected qubits that can implement sophisticated
algorithms like Shor’s algorithm. We will start with the first
class of languages:

A. Near-Term Languages

The best known tool for quantum programming is almost
certainly QISKIT, a set of Python libraries designed for
programming IBM’s quantum computers. QISKIT generates
circuits written in OPENQASM, a family of Quantum Assem-
bly Languages executable on IBM’s hardware. The original
QASM was designed for simply printing out quantum circuits,
and its successors are similarly low-level. They describe
circuits over a small set of gates, including the controlled-
NOT (CNOT), U1, U2, and U3, where each of the Ui gates
takes in i real numbered values. U3 can implement any single
qubit rotation (U1 and U2 are redundant in principle but are
included for efficiency’s sake) and hence together with CNOT
makes up a universal set for quantum computation. For a
detailed description of these gates and their functionality we
refer the reader to common introductory material, e.g., [58].
OPENQASM 2.0, the standard output for QISKIT, is quite
limited in terms of describing anything beyond simple circuits.
Measuring a qubit results in a bit that can then be used to
control a subsequent gate, however any stronger notion of
classical control flow is absent from the language.

Google’s CIRQ, like QISKIT, is a Python library designed
for constructing quantum circuits. CIRQ has an additional
focus on timing, allowing the user to specify which gates can
run in parallel and succession. In fact, CIRQ is structured
around time windows called Moments, in which a certain
group of operations is scheduled. Otherwise, it looks very
much like QISKIT, save that there is no separate language for
circuit generation and circuit execution, a common quantum
programming paradigm.

The third near-term quantum programming language of
note is Rigetti’s PYQUIL which, like QISKIT, consists of
both a low-level circuit language (the “Quantum Instruction
Language” QUIL) and a Python library for constructing
circuits. Like QISKIT and OPENQASM, QUIL consists of
a series of quantum gates while PYQUIL exists to generate
QUIL circuits, but QUIL generalizes this model slightly:

QUIL provides a “Delay” function, allowing for classical
computation while QUIL awaits further instruction. However,
this feature, like QUIL’s capacity to measure a qubit mid-
compilation, isn’t supported by Rigetti’s machines.

Some of QUIL’s forward looking features blur the gap
between near-term and long-term languages. The most recent
version of OPENQASM, OPENQASM 3.0 [59], does the
same. Unlike prior versions of OPENQASM, this new version
allows the user to describe families of circuits, parameterized
by a classical input not just concrete circuits. At the same
time, drawing from CIRQ, it allows users to specify timing
information on the gate level. It also allows the user to run
classical computation on the results of measurements in order
to compute the remainder of the circuit. Such techniques are
important for quantum routines like Repeat-Until-Success or
variational quantum algorithms, even though they cannot be
run on IBM’s current machines. In this way, OPENQASM
3.0 more closely resembles the long-term quantum program-
ming languages that we will discuss next, even as it includes
features tailored for near-term devices.

B. Long-Term Languages

A variety of languages have been developed for long term
quantum computing. A pioneering language in this family
is QUIPPER [26], a functional circuit-generation language
aimed at evaluating the cost of executing advanced quantum
algorithms, including a list of seven diverse and challeng-
ing algorithms proposed by IARPA. To do this, QUIPPER

provides functionality for generating quantum circuit from
Haskell code, bidirectional communication between classical
and quantum devices, controlling and reversing of circuits, and
automatic uncomputation of ancilla qubits. It can also calculate
the resource costs of generated circuits, giving us a sense of
the path towards long term quantum algorithms.

The SCAFFOLD language [60] was also developed to
explore this path, though with a focus on optimizing circuits
to make these complex algorithms more tractable [61].
SCAFFOLD is an imperative language modelled after C and
aims to be an quantum algorithm description language, rather
than simply a circuit generation language. It allows for the
allocation of qubit registers as first class objects and for
applying gates and other operations to these arrays. (Qubits,
in SCAFFOLD’s model, are simply qubit registers of length
1.) Like QUIPPER, SCAFFOLD provides a compiler from
classical expressions to quantum ones, allowing for the easy
generation of large quantum circuits that behave classically
on their inputs.

Along with QISKIT, Microsoft’s high-level Q# lan-
guage [62] has one of the most developed libraries and
active developer communities among quantum programming
languages. Like SCAFFOLD, it moves away from the circuit
model, instead allowing for quantum operations that affect
the quantum state and pure classical functions that leave the
quantum state alone. Unlike the many embedded quantum
languages, Q# is self-contained and features a syntax and
type system reminiscent of C# (although Q# is not a .NET
language unlike C#). Q# facilitates simulation, by including
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certain features like an assert statement that can only be
checked in simulation. To get code from Q# and other
high-level language running on quantum devices, one can
leverage intermediate representations such as QIR [63], which
is based on LLVM.

C. Safety Guarantees

There are a wide variety of ways in which quantum pro-
grams can go wrong, including trying to copy (or “clone”) a
qubit, sequencing quantum circuits with different numbers of
wires, and discarding ancilla qubits without unentangling them
and/or returning them to the |0� state. Some of the earliest
quantum programming languages were developed to avoid
these kinds of errors, with Selinger’s QPL [64] employing
a syntactic check that the two arguments to a two-qubit gate
were distinct.

The most common approach to avoiding violations of the
no-cloning theorem is through using linear types, which guar-
antee that linear data is used precisely once. The quantum
lambda calculus [65] uses a variant of this system called affine
types, which ensure that data is used at most once, allowing
for free deletion of qubits. PROTO-QUIPPER, an idealized,
self-contained core of the QUIPPER language, similarly uses
linearity to prevent cloning or deletion or qubits, patching a
key potential source of error in QUIPPER itself.

While linear types are used to prevent cloning, dependent
types, in which types can depend on language-level terms,
ensure that the composition of circuits is well-formed. The
QWIRE language [66], embedded in the Coq proof assistant.
combines both linear and dependent types to allow for the
safe composition of circuits, often drawn from parameterized
circuit families. In a similar vein, PROTO-QUIPPER-D [67]
combines linear and dependent types, though it avoids the
abstraction of separate host and circuit language. Even more
recently, Chimaera [68], takes advantage of the linear and
dependent types in the Idris 2 language to obtain a quantum
programming language that gets no cloning and safe compo-
sition for free.

The safe management of ancilla was first addressed by
REVERC, a tool for safely compiling reversible circuits, using
uncomputation to discard bits. Drawing on REVERC, QWIRE

was augmented with a limited range of templates for uncom-
puting and discarding ancilla, which were proved correct in
the Coq proof assistant. The SILQ language [69] was built
around safe and automatic uncomputation via qfree and
const annotations that guarantee that a function behaves
classically and that a given qubit isn’t modified until it can be
safely uncomputed. SILQ uses similar annotation to guarantee
that functions can be reverse or controlled, by promising that
they are measurement-free. In terms of uncomputation, the
Unqomp language [70] builds upon SILQ by ensuring that
uncomputation isn’t merely safe but efficient.

These are merely some of the key safety guarantees made
by recent quantum programming languages. Others include
guaranteeing that qubits are separable from the rest of the state,
as in the Twist programming language [71], through a mixture
of static annotations and dynamic assertions and checks.
λQ# [72], a proposed formal core for Q#, uses singleton types

to guarantee that multiple aliases of a qubit aren’t passed to
the same operation, while enforcing stack discipline. PROTO-
QUIPPER-DYN [73] uses type annotations to ensure that a
quantum function doesn’t use dynamic lifting to request a
continuation from the classical computer, ensuring that the
function can be safely treated not simply as a function, but
as a circuit. Novel approach to safety guarantees in quantum
programming language continue to appear in the literature,
demonstrating how quantum computing continues to benefit
from such techniques.

IV. QUANTUM PROGRAM COMPILERS

In this section, we survey various quantum compilation
algorithms. We can think of the trace of a quantum program
as a high-level quantum circuit over n primary qubits and a
sequence of high-level quantum gates that operate on a subset
of these n qubits. Therefore, depending on the control flow of
a program, there may exist several different quantum traces for
one program, each may result in a different qubit allocation.
Examples for high-level operations are the addition of two
quantum registers or a quantum Fourier transform. Note that
the description of high-level quantum gates may vary. Opera-
tions can be described explicitly in terms of unitary matrices
or symbolically, e.g. by a Boolean function that describes a
permutation or a phase change of the state’s amplitudes. The
goal is to execute the trace on a physical quantum computer
that is characterized by number of available qubits, a target
gate set of available single qubit and two qubit gate operations,
and a coupling graph that describes which pairs of qubits
allow the execution of two qubit gates. The synthesis step
in a quantum compiler takes care of translating the high-level
quantum gates to allowed operations in the target gate set, the
mapping step assigns the qubits of the input trace to physical
qubits and possibly changes the quantum circuit such that the
constraints of the coupling map can be fulfilled.

A. Synthesis

1) Hierarchical Synthesis: Hierarchical synthesis meth-
ods [74], [75] address the translation of high-level quantum
gates that implement Boolean oracle unitaries

U f : |x�|y�|0�⊗k �→ |x�|y ⊕ f (x)�|0�⊗k, (1)

where |x� and |y� are quantum registers of length m and l
respectively, and f : {0, 1}m → {0, 1}l is a Boolean function
with m inputs and l outputs. When the Boolean function is
represented in terms of a hierarchical logic network composed
of r gates, one can readily find quantum circuits that represent
U f with k ≤ r helper qubits computing temporary values
onto the helper qubits using simpler quantum operations that
correspond to the logic gates in the logic network. Researchers
have proposed LUT (lookup table) networks [76] to limit
the number of inputs to each logic gate. Various techniques
to map such oracle unitaries for functions with a small
number of inputs have been proposed, e.g., [77], [78], [79].
Other instantiations of hierarchical logic synthesis methods
utilize XOR-AND-Inverter graphs (XAGs) and found that the
number of helper qubits can be bounded by the number of
AND gates in the XAG [80]. This enables the application
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of logic synthesis methods to the logic networks in order
to reduce the number of AND gates. Several algorithms to
reduce the so-called multiplicative complexity [81] have been
proposed [82], [83], [84], which besides impacting synthesis
in quantum program compilers, also are highly relevant in
cryptography [82].

Further trade-offs between the number of quantum oper-
ations and qubits can be achieved by varying the ways in
which and how often temporary operations are computed and
uncomputed. These algorithms can be unified as instances of
reversible pebble games [85], for which various algorithms
have been proposed, both for arbitrary [86], [87] and specific
graph topologies [88], [89], [90].

2) Phase Polynomial Synthesis: Another family of uni-
taries are phase polynomials. A phase polynomial represen-
tation [91] for a unitary 2n × 2n matrix U over n qubits is
a tuple (A, (θ1, f1), . . . , (θl, fl )), where A ∈ GLn({0, 1}) is
a linear Boolean matrix, θi are real-valued angles, and fi are
linear Boolean functions over n variables. A phase polynomial
representation describes the matrix

U : |x� �→
(

l∏
i=1

eiθi fi (x)

)
|Ax�. (2)

All quantum circuits that are composed of CNOT and R1(θ) =
diag(1, eiθ ) gates implement phase polynomials, and more
importantly, all phase polynomials can be resented by a
quantum circuit on n qubits using only CNOT and R1(θ) gates.
Note that this quantum gate set becomes universal by including
the Hadamard gate. If all rotation angles are multiples of π

4 ,
the quantum circuits correspond to CNOT+T circuits, a subset
of the Clifford+T gate set. In [91], the CNOT+T gate set
was considered for re-synthesis and T -depth optimization in
Clifford+T circuits. One phase polynomial was constructed
from maximal CNOT+T subcircuits and then re-synthesized in
a way that minimizes T -depth based on matrioid partitioning.
The work in [92] highlights the fact that there exist multiple
phase polynomials for one unitary and use it for an algorithm
to reduce T -count based on Reed-Muller decoders. In [93] a
heuristic algorithm is presented that also reduces the number
of CNOT gates in a CNOT+R1 circuit, by not increasing
the number of rotation gates. A SAT-based version of the
algorithm that finds the minimum number of CNOT gates
is presented in [94], and variants that preserve gate coupling
constraints [95], [96], [97]. Other correspondences between
polynomials and families of quantum circuits are reported
in [98] and [99].

3) Relative-Phase Implementations: Synthesis methods,
in particular those targeting Boolean oracle unitaries, make
use of multiple-controlled Toffoli gates, an X operation on
a target qubit controlled on an arbitrary number of con-
trol qubits, as intermediate gate set. We can diagonalize a
multiple-controlled Toffoli gate, by surrounding the target
qubit with Hadamard gates to replace the controlled X oper-
ation with a controlled Z operation. A multiple-controlled
Z operation can be represented as a phase polynomial and
therefore algorithms from the previous section can be applied.
Smaller circuits can be found by using helper qubits and break-

ing down a gate with many control qubits into smaller ones
with less control qubits [10]. Some initial constructions where
provided in this reference, which were improved in [100]
by substituting intermediate Toffoli gates by relative-phase
implementations thereof, which require fewer gates from a
target gate set such as Clifford+T [101]. More savings are
possible when synthesizing several multiple-controlled Tof-
foli gates at once [102]. A dedicated construction for a
three-controlled Toffoli gate is reported in [103]. Relative-
gates have also been applied to reduce the cost of arith-
metic operations [104], [105] or arbitrary quantum circuit
optimization algorithms [106]. Some circuits make use of so-
called measurement-based uncomputation [104], which can
significantly reduce the cost of the quantum circuit for the cost
of mid-circuit measurements. Such techniques are also useful
for generalizations of the multiple-controlled Toffoli gate, e.g.,
table lookup [107]. The work in [108] analyzes a generaliza-
tion that includes relative-phase implementations as special
instances, and uses it to find improved quantum circuits.

4) Unitary Synthesis: The synthesis of arbitrary unitary
matrices often starts from a decomposition into CNOT gates
and arbitrary single-qubit unitary matrices U [10]. Various
constructive algorithms have been proposed, e.g., based on
cosine-sine matrix decomposition [109], quantum multiplex-
ors [110], decomposition of isometries [111], or meet-in-the-
middle algorithms [112], [113].

Then, single-qubit gates in the resulting circuits can be
described by three rotations using Euler decomposition U =
eiφRz(θ1)Rx (θ2)Rz(θ3), up to a global phase eiφ . This is equal
to eiφRz(θ1)H Rz(θ2)H Rz(θ3), and therefore the problem can
be reduced to rotation synthesis of Rz(θ) operations. Since
the target gate set is usually finite, the rotation Rz(θ) may not
be representable using gates drawn from the target gate set.
Therefore, in a first step one tries to find an approximation R
for Rz(θ) such that R can be represented using gates from the
target gate set and such that 	R − Rz(θ)	 ≤ ε for some ε > 0.
This step is called single-qubit unitary approximation [114].
First constructive algorithms were found by [115], [116],
and [117], optimal algorithms shortly after by [118], [119],
and [120] for specific gate sets and with generalizations
of gate sets in [121]. Further improvements were achieved
by allowing measurements in the circuits [122], [123]. The
state of the art in single-qubit unitary synthesis reduces the
problem to a magnitude approximation problem [124]. After
an approximation was found, exact synthesis techniques [125],
[126], [127] can be used to map them to the respective gate set.

B. Compilation

1) Mapping to NISQ Devices: Near-term QCs have specific
architectural constraints that must be considered during com-
pilation. NISQ devices lack error correction, so each logical
qubit within an algorithm is allocated to one physical qubit on
a quantum processor. These physical qubits are often limited
in their ability to interact directly with other qubits since as
most NISQ hardware only supports nearest-neighbor coupling.
As a result, the primary goal of a compiler when mapping
quantum programs to near-term machines is to optimize for
communication: it is preferred to determine mappings that
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minimize the movement of qubit state during program runtime
since computation must be completed within restrictive qubit
coherence windows.

Initially, linear nearest neighbor constraints on a 1D line
graph or a 2D grid were considered [128], [129], [130],
[131]. With the emerge of coupling graphs from real devices,
a method for arbitrary graphs based on A* search was pro-
posed [132]. Significant improvements were found by applying
multiple rounds of mapping to find a good initial qubit
placement [133], which was further analyzed in [134]. Other
approaches are based on transformation and commutation
rules [135]. SAT- and SMT-based techniques can be applied to
find optimum solutions and have first been proposed in [136]
and later improved (in run-time) in [137] and [138]. Other
approaches suggest to apply a two-step approach in which
the circuit is partitioned into maximal subcircuits for which a
qubit placement can be found without changing the circuit. In a
second step, SWAP networks are generated to map from one
qubit placement to another between subsequent subcircuits in
the partition, also called qubit routing. A SAT-based algorithm
to find qubit placements for a partition was proposed in [139].
It was shown that qubit placement can be mapped to routings
via matching and token swapping problems [140] depend-
ing on whether one is interested in a quantum circuit with
low SWAP depth or low SWAP count, respectively. Various
algorithms to solve the token swapping have been proposed
in [141]. In most of these algorithms, each qubit on the target
hardware was considered the same, however, the quality of
individual qubits and qubit pair interactions can vary. Noise-
aware mapping algorithms [142], [143] take this into account
to find not only mappings with a low gate count overhead, but
also those that favor qubits and qubit interactions with higher
quality to reduce effects of noise. Additional examples of
quantum compilation frameworks that boost the performance
of algorithms on near-term machines via architecture-aware
optimization include [144], [145], [146]

2) Mapping to Surface Code: Fault-tolerant quantum com-
puting controls the noise of physical qubit operations by
encoding multiple physical qubits into logical qubits through
error correction. The surface code [147], [148] is a promis-
ing approach to implement such a fault-tolerant quantum
computing scheme. A universal set of quantum computing
operations can be implemented on top of the surface code,
e.g., through lattice surgery [149]. The lower-level surface
code gate set often makes use of joint-measurement operations
as multi-qubit operations, and applies non-Clifford gates by
means of magic state distillation [150] and injection proto-
cols [266]. Joint-measurement operations can be used to imple-
ment long-rang SWAP or teleportation operations [151], which
enables mapping algorithms that are favorable to SWAP-based
mapping algorithms. In [152], an algorithm is proposed that
transforms a quantum circuit into a sequence of high-weight
Pauli measurement. In [153] proposes a mapping algorithm
based on long-range operations and optimizes their scheduling
by means of edge-disjoint path compilation.

C. Simulation

Simulation is an essential way to investigate the behavior of
a quantum system. However, it is computationally challenging

due to the exponential growth of quantum states in the number
of quantum bits (qubits) as well as the complex domains in
characterizing quantum states and operations. This difficulty
motivates Richard Feynman’s proposal to build a quantum
simulator/computer to simulate a quantum system, rather than
using a classical computer.

A quantum computation task proceeds in three steps: initial
state preparation, state evolution, and measurement. In gate-
based quantum computation, the state evolution is modeled
by a sequence of unitary operators that update the state
vector. A simulator aims to predict the measurement outcomes.
Classical simulation of quantum circuits can be classified into
strong simulation and weak simulation. The former aims to
calculate the probabilities of the measurement outcomes with
high accuracy; the latter aims to obtain output samples from
the probability distribution [154]. Most simulation algorithms
focus on strong simulation to calculate the probability ampli-
tudes of one or more quantum states. In weak simulation,
a classical computer mimics a quantum computer in sampling
the measurement outcomes.

There are two approaches to compute probability ampli-
tudes, namely, Schrödinger’s and Feynman’s approaches [8].
The former is based on state evolution by updating the state
vector gate by gate. The latter is based on path integral by
summing over the contributions of probability amplitudes of
all paths in the configuration space.

In contrast to Schrödinger’s approach computing all
probability amplitudes, Feynman’s can be much more
memory-efficient in computing the probability amplitude of a
single quantum state of interest. Tensor-network-based simula-
tion algorithms, e.g., [155], [156], [157], allows the computa-
tion complexity not to grow in the number of paths, which can
be exponential in the number of qubits and gates of the quan-
tum circuit, but rather in the tree-width of the circuit graph.
Essentially, the tensor contraction operation plays the role of
path integral in summing contributing amplitudes. When the
graph of a quantum circuit is closer to a tree, i.e., having a
smaller value of tree-width, the circuit exhibits less quantum
characteristics and can be simulated more easily by classical
computers. As noted in [158], Schrödinger’s approach works
relatively well for quantum circuits with the number of qubits
sufficiently limited for a full state vector storable in memory.
In contrast, Feynman’s approach works relatively well for
shallow quantum circuits with a large number of qubits.

Modern quantum circuit simulators follow one of the two
approaches or explore their combination. Depending on the
underlying data structures, quantum circuit simulation algo-
rithms may vary in their implementation and applicability.
In the following, we review some representative implemen-
tation choices.

1) Array-Based Methods: One natural choice of data struc-
tures for quantum circuit simulation computation is using
arrays to store the operator matrix and state vector and support
their multiplication in Schrödinger’s approach and to store
tensors and support their contraction in Feynman’s approach.

Simulation by array-based matrix-vector multiplication is
commonly available in quantum compilation and simula-
tion tools, e.g., CIRQ [159], QISKIT [160], QUEST [161],
QULACS [158]. Although matrix-vector multiplication is well
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supported by parallel computations on CPUs and GPUs, the
full-amplitude computation is hardly scalable to circuits with
50 qbuits even with supercomputing facilities. On the other
hand, simulation by array-based tensor-network contraction
has been developed and available in tools, e.g., QUIMB [162],
QULACS [158]. As the method allows partial and single
amplitude computation, it may reduce the memory requirement
and allow simulation on larger circuits. As was demonstrated
in [163], random quantum circuits with 40, 75 and 200 qubits
can be simulated for the computation of full, partial and single
amplitude, respectively.

2) Decision-Diagram-Based Methods: Binary decision dia-
grams (BDDs), particularly the reduced ordered BDDs (ROB-
DDs) [164], have been widely used as a compact canonical
representation for Boolean function manipulation. Efficient
BDD packages, e.g., [165], are available and widely applied
in various applications, such as electronic design automa-
tion and formal verification. The success has motivated their
extension, e.g., [166], [167], [168], [169], to quantum circuit
simulation to overcome the memory explosion problem of
array-based methods. The quantum multiple-valued decision
diagram (QMDD) [170] is one of such attempts to repre-
sent and manipulate operator matrices and state vectors of
complex values. The QMDD-based simulation [168] is shown
more effective than the array-based simulation in [171] in
cases where quantum states can be compactly represented by
QMDDs. QMDDs have been applied to confirm that program
semantics are preserved during compilation [172].

Most array-based and QMDD-based methods rely on
floating-point numbers to represent complex values and may
suffer from the precision problem [173]. The problem is
overcome in [173] and [169], where a complex number
is represented algebraically using five integer coefficients.
In [173], the floating-point numbers in a QMDD are replaced
with algebraic complex numbers at the cost of computation
overhead due to more expensive arithmetic operations. In con-
trast, in [169] the algebraic integer coefficients are represented
with an ROBDD per bit of an integer coefficient. Simulat-
ing an n-qubit quantum circuit corresponds to manipulating
n-variable ROBDDs according to a set of pre-characterized
Boolean formulas corresponding to the multiplication effects
of the supported set of unitary operators. It simulates cer-
tain benchmarks up to tens of thousands qubits, and is
generally much more scalable than QMDD-based methods.
Although [169] supports only algebraically representable uni-
tary gates, the gate collection is already sufficient for universal
quantum computation.

The above decision-diagram-based methods follow
Schrödinger’s approach for quantum state evolution.
Nevertheless, decision diagrams can also be applied
in Feynman’s approach for tensor-network-based
computation [174], where a QMDD is relaxed to allow
the input and output variables of a qubit to be freely, rather
than adjacently, ordered and the tensor contraction operation
on decision diagrams is supported.

3) Stabilizer-Rank Methods: There are classes of quantum
circuits whose simulation on a classical computer takes time
polynomial in the circuit size. One well-known class is the

stabilizer circuits, which merely consist of Clifford gates. Any
Clifford gate can be generated using the CNOT, Hadamard,
and phase gates. Algorithms for efficient simulation of stabi-
lizer circuits has been proposed [175], [176].

As universal quantum computation can be achieved by
Clifford gates added with some non-Clifford primitive gates,
e.g., the T-gate, or with the magic state, the stabilizer circuit
simulation algorithm can be extended to detail with circuits
with both Clifford and non-Clifford gates [175]. Unsurpris-
ingly, the time complexity grows polynomial in the number
of Clifford gates and exponential in the number of non-
Clifford gates. There are recent efforts [177], [178], [179]
that attempt to alleviate the exponential growth through the
notion of stabilizer rank [178] by decomposing a state into
the superposition of a number of stabilizer states [177].

D. Verification

1) Equivalence Checking: In modern integrated circuit (IC)
design flow, equivalence checking plays an important role in
ensuring the synthesis steps do not introduce errors. Similar
verification requirements are needed in the compilation of
quantum programs because the process of quantum program
compilation corresponds to a sequence of quantum circuit
transformation. In the compilation process, the circuits before
and after synthesis have to conform to some equivalence
criteria. The strongest and most common notion of equivalence
is total equivalence, which requires the output quantum states
of the two quantum circuits under verification have to be the
same modulo a global phase difference.

It is clear that a quantum circuit simulator capable of strong
simulation and computing all amplitudes can be used for
checking total equivalence. Decision-diagram-based simula-
tion algorithms are advantageous in equivalence checking over
array-based counterparts in their canonicity in state vector
representation. This canonicity makes equivalence checking
easy without having to check individual equivalences of cor-
responding amplitude pairs, which can be exponential in the
number of qubits.

Equivalence checking of quantum circuits have been studied
extensively, e.g., [180], [181], [182], [183]. A commonly
adopted approach to checking the equivalence between two
circuits U = Un · · · U1 and V = Vm · · · V1, for unitary
operators Ui and Vj , is to build the miter circuit [181], namely,
M = U · V −1 = (Un · · ·U1) · (V −1

1 · · · V −1
m ). The two circuits

are equivalence if and only if M = eıθ I , that is, M equals
an identify operator up to some global phase eıθ . The equiv-
alence checking boils down to computing the multiplication
(Un · · · U1) · (V −1

1 · · · V −1
m ). In fact, the sequence of multiply-

ing out the matrices is flexible and can be exploited to keep
decision diagrams of small size. In [182], the multiplication
sequence is rewritten as Un · · · U1 · I ·V 1

1 · · · V †
m . The procedure

of [182] starts from the identity matrix I in the middle of
the sequence and gradually multiplies either to the left or to
the right under some strategies to keep the QMDD compact
throughout the multiplication process. However, the above
matrix multiplication suffers from the floating-point precision
problem, which may lead to incorrect answers to equivalence
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checking. The precision problem of equivalence checking is
overcome in [183], which extends the ROBDD-based algebraic
representation of state vectors [169] to unitary operators.
Besides equivalence checking, fidelity checking and sparsity
checking are considered in [183]. Essentially, fidelity checking
offers a quantitative way to tell how similar two circuits are
if they are not equivalent. The ROBDD-based method [183]
can check certain circuits up to thousands of qubits, and
is generally more scalable and robust than QMDD-based
method [182].

In contrast to the above equivalence checking methods,
which follow the Schrödinger’s approach, a path-sum formu-
lation following Feynman’s approaches is proposed in [32] for
quantum circuit verification, including equivalence checking.
However, its scalability can be limited to circuits up to
100 qubits.

There are recent efforts that extend the notion of equiv-
alence. Specifically, equivalence checking of noisy quantum
circuits is addressed in [184] and [183]. In [185], partial equiv-
alence checking is defined and realized under the ROBDD-
based framework [183] to allow observational equivalence
with respect to partial measurement and constrained initial
states. In [186], equivalence checking of sequential quantum
circuits is formulated. For dynamic quantum circuits, where
quantum systems interact classical controls, their equivalence
checking is considered in [187] and [188].

2) Proof Assistants: Formal verification of quantum pro-
grams aims to prove that a program does what it’s expected
to do. Two of the earliest works in this area used the Coq
proof assistant [189] to prove the correctness of basic quantum
algorithms, whether expressed directly as a series of quantum
operations [190] or within the QWIRE quantum programming
language [191]. However, the first approach was limited by a
slow underlying matrix library, while the second was limited
by the complexity of the QWIRE language [66], and neither
was able to verify complex algorithms like Shor’s factoring
algorithm or Grover’s search.

One approach to the complexity of verifying quantum
computation was to represent them as path-sums [32], which
describe a unitary circuits action on basis states as

|x� → 1√
2m

2m−1∑
y=0

e2π i P(x,y)/2m | f (x, y)�

where P and f are drawn from a restricted class of functions.
Conveniently, most common quantum gates can be represented
using path-sums: For instance, the common X and T gates can
be written

X : |x� → e0|x ⊕ 1� T : |x� → e2π i x
8 |x�

Path-sums can also be composed neatly, allowing for easy
processing of a quantum program. Using path-sums, the
FEYNMAN tool [32] was able to verify the correctness of
a quantum Fourier transform on up to 31 qubits and a
hidden-shift algorithm on up to 60, both in a matter of seconds.
However, as we might expect, this method scales poorly,
typically stalling out in the hundreds of qubits (depending on
the algorithm).

In order to reason about quantum programs over arbitrary
numbers of qubits (circuit families if we’re considering the
quantum circuit model), we have to do symbolic reasoning,
where the number of qubits n appears in the verification
statement and proof. QBRICKS [192] does this by generalizing
FEYNMAN’s path-sums to parameterized path-sums, where
parameters to the program can also appear in the proof
statement. Using this generalization of path-sums and the veri-
fication tool WHY3 [193], along with a range of SMT solvers,
QBRICKS was able to verify a range of quantum programs,
importantly including both Grover’s and (the quantum part
of) Shor’s algorithms, regardless of input size.

Concurrently with QBRICKS, a different group of
researchers developed SQIR [194], a small quantum
intermediate representation designed for ease of proof.
SQIR provides it’s programs semantics both in terms of
unitary matrices and superoperators, for programs including
measurement. While less automated than QBRICKS, it does
provide some automation for simplifying matrix and complex
number expressions, and switching between representations
of states and operators. SQIR was originally used to prove the
quantum parts of Grover’s and Shor’s algorithms, with later
work presenting an end-to-end proof of Shor’s algorithm,
including the classical parts [195]. It also served as the core
of the VOQC compiler [30], which heavily optimizes quantum
programs while guaranteeing that the output program is
semantically identical to the input.

3) Program Logics: Another, partially overlapping,
approach to validating quantum programs is using a program
logic in the model of Hoare logic or guarded command
language. The first work in this direction was D’Hondt
and Panangaden’s Quantum Weakest Preconditions [196],
which proposed that quantum observables are the correct
quantum analogue to Kozen’s arithmetic predicates [197]
for reasoning about probabilistic programs. Ying [198] used
these predicates to write a Hoare-style logic for reasoning
about programs in a quantum while language, a simple
simple imperative language with quantum bits and integers,
unitary application, and if and while statement, each of which
measure quantum states. Ying’s paper included logics for
both partial and total correctness, where the former treats
non-terminating programs as satisfying the postcondition.
In the case of total correctness, the logic includes a rule for
while loops that guarantees that the loop terminates with
probability 1. The logic, later called QHL, was sufficient to
prove the correctness of Grover’s algorithm.

A variety of works built on QHL, including extending it
to reason about both quantum and classical variables. At the
same time, several works moved away from using observables
as preconditions, arguing that it’s often easier to reason using
projectors as predicates over quantum states. These predicates
were adopted in an applied quantum Hoare logic [199], which
added rules for reasoning about programs with error bounds,
as we expect for all near-term quantum programs. This logic
was used to prove the correctness of the Harrow-Hassidim-
Lloyd algorithm [5]. Simultaneously, Unruh [200] developed
a projection-based quantum Hoare logic with ghost variables,
where non-program variables called ghosts can stand in for
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measured variables in predicates. This allows one to easily
express notions like “q is the outcome of a coin flip” by saying
“q can be modelled as a member of a measured Bell pair with
the ghost g”. This logic is used for cryptographic purposes,
particularly to verify a quantum one-time pad.

Quantum Hoare logic has been extended to a variety
of additional domains including reasoning about program
robustness [201], parallel programming [202], separation
logic [203], [204], and an EasyCrypt-style relational logic for
proving security [205]. The last is of particular interest as it
led to qrhl-tool, a dedicated cryptographic proof assistant built
upon Isabelle/HOL [206]. QHL itself was also embedded in
Isabelle/HOL [207], providing the correctness guarantees of
a proof assistant along with the convenience of a Hoare style
logic.

A fuller discussion of formal verification in the quantum
setting is given in [208].

V. QUANTUM TECHNOLOGY IN COMPUTING SYSTEMS

In this section, we provide an overview how superconduct-
ing quantum technology is applied in computing systems that
process either quantum or classical information.

A. Superconducting Devices for Quantum Computing

Pinpointing the technology that will enable large-scale
quantum computation is currently an active area of research.
In the last decade, however, superconducting (SC) quantum
circuits [209] have amassed popularity from industry and
academia alike as a means for creating physical qubits. A lead-
ing advantage of SC circuits is that they take advantage of
well-established classical fabrication techniques and thus are
poised to be favorable for scaling.

SC qubits utilize Josephson Junctions (JJs), or two super-
conducting electrodes separated by a thin, insulating tunnel
barrier, along with additional capacitors and inductors to
implement circuit quantum electrodynamics (cQED). At a
high-level, cQED describes how microwave photons and SC
circuits interact, and it can be used to define the rules for
the realization of quantum information. SC circuits are highly
configurable. For example, the properties, dimensions, and
number of JJs within an SC circuit influences how the resulting
qubit stores and manipulates quantum state. SC cQED devices
operate at close to absolute zero temperatures, 20 mK, in order
to isolate operational modes from external environmental
noise – they act as mesoscopic-scale, artificial atoms with
an anharmonic energy spectrum [210], [211]. Typically, the
lowest two energy levels of this spectrum are used to realize
qubit states: the ground state |0� corresponds to the lowest
energy level and the excited state |1� corresponds to the next
highest energy level.

In this section, we will focus our study on the SC qubit
referred to as the transmon. We note, however, that other
types of SC quantum devices based on the JJ exist such as
the fluxonium [212] and flux qubit [213]. Transmons were
originally developed in 2007 [214] and are the qubits found
in the majority of today’s cQED devices. The first two-qubit
interaction of fidelity higher than 99% was demonstrated

in 2014 [215], and there have been many more qubit-qubit
couplings of similar quality reported since [41], [216], [217],
[218]. Single-qubit operations can be implemented at higher
fidelity with error rates of order 10−4. Broadly, transmon
qubits are categorized as ‘fixed-frequency’ with a single JJ or
‘flux-tunable’ with two parallel JJs that allow qubit frequency
to be adjusted with the application of an external magnetic
field. The frequency of a transmon qubit corresponds to
the difference between the |1� and |0� energy levels in the
transmon’s anharmonic spectrum.

Emerging transmons QCs are promising but are still
NISQ-era prototypes with under 150 qubits [219], [220],
[221]. They also suffer from non-trivial noise during compu-
tation stemming from limited coherence windows (currently
in the range of 10s of microseconds) [222], measurement
errors [223], and imprecise control that results from incom-
plete system characterization [224]. Since transmon devices
are not error corrected, quantum programs must be trans-
formed into highly-customized executables to both optimize
for native gate sets and mitigate platform-specific noise on
near-term QCs [142]. Although much progress has been made
in terms of boosting two-qubit gate fidelity, one of the of the
biggest challenges facing today’s transmon qubits is obtain-
ing qubit-qubit interaction fidelities that satisfy thresholds
required for fault tolerance. Flux-tunable quantum devices
enable two-qubit interactions via dynamically tuning qubits
into resonance conditions [225], [226] or via parametric modu-
lation of tunable elements [227], [228]. Tunability of SC qubit
circuits, however, comes at the cost of qubit coherence and
implementation scalibility due to the footprint of the neces-
sary classical control hardware. Conversely, two-qubit inter-
actions are enabled by carefully designed microwave drives in
fixed-frequency SC qubit devices [216]. The qubit frequencies
of nearest and next-nearest neighbors must be allocated with
adequate spacing to avoid frequency collisions and poor qubit
interactions in fixed frequency devices [229]. Unfortunately,
imprecision associated with today’s QC fabrication causes
small imperfections to appear in JJ positioning, component
dimensions, and surrounding layers, influencing operational
characteristics of transmons during computation [230]. In the
case of the fixed-frequency transmons, fabrication imprecision
that results in component imperfections often causes qubit
frequency to deviate from its ideal, resulting in spectral
overlaps that induce frequency collisions. Despite challenges
associated with frequency collisions, however, fixed-frequency
transmons are characterized by recent improvements in coher-
ence, stability, and controlability [231], [232], [233], [234] that
making them promising for scaling.

B. Superconducting Electronics in Classical Pipelined
Computing

Quantum computing leverages two important properties
at the device level: superposition and entanglement. Other
technologies and architectures can exploit device quantum
properties different that superposition and entanglement, and
thus realize classical (as compared to quantum) computing
with specific important characteristics. Indeed, superconduct-
ing electronic (SCE) circuits provides us with the ability of
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realizing digital logic gates where the information is quantized.
Logic gates can be designed so that a single quantum of
information is exchanged. Moreover, information transmission
is very rapid on wires, because of the lack of parasitic
resistance in the superconducting domain, typically at few
degrees Kelvin (typically 4 K). Switching is achieved by
Josephson junctions (JJ), that are designed by interposing a
thin insulator in a gap of a superconducting wire of Niobium.

Superconducting electronics are quite attractive for the
following reasons. First, the technology can match and extend
present performance requirements, e.g., ALU prototypes have
been shown to run at and above 50 GHz clock rates. Second,
SCE devices manipulate flux quanta ø = h/2e with energy
2 · 10−19 J or 5 · 103 kT ln 2 at 4 K. Thus, SCE circuits can
be realized to operate much closer to the minimum energy
limit, and roughly two orders of magnitude better as compared
to CMOS. This prediction is confirmed by prototypes [235].
Third, these circuits can work as interface at 4 K between the
host and a quantum computer, enabling information processing
in a classic way that is in local proximity to a quantum chip.
Thus, superconducting electronic circuits can be employed
as both standalone accelerators and as bridges to quantum
computing. For this last reason, an expanded description is
justified here.

IBM led a strong effort in SCE in the 70s with the
objective of building computers that would outperform the
currently-available technology. The circuits utilized Josephson
junctions exhibiting hysteresis in their resistive states (i.e.,
resistive and superconductive). The JJ acts as a switch that
can be set and reset by applying a current. A logic TRUE is
associated with the JJ in its resistive state, and a logic FALSE
with its superconductive state. This effort faded in the mid
80s, because of various drawbacks, including the choice of
materials and the latching operation of logic [236].

Likharev [236] brought back strong interest in SCE by
proposing rapid single flux quantum (RSFQ) circuits. In these
circuits, the logic values (TRUE, FALSE) are represented
by the presence or absence of single flux quantum (SFQ)
pulses called fluxons with ø = h/2e = 2 · 10−15Wb
corresponding approximately to a 2 mv pulse lasting 1 ps.
Junctions are DC biased and when a pulse is applied to
the junction, it can be sufficient to drive the current level
over its threshold and to generate another pulse that can be
propagated through the circuit. This type of behavior is often
called Josephson transmission line (JTL) and it is the basic
operational principle of RSFQ circuits that propagates flux
pulses. A specific feature of RSFQ circuits is that logic gates
are clocked, and that the overall circuit is pipelined. The
RSFQ technology evolved in many directions. Energy-efficient
SFQ (eSFQ and ERFSQ) [237] and low-voltage RSFQ (LV-
RSFQ) [238] employ specific bias networks and low sup-
ply voltages respectively to reduce the power consumption.
Dynamic flux single quantum (DSFQ) logic [239] introduces
self-resetting gates that ease the clocking requirements. Var-
ious realizations of ALUs have been reported, with deep-
pipelined, wave-pipelined and asynchronous operation.

SCE circuit design has several peculiarities and constraints,
that may vary in the different SCE families. We highlight

two constraints. First, each gate is triggered by a clock or
bias signal in conjunction with the logic input signal. Thus,
circuits operate in pipelined mode, and input to logic gates
have to be present simultaneously, thus requiring that logic
inputs have the same logic depth or distance from the primary
inputs. A circuit with such a property is said to be balanced.
Second, logic gates generate pulses that cannot sustain
multiple fanouts, and thus splitters have to be used. As a
result, SCE design requires specific electronic design tools.
The Coldflux project [240], under the auspices of the IARPA
Supertools program, has addressed design electronic design
automation (EDA) problems for SCE, including automatic
circuit balancing [241], [242] and splitter insertion [243].
Some researchers addressed the splitter and buffer insertion
in AQFP [244], [245], [246] while others considered a flow
where the logic network is reduced first for depth using
algebraic methods, followed by Boolean substitution and
splitter insertion [247]. Lee presented an exact formulation
of buffer/splitter insertion via SMT as well as an improved
heuristic algorithm [248]. Researchers at Synopsys recently
published the results of a full synthesis of a 4-bit AMD
2901 microcontroller from RTL code to layout in an ERFSQ
standard cell library from Hypres [249]. Several research
activities have addressed physical design of SCE circuits,
such as synchronization [250], placement and routing [250],
[251], [252], cell libraries [252], and parasitics extraction and
mitigation [253]. Krylov and Friedman [254] have recently
authored a comprehensive book on various aspect of SCE
design with a wide set of references to current works.

C. Adiabatic Superconducting Electronics

Recent research work has addressed technologies that target
low-energy consumption. This can be achieved by using
adiabatic mode of operation and AC power (i.e., alternating
current supply). Two technologies are particularly relevant:
reciprocal quantum logic (RQL) [235] researched and devel-
oped at Northrop Grumman, and adiabatic quantum flux
parametron (AQFP) [255] pursued at Yokohama National
University (YNU) in Japan. A parametron is a resonant circuit
with a nonlinear reactive element [256]. We describe AQFP
in more detail.

The fundamental element in AQFP is the clocked buffer.
Two loops, involving each a JJ and an inductor, are used
to store logic information in terms of flux quanta depending
on the direction of an input current signal and the magnetic
coupling to other inductors. When an input and the supply
trigger are present, an output current pulse is generated. The
direction of the current pulse encodes the logic value TRUE
or FALSE. A buffer can be made into an inverting buffer
by switching the terminals of the output coupled inductor.
Thus, inversion comes at no cost in this technology. It was
shown [257], [258] that the “parallel combination” of three
AQFP buffers yields a majority gate, which is the basic logic
primitive of this technology. The 2-input logic AND and OR
gates can be realized by modifying one buffer (of the majority
gate) so that a small imbalance in the loop design yields always
a logic FALSE or TRUE as output respectively. Based on these
principles, a simple and modular cell library can be built from
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buffers (regular, inverted or modified) and branch cells (used to
join and split signals) [257]. A full EDA flow from an HDL
description to a cell-based physical design has been created
by researchers at YNU [259]. In particular, tools for logic
synthesis need to address balancing, majority-based synthesis
(described in the next section) and splitter insertion [245],
[246], [247].

The majority paradigm in logic synthesis [260], [261] is
based on a formulation of a new Boolean algebra using
the majority and complementation operators. The algebra
can be expressed in terms of five axioms (commutativity,
associativity, distributivity, majority and self-duality) and was
shown to be sound and complete [261]. From a theoretical
standpoint, algorithms based on the majority paradigm enable
the search for an optimum or optimal solution in a connected
design space, which provides the existence of a path to the
optimum (even though such path may be hard to find and with
over-polynomial length, as the problem is computationally
intractable). From a practical standpoint, tools based on the
majority algebra were shown to achieve circuits 15% better
in delay in average as compared to other methods after
physical design in ASICs [261]. This fact was also validated
on commercial tools. Libraries of algorithms for logic opti-
mization are publicly available, such as the mockturtle library
(https://github.com/lsils/mockturtle).

D. Wave Pipelining

Wave pipelining (WP) [262] is a technique to speed up the
computation by allowing two or more waves of signals to
propagate in between two registers. In a WP circuit the clock
frequency of the registers can be higher than the maximum
propagation delay, to capture wave-fronts of data as they prop-
agate from the source to the sink register. It is quintessential
that the waves do not mix, which implies that I/O paths
need to have the same delay, or to mismatch by a small
quantity that eventually poses a bound on the clock frequency.
There are examples of RSFQ ALU designs that exploit wave
pipelining [263]. Whereas in standard (synchronous) RSFQ the
clock triggers the computation at logic gates, in asynchronous
wave-pipelined RSFQ signals are held so that a logic stage
does not start operating until all signals from the previous
stage are available. This obviates the local clocking [264]
and enables multiple data waves to propagate simultaneously.
As the overall performance is limited by the signal arrival-time
mismatches, then SCE can benefit from path delay equalization
as in CMOS WP [262] and furthermore WP path balancing can
be combined with majority logic synthesis transformations,
to achieve correct and optimal SCE digital circuits.

E. Summary

Recent realizations of SCE circuits have shown remarkable
performances. For example, Ke [265] showed the realiza-
tion of a low-power 8-point, 7-bit FFT processor running at
47.8 GHz consuming 5.3mW in SFQ technology. An AQFP
adiabatic processor has been realized [244] with switching
energy at 1.4 zJ with a 5 GHz AC clock. Even by con-
sidering a 1000x energy loss in cryocooling, this realization

is still two-orders of magnitude more efficient as compared
to 7nm CMOS according to [244]. These very positive
results make us very optimistic about the potentials of SCE
as a superconducting technology, especially for low-energy
high-throughput computation. Nevertheless, scaling up SCE
design is challenging, as the support of EDA tools is still in
its infancy.

VI. CONCLUSION

In this survey paper, we covered recent advances in quan-
tum computation and quantum technologies from the design
automation perspective. Due to the rapid progress and diver-
sified interdisciplinary studies, it is not possible to mention
all important related work of the intended subject. However,
we tried to provide a skeleton of some key elements in the
abstraction stack of quantum computation sketched in Fig. 1
based on our limited knowledge. We hope this survey can
serve as a helpful guide for the readers to find entry points for
further investigations.
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technologies,” Nature Photon., vol. 3, no. 12, pp. 687–695, 2009.

[48] E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient
quantum computation with linear optics,” Nature, vol. 409, no. 6816,
pp. 46–52, Jan. 2001.

[49] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,”
Nature, vol. 299, no. 5886, pp. 802–803, Oct. 1982.

[50] D. P. DiVincenzo, “The physical implementation of quantum compu-
tation,” Fortschritte Phys., vol. 48, nos. 9–11, pp. 771–783, Feb. 2000.

[51] A. Peruzzo et al., “A variational eigenvalue solver on a photonic
quantum processor,” Nature Commun., vol. 5, no. 1, pp. 1–7, 2014.

[52] N. Moll et al., “Quantum optimization using variational algorithms
on near-term quantum devices,” Quantum Sci. Technol., vol. 3, no. 3,
Jul. 2018, Art. no. 030503.

[53] J. J. Wallman and J. Emerson, “Noise tailoring for scalable quantum
computation via randomized compiling,” Phys. Rev. A, Gen. Phys.,
vol. 94, no. 5, Nov. 2016, Art. no. 052325.

[54] J. B. Hertzberg et al., “Laser-annealing Josephson junctions for yielding
scaled-up superconducting quantum processors,” npj Quantum Inf.,
vol. 7, no. 1, pp. 1–8, Dec. 2021.

[55] A. Nersisyan et al., “Manufacturing low dissipation superconducting
quantum processors,” in IEDM Tech. Dig., Dec. 2019, pp. 1–31.

[56] M. Sarovar, T. Proctor, K. Rudinger, K. Young, E. Nielsen, and
R. Blume-Kohout, “Detecting crosstalk errors in quantum information
processors,” Quantum, vol. 4, p. 321, Sep. 2020.

[57] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: A case
for variability-aware policies for NISQ-era quantum computers,” in
Proc. 24th Int. Conf. Architectural Support Program. Lang. Operating
Syst., Apr. 2019, pp. 987–999.

[58] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[59] A. Cross et al., “OpenQASM 3: A broader and deeper quantum assem-
bly language,” ACM Trans. Quantum Comput., vol. 3, no. 3, pp. 1–50,
Sep. 2022. [Online]. Available: https://qiskit.github.io/openqasm

[60] A. Javadi-Abhari et al., “Scaffold: Quantum programming lan-
guage,” Princeton Univ., Princeton, NJ, USA, Tech. Rep., TR-934-12,
Jun. 2012. [Online]. Available: https://www.cs.princeton.edu/research/
techreps/TR-934-12

[61] A. JavadiAbhari et al., “ScaffCC: Scalable compilation and analysis of
quantum programs,” Parallel Comput., vol. 45, pp. 2–17, Jun. 2015.

[62] K. M. Svore et al., “Q#: Enabling scalable quantum computing and
development with a high-level DSL,” in Proc. Real World Domain
Specific Lang. Workshop. New York, NY, USA: Association for Com-
puting Machinery, Feb. 2018, p. 7.

[63] QIR Alliance. (2021). QIR Specification. [Online]. Available:
https://qir-alliance.org

[64] P. Selinger, “Towards a quantum programming language,” Math. Struct.
Comput. Sci., vol. 14, no. 4, pp. 527–586, Aug. 2004. [Online].
Available: https://www.mathstat.dal.ca/~selinger/papers/papers/qpl.pdf

[65] P. Selinger and B. Valiron, “A lambda calculus for quantum computa-
tion with classical control,” Math. Struct. Comput. Sci., vol. 16, no. 3,
pp. 527–552, Jun. 2006. [Online]. Available: https://www.mscs.dal.ca/
~selinger/papers/papers/qlambda-mscs.pdf

http://dx.doi.org/10.1063/1.5089550
http://dx.doi.org/10.1146/annurev-conmatphys-031119-050605
http://dx.doi.org/10.1063/PT.3.4270
http://dx.doi.org/10.1103/prxquantum.2.020343
http://dx.doi.org/10.1126/science.abg7812
http://dx.doi.org/10.1038/s42254-020-00245-7
http://dx.doi.org/10.1038/s42254-020-00245-7
http://dx.doi.org/10.1145/2462156.2462177
http://dx.doi.org/10.1088/2058-9565/ab9359
http://dx.doi.org/10.23919/DATE.2018.8341993
http://dx.doi.org/10.1109/TCAD.2018.2859251
http://dx.doi.org/10.3389/fphy.2019.00048


DE MICHELI et al.: ADVANCES IN QC AND QUANTUM TECHNOLOGIES: A DESIGN AUTOMATION PERSPECTIVE 597

[66] J. Paykin, R. Rand, and S. Zdancewic, “QWIRE: A core language for
quantum circuits,” in Proc. 44th ACM SIGPLAN Symp. Princ. Program.
Lang., New York, NY, USA, Jan. 2017, pp. 846–858.

[67] P. Fu, K. Kishida, and P. Selinger, “Linear dependent type theory for
quantum programming languages: Extended abstract,” in Proc. 35th
Annu. ACM/IEEE Symp. Log. Comput. Sci., New York, NY, USA,
Jul. 2020, pp. 440–453.

[68] L.-J. Dandy, E. Jeandel, and V. Zamdzhiev. (Nov. 2021). Qimaera:
Type-Safe (Variational) Quantum Programming in Idris. [Online].
Available: https://github.com/zamdzhiev/Qimaera

[69] B. Bichsel, M. Baader, T. Gehr, and M. Vechev, “Silq: A high-level
quantum language with safe uncomputation and intuitive semantics,” in
Proc. 41st ACM SIGPLAN Conf. Program. Lang. Design Implement.,
New York, NY, USA, Jun. 2020, pp. 286–300. [Online]. Available:
https://files.sri.inf.ethz.ch/website/papers/pldi20-silq.pdf

[70] A. Paradis, B. Bichsel, S. Steffen, and M. Vechev, “Unqomp: Synthesiz-
ing uncomputation in quantum circuits,” in Proc. 42nd ACM SIGPLAN
Int. Conf. Program. Lang. Design Implement., New York, NY, USA,
Jun. 2021, pp. 222–236.

[71] C. Yuan, C. McNally, and M. Carbin, “Twist: Sound reasoning
for purity and entanglement in quantum programs,” Proc. ACM
Program. Lang., vol. 6, p. 30, Jan. 2022. [Online]. Available:
https://github.com/psg-mit/twist-popl22

[72] K. Singhal, K. Hietala, S. Marshall, and R. Rand, “Q# as a quan-
tum algorithmic language,” in Proc. 19th Int. Conf. Quantum Phys.
Log. (QPL). Oxford, U.K.: Open Publishing Association, Jun. 2022,
pp. 1–22. [Online]. Available: https://ks.cs.uchicago.edu/publication/q-
algol/

[73] P. Fu, K. Kishida, N. J. Ross, and P. Selinger, “Proto-Quipper with
dynamic lifting,” 2022, arXiv:2204.13041.

[74] M. Rawski, “Application of functional decomposition in synthesis
of reversible circuits,” in Proc. Int. Conf. Reversible Comput., 2015,
pp. 285–290, doi: 10.1007/978-3-319-20860-2_20.

[75] M. Soeken, M. Roetteler, N. Wiebe, and G. De Micheli, “Logic
synthesis for quantum computing,” 2017, arXiv:1706.02721.

[76] M. Soeken, M. Roetteler, N. Wiebe, and G. De Micheli, “Hierarchical
reversible logic synthesis using LUTs,” in Proc. 54th Annu. Design
Autom. Conf., Jun. 2017, pp. 78:1–78:6.

[77] K. Fazel, M. A. Thornton, and J. E. Rice, “ESOP-based Toffoli
gate cascade generation,” in Proc. IEEE Pacific Rim Conf. Commun.,
Comput. Signal Process., Aug. 2007, pp. 206–209.

[78] C. Bandyopadhyay, H. Rahaman, and R. Drechsler, “Improved cube
list based cube pairing approach for synthesis of ESOP based
reversible logic,” Trans. Comput. Sci., vol. 24, pp. 129–146, 2014, doi:
10.1007/978-3-662-45711-5_8.

[79] G. Meuli, M. Soeken, M. Roetteler, and G. De Micheli, “Enumerating
optimal quantum circuits using spectral classification,” in Proc. IEEE
Int. Symp. Circuits Syst. (ISCAS), Oct. 2020, pp. 1–5.

[80] G. Meuli, M. Soeken, E. Campbell, M. Roetteler, and G. De Micheli,
“The role of multiplicative complexity in compiling low T -count
Oracle circuits,” in Proc. Int. Conf. Comput.-Aided Design, 2019,
pp. 1–8, doi: 10.1109/ICCAD45719.2019.8942093.

[81] R. Mirwald and C. P. Schnorr, “The multiplicative complexity of
quadratic Boolean functions,” in Proc. 28th Annu. Symp. Found.
Comput. Sci., Oct. 1987, pp. 141–150, doi: 10.1109/SFCS.1987.57.

[82] J. Boyar, P. Matthews, and R. Peralta, “Logic minimization tech-
niques with applications to cryptology,” J. Cryptol., vol. 26, no. 2,
pp. 280–312, Apr. 2013, doi: 10.1007/s00145-012-9124-7.

[83] E. Testa, M. Soeken, L. Amarù, and G. De Micheli, “Reducing the mul-
tiplicative complexity in logic networks for cryptography and security
applications,” in Proc. 56th Annu. Design Autom. Conf., Jun. 2019,
p. 74, doi: 10.1145/3316781.3317893.

[84] E. Testa, M. Soeken, H. Riener, L. G. Amarù, and G. De Micheli,
“A logic synthesis toolbox for reducing the multiplicative complexity
in logic networks,” in Proc. Design, Automat. Test Eur. Conf. Exhib.
(DATE), Mar. 2020, pp. 568–573.

[85] C. H. Bennett, “Time/space trade-offs for reversible computation,”
SIAM J. Comput., vol. 18, no. 4, pp. 766–776, Aug. 1989, doi:
10.1137/0218053.

[86] A. Parent, M. Roetteler, and K. M. Svore, “REVS: A tool for space-
optimized reversible circuit synthesis,” in Proc. Int. Conf. Reversible
Comput., 2017, pp. 90–101, doi: 10.1007/978-3-319-59936-6_7.

[87] G. Meuli, M. Soeken, M. Roetteler, N. Bjorner, and G. D. Micheli,
“Reversible pebbling game for quantum memory management,” in
Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2019,
pp. 288–291, doi: 10.23919/DATE.2019.8715092.

[88] E. Knill, “An analysis of Bennett’s pebble game,” 1995,
arXiv:math/9508218.

[89] S. M. Chan, “Just a pebble game,” in Proc. IEEE Conf. Comput.
Complex., Jun. 2013, pp. 133–143, doi: 10.1109/CCC.2013.22.

[90] B. Komarath, J. Sarma, and S. Sawlani, “Reversible pebble game on
trees,” in Proc. Int. Conf. Comput. Combinatorics, 2015, pp. 83–94,
doi: 10.1007/978-3-319-21398-9_7.

[91] M. Amy, D. Maslov, and M. Mosca, “Polynomial-time T-depth
optimization of Clifford+T circuits via matroid partitioning,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 10,
pp. 1476–1489, Oct. 2014, doi: 10.1109/TCAD.2014.2341953.

[92] M. Amy and M. Mosca, “T-count optimization and Reed–Müller
codes,” 2016, arXiv:1601.07363.

[93] M. Amy, P. Azimzadeh, and M. Mosca, “On the CNOT-complexity of
CNOT-PHASE circuits,” 2017, arXiv:1712.01859.

[94] G. Meuli, M. Soeken, and G. De Micheli, “SAT-based {CNOT, T}
quantum circuit synthesis,” in Proc. Int. Conf. Reversible Comput.,
2018, pp. 175–188, doi: 10.1007/978-3-319-99498-7_12.

[95] A. Kissinger and A. Meijer-van de Griend, “CNOT circuit
extraction for topologically-constrained quantum memories,” 2019,
arXiv:1904.00633.

[96] B. Nash, V. Gheorghiu, and M. Mosca, “Quantum circuit optimizations
for NISQ architectures,” 2019, arXiv:1904.01972.

[97] A. Meijer-van de Griend and R. Duncan, “Architecture-aware synthesis
of phase polynomials for NISQ devices,” 2020, arXiv:2004.06052.

[98] A. Montanaro, “Quantum circuits and low-degree polynomials
over F2,” J. Phys. A, Math. Theor., vol. 50, no. 8, Jan. 2017,
Art. no. 084002, doi: 10.1088/1751-8121/aa565f.

[99] C. M. Dawson, H. L. Haselgrove, A. P. Hines, D. Mortimer,
M. A. Nielsen, and J. T. Osborne, “Quantum computing and polyno-
mial equations over the finite field Z2,” 2004, arXiv:quant-ph/0408129.

[100] D. Maslov, “Advantages of using relative-phase Toffoli gates with an
application to multiple control Toffoli optimization,” Phys. Rev. A, Gen.
Phys., vol. 93, no. 2, Feb. 2016, Art. no. 022311.

[101] C. Jones, “Low-overhead constructions for the fault-tolerant Toffoli
gate,” Phys. Rev. A, Gen. Phys., vol. 87, no. 2, Feb. 2013,
Art. no. 022328.

[102] S. Esaki and S. Yamashita, “Reducing T -count when decomposing
many MPMCT gates simultaneously,” in Proc. 50th IEEE Int. Symp.
Multiple-Valued Logic, Miyazaki, Japan, Nov. 2020, pp. 22–27, doi:
10.1109/ISMVL49045.2020.00-35.

[103] C. Gidney and N. Cody Jones, “A CCCZ gate performed with 6 T
gates,” 2021, arXiv:2106.11513.

[104] C. Gidney, “Halving the cost of quantum addition,” Quantum, vol. 2,
p. 74, Jun. 2018, doi: 10.22331/q-2018-06-18-74.

[105] K. Oonishi, T. Tanaka, S. Uno, T. Satoh, R. Van Meter, and N. Kunihiro,
“Efficient construction of a control modular adder on a carry-lookahead
adder using relative-phase Toffoli gates,” IEEE Trans. Quantum Eng.,
vol. 3, pp. 1–18, 2022.

[106] S. Kuroda and S. Yamashita, “Optimization of quantum Boolean
circuits by relative-phase Toffoli gates,” in Proc. Int. Conf. Reversible
Comput., 2022, pp. 20–27, doi: 10.1007/978-3-031-09005-9_2.

[107] C. Gidney, “Windowed quantum arithmetic,” 2019, arXiv:1905.07682.
[108] M. Amy and N. J. Ross, “Phase-state duality in reversible circuit

design,” Phys. Rev. A, Gen. Phys., vol. 104, no. 5, Nov. 2021,
Art. no. 052602, doi: 10.1103/PhysRevA.104.052602.

[109] M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa,
“Quantum circuits for general multiqubit gates,” Phys. Rev.
Lett., vol. 93, no. 13, Sep. 2004, Art. no. 130502, doi:
10.1103/physrevlett.93.130502.

[110] V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of
quantum-logic circuits,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 25, no. 6, pp. 1000–1010, Jun. 2006, doi:
10.1109/TCAD.2005.855930.

[111] R. Iten, R. Colbeck, I. Kukuljan, J. Home, and M. Christandl,
“Quantum circuits for isometries,” Phys. Rev. A, Gen. Phys., vol. 93,
Mar. 2016, Art. no. 032318, doi: 10.1103/PhysRevA.93.032318.

[112] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum circuits,”
IEEE Trans. Comput.-Aided Design Integr., vol. 32, no. 6, pp. 818–830,
Jun. 2013, doi: 10.1109/TCAD.2013.2244643.

[113] O. D. Matteo and M. Mosca, “Parallelizing quantum circuit synthesis,”
Quantum Sci. Technol., vol. 1, no. 1, Mar. 2016, Art. no. 015003.

[114] J. Bourgain and A. Gamburd, “A spectral gap theorem in SU(d),” 2011,
arXiv:1108.6264.

http://dx.doi.org/10.1007/978-3-319-20860-2_20
http://dx.doi.org/10.1007/978-3-662-45711-5_8
http://dx.doi.org/10.1109/ICCAD45719.2019.8942093
http://dx.doi.org/10.1109/SFCS.1987.57
http://dx.doi.org/10.1007/s00145-012-9124-7
http://dx.doi.org/10.1145/3316781.3317893
http://dx.doi.org/10.1137/0218053
http://dx.doi.org/10.1007/978-3-319-59936-6_7
http://dx.doi.org/10.23919/DATE.2019.8715092
http://dx.doi.org/10.1109/CCC.2013.22
http://dx.doi.org/10.1007/978-3-319-21398-9_7
http://dx.doi.org/10.1109/TCAD.2014.2341953
http://dx.doi.org/10.1007/978-3-319-99498-7_12
http://dx.doi.org/10.1088/1751-8121/aa565f
http://dx.doi.org/10.1109/ISMVL49045.2020.00-35
http://dx.doi.org/10.22331/q-2018-06-18-74
http://dx.doi.org/10.1007/978-3-031-09005-9_2
http://dx.doi.org/10.1103/PhysRevA.104.052602
http://dx.doi.org/10.1103/physrevlett.93.130502
http://dx.doi.org/10.1109/TCAD.2005.855930
http://dx.doi.org/10.1103/PhysRevA.93.032318
http://dx.doi.org/10.1109/TCAD.2013.2244643


598 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2022

[115] V. Kliuchnikov, D. Maslov, and M. Mosca, “Asymptotically optimal
approximation of single qubit unitaries by Clifford and T circuits using
a constant number of ancillary qubits,” Phys. Rev. Lett., vol. 110, no. 19,
May 2013, Art. no. 190502, doi: 10.1103/PhysRevLett.110.190502.

[116] P. Selinger, “Efficient Clifford+T approximation of single-qubit oper-
ators,” Quantum Inf. Comput., vol. 15, no. 1, pp. 159–180, Jan. 2015.

[117] A. Bocharov, Y. Gurevich, and K. M. Svore, “Efficient decomposition
of single-qubit gates into V basis circuits,” Phys. Rev. A, Gen. Phys.,
vol. 88, no. 1, Jul. 2013, Art. no. 012313.

[118] N. J. Ross and P. Selinger, “Optimal ancilla-free Clifford+T approxi-
mation of z-rotations,” 2014, arXiv:1403.2975.

[119] N. J. Ross, “Optimal ancilla-free Clifford+V approximation of
z-rotations,” 2014, arXiv:1409.4355.

[120] A. Blass, A. Bocharov, and Y. Gurevich, “Optimal ancilla-free Pauli+V
circuits for axial rotations,” J. Math. Phys., vol. 56, no. 12, Dec. 2015,
Art. no. 122201, doi: 10.1063/1.4936990.

[121] V. Kliuchnikov, A. Bocharov, M. Roetteler, and J. Yard, “A framework
for approximating qubit unitaries,” 2015, arXiv:1510.03888.

[122] A. Paetznick and K. M. Svore, “Repeat-until-success: Non-
deterministic decomposition of single-qubit unitaries,” 2013,
arXiv:1311.1074.

[123] A. Bocharov, M. Roetteler, and K. M. Svore, “Efficient synthe-
sis of probabilistic quantum circuits with fallback,” Phys. Rev. A,
Gen. Phys., vol. 91, no. 5, May 2015, Art. no. 052317, doi:
10.1103/PhysRevA.91.052317.

[124] V. Kliuchnikov, K. Lauter, R. Minko, A. Paetznick, and C. Petit,
“Shorter quantum circuits,” 2022, arXiv:2203.10064.

[125] V. Kliuchnikov and J. Yard, “A framework for exact synthesis,” 2015,
arXiv:1504.04350.

[126] M. Amy, A. N. Glaudell, and N. J. Ross, “Number-theoretic charac-
terizations of some restricted Clifford+T circuits,” Quantum, vol. 4,
p. 252, Apr. 2020, doi: 10.22331/q-2020-04-06-252.

[127] T. Kalajdzievski and N. Quesada, “Exact and approximate continuous-
variable gate decompositions,” Quantum, vol. 5, p. 394, Feb. 2021, doi:
10.22331/q-2021-02-08-394.

[128] A. G. Fowler, S. J. Devitt, and L. C. L. Hollenberg, “Implementation
of Shor’s algorithm on a linear nearest neighbour qubit array,” Quantum
Inf. Comput., vol. 4, no. 4, pp. 237–251, Jul. 2004.

[129] M. Saeedi, R. Wille, and R. Drechsler, “Synthesis of quantum circuits
for linear nearest neighbor architectures,” Quantum Inf. Process.,
vol. 10, no. 3, pp. 355–377, Oct. 2010, doi: 10.1007/s11128-010-0201-
2.

[130] R. Wille, A. Lye, and R. Drechsler, “Exact reordering of circuit lines for
nearest neighbor quantum architectures,” IEEE Trans. Comput.-Aided
Design Integr., vol. 33, no. 12, pp. 1818–1831, Dec. 2014.

[131] J. X. Lin, E. R. Anschuetz, and A. W. Harrow, “Using spectral
graph theory to map qubits onto connectivity-limited devices,” ACM
Trans. Quantum Comput., vol. 2, no. 1, pp. 1–30, Apr. 2021, doi:
10.1145/3436752.

[132] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology
for mapping quantum circuits to the IBM QX architectures,” 2017,
arXiv:1712.04722.

[133] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for
NISQ-era quantum devices,” 2018, arXiv:1809.02573.

[134] A. Paler, “On the influence of initial qubit placement during NISQ
circuit compilation,” 2018, arXiv:1811.08985.

[135] T. Itoko, R. Raymond, T. Imamichi, and A. Matsuo, “Optimization
of quantum circuit mapping using gate transformation and commuta-
tion,” Integration, vol. 70, pp. 43–50, Jan. 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167926019302755

[136] R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits
to IBM QX architectures using the minimal number of SWAP and
H operations,” in Proc. 56th Annu. Design Autom. Conf., Jun. 2019,
pp. 1–6.

[137] L. Burgholzer, S. Schneider, and R. Wille, “Limiting the search space
in optimal quantum circuit mapping,” 2021, arXiv:2112.00045.

[138] B. Tan and J. Cong, “Optimal layout synthesis for quantum computing,”
in Proc. 39th Int. Conf. Comput.-Aided Design, New York, NY, USA,
Nov. 2020, pp. 1–9, doi: 10.1145/3400302.3415620.

[139] W. Hattori and S. Yamashita, “Quantum circuit optimization by chang-
ing the gate order for 2D nearest neighbor architectures,” in Proc. Int.
Conf. Reversible Comput., 2018, pp. 228–243, doi: 10.1007/978-3-319-
99498-7_16.

[140] A. M. Childs, E. Schoute, and C. M. Unsal. (2019). Circuit
Transformations for Quantum Architectures. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2019/10395/

[141] B. Schmitt, M. Soeken, and G. D. Micheli, “Symbolic algorithms for
token swapping,” in Proc. IEEE 50th Int. Symp. Multiple-Valued Log.
(ISMVL), Nov. 2020, pp. 28–33.

[142] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and
M. Martonosi, “Noise-adaptive compiler mappings for noisy
intermediate-scale quantum computers,” in Proc. 24th Int. Conf.
Architectural Support Program. Lang. Operating Syst., Apr. 2019,
pp. 1015–1029.

[143] A. Ash-Saki, M. Alam, and S. Ghosh, “QURE: Qubit re-allocation
in noisy intermediate-scale quantum computers,” in Proc. 56th Annu.
Design Autom. Conf., Jun. 2019, pp. 1–6.

[144] Y. Shi et al., “Optimized compilation of aggregated instructions for
realistic quantum computers,” in Proc. 24th Int. Conf. Architectural
Support Program. Lang. Operating Syst., Apr. 2019, pp. 1031–1044.

[145] P. Murali, D. C. Mckay, M. Martonosi, and A. Javadi-Abhari, “Software
mitigation of crosstalk on noisy intermediate-scale quantum comput-
ers,” in Proc. 25th Int. Conf. Architectural Support Program. Lang.
Operating Syst., Mar. 2020, pp. 1001–1016.

[146] K. N. Smith et al., “TimeStitch: Exploiting slack to mitigate decoher-
ence in quantum circuits,” ACM Trans. Quantum Comput., Jul. 2022,
doi: 10.1145/3548778.

[147] A. Y. Kitaev, “Fault-tolerant quantum computation by anyons,” Ann.
Phys., vol. 303, no. 1, pp. 2–30, Jan. 2003.

[148] S. B. Bravyi and A. Y. Kitaev, “Quantum codes on a lattice with
boundary,” 1998, arXiv:quant-ph/9811052.

[149] C. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter, “Surface code
quantum computing by lattice surgery,” npj Quantum Inf., vol. 14,
no. 12, pp. 1–27, 2012.

[150] S. Bravyi and A. Kitaev, “Universal quantum computation with ideal
Clifford gates and noisy ancillas,” Phys. Rev. A, Gen. Phys., vol. 71,
no. 2, Feb. 2005, Art. no. 022316.

[151] P. Pham and K. M. Svore, “A 2D nearest-neighbor quantum architecture
for factoring in polylogarithmic depth,” 2012, arXiv:1207.6655.

[152] D. Litinski, “A game of surface codes: Large-scale quantum comput-
ing with lattice surgery,” Quantum, vol. 3, p. 128, Mar. 2019, doi:
10.22331/q-2019-03-05-128.

[153] M. Beverland, V. Kliuchnikov, and E. Schoute, “Surface code compi-
lation via edge-disjoint paths,” PRX Quantum, vol. 3, no. 2, May 2022,
Art. no. 020342, doi: 10.1103/PRXQuantum.3.020342.

[154] Y. Ding and F. T. Chong, Quantum Computer Systems: Research for
Noisy Intermediate-Scale Quantum Computers (Synthesis Lectures on
Computer Architecture). San Rafael, CA, USA: Morgan & Claypool
Publishers, 2020.

[155] I. L. Markov and Y. Shi, “Simulating quantum computation by contract-
ing tensor networks,” SIAM J. Comput., vol. 38, no. 3, pp. 963–981,
Jan. 2008.

[156] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, and H. Neven, “Simula-
tion of low-depth quantum circuits as complex undirected graphical
models,” 2017, arXiv:1712.05384.

[157] B. Villalonga et al., “A flexible high-performance simulator for veri-
fying and benchmarking quantum circuits implemented on real hard-
ware,” npj Quantum Inf., vol. 5, no. 1, p. 86, Dec. 2019.

[158] Y. Suzuki et al., “Qulacs: A fast and versatile quantum circuit simulator
for research purpose,” Quantum, vol. 5, p. 559, Oct. 2021.

[159] CIRQ, CIRQ Developers, Barangaroo, NSW, Australia, 2022, doi:
10.5281/zenodo.6599601.

[160] G. Aleksandrowicz et al., “Qiskit: An open-source framework for
quantum computing,” IBM, Tech. Rep., Jan. 2019, doi: 10.5281/
zenodo.2562111.

[161] T. Jones, A. Brown, I. Bush, and S. C. Benjamin, “QuEST and high
performance simulation of quantum computers,” Sci. Rep., vol. 9, no. 1,
p. 10736, Dec. 2019.

[162] J. Gray, “Quimb: A Python package for quantum information and
many-body calculations,” J. Open Source Softw., vol. 3, no. 29, p. 819,
Sep. 2018.

[163] Z. Wang et al., “A quantum circuit simulator and its applications on
Sunway TaihuLight supercomputer,” Sci. Rep., vol. 11, no. 1, p. 355,
Dec. 2021.

[164] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[165] F. Somenzi, “CUDD: CU decision diagram package (release 2.4.2),”
Univ. Colorado Boulder, Boulder, CO, USA, Tech. Rep., 2005.

[166] G. F. Viamontes, I. L. Markov, and J. P. Hayes, Quantum Circuit
Simulation. Dordrecht, The Netherlands: Springer, 2009.

[167] V. Samoladas, “Improved BDD algorithms for the simulation of quan-
tum circuits,” in Proc. Eur. Symp. Algorithms, 2008, pp. 720–731.

http://dx.doi.org/10.1103/PhysRevLett.110.190502
http://dx.doi.org/10.1063/1.4936990
http://dx.doi.org/10.1103/PhysRevA.91.052317
http://dx.doi.org/10.22331/q-2020-04-06-252
http://dx.doi.org/10.22331/q-2021-02-08-394
http://dx.doi.org/10.1007/s11128-010-0201-2
http://dx.doi.org/10.1007/s11128-010-0201-2
http://dx.doi.org/10.1145/3436752
http://dx.doi.org/10.1145/3400302.3415620
http://dx.doi.org/10.1007/978-3-319-99498-7_16
http://dx.doi.org/10.1007/978-3-319-99498-7_16
http://dx.doi.org/10.1145/3548778
http://dx.doi.org/10.22331/q-2019-03-05-128
http://dx.doi.org/10.1103/PRXQuantum.3.020342
http://dx.doi.org/10.5281/zenodo.6599601
http://dx.doi.org/10.5281/zenodo.2562111
http://dx.doi.org/10.5281/zenodo.2562111


DE MICHELI et al.: ADVANCES IN QC AND QUANTUM TECHNOLOGIES: A DESIGN AUTOMATION PERSPECTIVE 599

[168] A. Zulehner and R. Wille, “Advanced simulation of quantum com-
putations,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 38, no. 5, pp. 848–859, May 2019.

[169] Y.-H. Tsai, J.-H.-R. Jiang, and C.-S. Jhang, “Bit-slicing the Hilbert
space: Scaling up accurate quantum circuit simulation,” in Proc. 58th
ACM/IEEE Design Autom. Conf. (DAC), Dec. 2021, pp. 439–444.

[170] P. Niemann, R. Wille, D. M. Miller, M. A. Thornton, and R. Drechsler,
“QMDDs: Efficient quantum function representation and manipula-
tion,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35,
no. 1, pp. 86–99, Jul. 2016.

[171] T. Grurl, J. Fus, S. Hillmich, L. Burgholzer, and R. Wille, “Arrays vs.
decision diagrams: A case study on quantum circuit simulators,” in
Proc. IEEE 50th Int. Symp. Multiple-Valued Log. (ISMVL), Nov. 2020,
pp. 176–181.

[172] K. N. Smith and M. A. Thornton, “A quantum computational compiler
and design tool for technology-specific targets,” in Proc. 46th Int. Symp.
Comput. Archit., Jun. 2019, pp. 579–588.

[173] P. Niemann, A. Zulehner, R. Drechsler, and R. Wille, “Overcoming
the tradeoff between accuracy and compactness in decision diagrams
for quantum computation,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 39, no. 12, pp. 4657–4668, Dec. 2020.

[174] X. Hong, X. Zhou, S. Li, Y. Feng, and M. Ying, “A tensor net-
work based decision diagram for representation of quantum circuits,”
ACM Trans. Design Autom. Electron. Syst., vol. 27, no. 6, pp. 1–30,
Nov. 2022.

[175] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer
circuits,” Phys. Rev. A, Gen. Phys., vol. 70, no. 5, Nov. 2004,
Art. no. 052328.

[176] S. Anders and H. J. Briegel, “Fast simulation of stabilizer circuits using
a graph-state representation,” Phys. Rev. A, Gen. Phys., vol. 73, no. 2,
Feb. 2006, Art. no. 022334.

[177] H. J. Garcia, I. L. Markov, and A. W. Cross, “On the geometry of
stabilizer states,” Quantum Inf. Comput., vol. 14, no. 7, pp. 683–720,
May 2014.

[178] S. Bravyi, G. Smith, and J. A. Smolin, “Trading classical and quantum
computational resources,” Phys. Rev. X, vol. 6, no. 2, Jun. 2016,
Art. no. 021043.

[179] S. Bravyi, D. Browne, P. Calpin, E. Campbell, D. Gosset, and
M. Howard, “Simulation of quantum circuits by low-rank stabilizer
decompositions,” Quantum, vol. 3, p. 181, Sep. 2019.

[180] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Checking equivalence
of quantum circuits and states,” in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Design, Nov. 2007, pp. 69–74.

[181] S. Yamashita and I. L. Markov, “Fast equivalence-checking for quantum
circuits,” in Proc. IEEE/ACM Int. Symp. Nanosc. Archit., Jun. 2010,
pp. 23–28.

[182] L. Burgholzer and R. Wille, “Advanced equivalence checking for
quantum circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 40, no. 9, pp. 1810–1824, Sep. 2021.

[183] C.-Y. Wei, Y.-H. Tsai, C.-S. Jhang, and J.-H.-R. Jiang, “Accurate BDD-
based unitary operator manipulation for scalable and robust quantum
circuit verification,” in Proc. 59th ACM/IEEE Design Autom. Conf.,
Jul. 2022, pp. 523–528.

[184] X. Hong, M. Ying, Y. Feng, X. Zhou, and S. Li, “Approximate equiv-
alence checking of noisy quantum circuits,” in Proc. 58th ACM/IEEE
Design Autom. Conf. (DAC), Dec. 2021, pp. 637–642.

[185] T.-F. Chen, J.-H. R. Jiang, and M.-H. Hsieh, “Partial equivalence
checking of quantum circuits,” in Proc. Int. Conf. Quantum Comput.
Eng., 2022, pp. 1–11.

[186] Q. Wang, R. Li, and M. Ying, “Equivalence checking of sequential
quantum circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 41, no. 9, pp. 3143–3156, Sep. 2022.

[187] X. Hong, Y. Feng, S. Li, and M. Ying, “Equivalence checking of
dynamic quantum circuits,” 2021, arXiv:2106.01658.

[188] L. Burgholzer and R. Wille, “Handling non-unitaries in quantum circuit
equivalence checking,” in Proc. 59th ACM/IEEE Design Autom. Conf.,
Jul. 2022, pp. 1–6.

[189] The Coq Development Team, “The Coq proof assistant,” Tech. Rep.,
Jan. 2022, doi: 10.5281/zenodo.5846982.

[190] J. Boender, F. Kammüller, and R. Nagarajan, “Formalization of quan-
tum protocols using Coq,” in Proc. 12th Int. Workshop Quantum
Phys. Log. (QPL), in Electronic Proceedings in Theoretical Com-
puter Science, vol. 195, C. Heunen, P. Selinger, and J. Vicary, Eds.
Waterloo, NSW, Australia: Open Publishing Association, Nov. 2015,
pp. 71–83.

[191] R. Rand, J. Paykin, and S. Zdancewic, “QWIRE practice: Formal veri-
fication of quantum circuits in Coq,” in Proc. 14th Int. Conf. Quantum
Phys. Log. (QPL), in Electronic Proceedings in Theoretical Computer
Science, vol. 266, B. Coecke and A. Kissinger, Eds. Waterloo, NSW,
Australia: Open Publishing Association, Feb. 2018, pp. 119–132.

[192] C. Chareton, S. Bardin, F. Bobot, V. Perrelle, and B. Valiron, “An auto-
mated deductive verification framework for circuit-building quantum
programs,” in Programming Languages and Systems (Lecture Notes in
Computer Science), vol. 12648, N. Yoshida, Ed. Cham, Switzerland:
Springer, Mar. 2021, pp. 148–177.

[193] J.-C. Filliâtre and A. Paskevich, “Why3—Where programs meet
provers,” in Proc. Eur. Symp. Program. Berlin, Germany: Springer,
2013, pp. 125–128.

[194] K. Hietala, R. Rand, S.-H. Hung, L. Li, and M. Hicks, “Proving
quantum programs correct,” in Proc. 12th Int. Conf. Interact. Theorem
Proving, in Leibniz International Proceedings in Informatics (LIPIcs),
vol. 193, L. Cohen and C. Kaliszyk, Eds. Dagstuhl, Germany: Schloss
Dagstuhl—Leibniz-Zentrum für Informatik, Jun. 2021, pp. 21:1–21:19.
[Online]. Available: https://github.com/inQWIRE/SQIR

[195] Y. Peng et al. (Apr. 2022). A Formally Certified End-to-End Imple-
mentation of Shor’s Factorization Algorithm. [Online]. Available:
https://github.com/inQWIRE/SQIR/tree/main/examples/shor

[196] E. D’Hondt and P. Panangaden, “Quantum weakest preconditions,”
Math. Struct. Comput. Sci., vol. 16, no. 3, pp. 429–451, Jun. 2006.

[197] D. Kozen, “A probabilistic PDL,” in Proc. 15th Annu. ACM Symp.
Theory Comput., D. S. Johnson et al., Eds. Boston, MA, USA, 1983,
pp. 291–297, doi: 10.1145/800061.808758.

[198] M. Ying, “Floyd-Hoare logic for quantum programs,” ACM Trans.
Program. Lang. Syst., vol. 33, no. 6, pp. 1–49, Dec. 2011.

[199] L. Zhou, N. Yu, and M. Ying, “An applied quantum Hoare
logic,” in Proc. 40th ACM SIGPLAN Conf. Program. Lang. Design
Implement., Phoenix, AZ, USA, Jun. 2019, pp. 1149–1162, doi:
10.1145/3314221.3314584.

[200] D. Unruh, “Quantum Hoare logic with ghost variables,” in
Proc. 34th Annu. ACM/IEEE Symp. Log. Comput. Sci. (LICS),
Vancouver, BC, Canada, Jun. 2019, pp. 1–13. [Online]. Available:
https://ieeexplore.ieee.org/document/8785779/

[201] S.-H. Hung, K. Hietala, S. Zhu, M. Ying, M. Hicks, and X. Wu,
“Quantitative robustness analysis of quantum programs,” Proc. ACM
Program. Lang., vol. 3, pp. 1–29, Jan. 2019.

[202] M. Ying, L. Zhou, Y. Li, and Y. Feng, “A proof system for disjoint par-
allel quantum programs,” Theor. Comput. Sci., vol. 897, pp. 164–184,
Jan. 2022.

[203] L. Zhou, G. Barthe, J. Hsu, M. Ying, and N. Yu, “A quantum
interpretation of bunched logic & quantum separation logic,” in Proc.
36th Annu. ACM/IEEE Symp. Log. Comput. Sci. (LICS), Los Alamitos,
CA, USA, Jun. 2021, pp. 1–14.

[204] X.-B. Le, S.-W. Lin, J. Sun, and D. Sanan, “A quantum interpretation
of separating conjunction for local reasoning of quantum programs
based on separation logic,” Proc. ACM Program. Lang., vol. 6, p. 36,
Jan. 2022.

[205] D. Unruh, “Quantum relational Hoare logic,” Proc. ACM Program.
Lang., vol. 3, pp. 1–31, Jan. 2019.

[206] T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Berlin, Germany: Springer, 2002.

[207] J. Liu et al., Formal Verification of Quantum Algorithms Using Quan-
tum Hoare Logic (Lecture Notes in Computer Science), vol. 11562.
Cham, Switzerland: Springer, 2019, pp. 187–207, doi: 10.1007/978-3-
030-25543-5_12.

[208] C. Chareton, S. Bardin, D. Lee, B. Valiron, R. Vilmart, and
Z. Xu, “Formal methods for quantum programs: A survey,” 2021,
arXiv:2109.06493.

[209] J. Majer et al., “Coupling superconducting qubits via a cavity bus,”
Nature, vol. 449, no. 7161, pp. 443–447, Sep. 2007.

[210] S. M. Girvin, “Circuit QED: Superconducting qubits coupled to
microwave photons,” in Quantum Machines: Measurement and Con-
trol of Engineered Quantum Systems. Oxford Univ. Press, 2014,
pp. 113–256.

[211] W. D. Oliver and P. B. Welander, “Materials in superconducting
quantum bits,” MRS Bull., vol. 38, no. 10, pp. 816–825, Oct. 2013.

[212] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret,
“Fluxonium: Single Cooper-pair circuit free of charge offsets,” Science,
vol. 326, no. 5949, pp. 113–116, Oct. 2009.

[213] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal,
and S. Lloyd, “Josephson persistent-current qubit,” Science, vol. 285,
no. 5430, pp. 1036–1039, Aug. 1999.

http://dx.doi.org/10.5281/zenodo.5846982
http://dx.doi.org/10.1145/800061.808758
http://dx.doi.org/10.1145/3314221.3314584
http://dx.doi.org/10.1007/978-3-030-25543-5_12
http://dx.doi.org/10.1007/978-3-030-25543-5_12


600 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2022

[214] J. Koch et al., “Charge-insensitive qubit design derived from the
Cooper pair box,” Phys. Rev. A, Gen. Phys., vol. 76, no. 4, Oct. 2007,
Art. no. 042319.

[215] R. Barends et al., “Logic gates at the surface code threshold: Super-
conducting qubits poised for fault-tolerant quantum computing,” 2014,
arXiv:1402.4848.

[216] S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gambetta, “Procedure
for systematically tuning up cross-talk in the cross-resonance gate,”
Phys. Rev. A, Gen. Phys., vol. 93, no. 6, Jun. 2016, Art. no. 060302.

[217] S. S. Hong et al., “Demonstration of a parametrically activated
entangling gate protected from flux noise,” Phys. Rev. A, Gen. Phys.,
vol. 101, no. 1, Jan. 2020, Art. no. 012302.

[218] R. Acharya et al., “Suppressing quantum errors by scaling a surface
code logical qubit,” 2022, arXiv:2207.06431.

[219] (2021). Rigetti Computing Announces Next-Generation 40 Q and
80 Q Quantum Systems. [Online]. Available: https://investors.rigetti.
com/news-releases/news-release-details/rigetti-computing-announces-
next-generation-40q-and-80q-quantum

[220] (2021). Quantum Computer Datasheet. [Online]. Available: https://
quantumai.google/hardware/datasheet/weber.pdf

[221] (2022). Eagle’s Quantum Performance Progress. [Online]. Available:
https://research.ibm.com/blog/eagle-quantum-processor-performance

[222] J. J. Burnett et al., “Decoherence benchmarking of superconducting
qubits,” npj Quantum Inf., vol. 5, no. 1, pp. 1–8, Dec. 2019.

[223] P. D. Nation, H. Kang, N. Sundaresan, and J. M. Gambetta, “Scal-
able mitigation of measurement errors on quantum computers,” PRX
Quantum, vol. 2, no. 4, Nov. 2021, Art. no. 040326.

[224] N. Wittler et al., “Integrated tool set for control, calibration, and
characterization of quantum devices applied to superconducting qubits,”
Phys. Rev. A, Gen. Phys., vol. 15, no. 3, Mar. 2021, Art. no. 034080.

[225] L. DiCarlo et al., “Demonstration of two-qubit algorithms with a
superconducting quantum processor,” Nature, vol. 460, no. 7252,
pp. 240–244, 2009.

[226] R. Barends et al., “Coherent Josephson qubit suitable for scalable quan-
tum integrated circuits,” Phys. Rev. Lett., vol. 111, no. 8, Aug. 2013,
Art. no. 080502.

[227] D. C. McKay, S. Filipp, A. Mezzacapo, E. Magesan, J. M. Chow,
and J. M. Gambetta, “Universal gate for fixed-frequency qubits via
a tunable bus,” Phys. Rev. A, Gen. Phys., vol. 6, no. 6, Dec. 2016,
Art. no. 064007.

[228] S. Caldwell et al., “Parametrically activated entangling gates using
transmon qubits,” Phys. Rev. A, Gen. Phys., vol. 10, no. 3, 2018,
Art. no. 034050.

[229] M. Brink, J. M. Chow, J. Hertzberg, E. Magesan, and S. Rosenblatt,
“Device challenges for near term superconducting quantum processors:
Frequency collisions,” in IEDM Tech. Dig., Dec. 2018, pp. 1–6.

[230] J. Kreikebaum, K. O’Brien, A. Morvan, and I. Siddiqi, “Improving
wafer-scale Josephson junction resistance variation in superconducting
quantum coherent circuits,” Supercond. Sci. Technol., vol. 33, no. 6,
2020, Art. no. 06LT02.

[231] J. M. Chow et al., “Universal quantum gate set approaching fault-
tolerant thresholds with superconducting qubits,” Phys. Rev. Lett.,
vol. 109, no. 6, Aug. 2012, Art. no. 060501.

[232] A. D. Córcoles et al., “Demonstration of a quantum error detection
code using a square lattice of four superconducting qubits,” Nature
Commun., vol. 6, no. 1, pp. 1–10, Nov. 2015.

[233] M. Takita et al., “Demonstration of weight-four parity measurements
in the surface code architecture,” Phys. Rev. Lett., vol. 117, no. 21,
Nov. 2016, Art. no. 210505.

[234] J. Gambetta, J. M. Chow, and M. Steffen, “Building logical qubits
in a superconducting quantum computing system,” NPJ Quantum Inf.,
vol. 3, no. 2, pp. 1–7, 2017.

[235] Q. P. Herr, A. Y. Herr, O. T. Oberg, and A. G. Ioannidis, “Ultra-
low-power superconductor logic,” J. Appl. Phys., vol. 109, no. 10,
May 2011, Art. no. 103903, doi: 10.1063/1.3585849.

[236] K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family:
A new Josephson-junction technology for sub-terahertz-clock-
frequency digital systems,” IEEE Trans. Appl. Supercond., vol. 1, no. 1,
pp. 3–28, Mar. 1991, doi: 10.1109/77.80745.

[237] O. A. Mukhanov, “Energy-efficient single flux quantum technology,”
IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 760–769, Jun. 2011,
doi: 10.1109/TASC.2010.2096792.

[238] M. Tanaka, A. Kitayama, T. Koketsu, M. Ito, and A. Fujimaki, “Low-
energy consumption RSFQ circuits driven by low voltages,” IEEE
Trans. Appl. Supercond., vol. 23, no. 3, Jun. 2013, Art. no. 1701104,
doi: 10.1109/TASC.2013.2240555.

[239] G. Krylov and E. G. Friedman, “Asynchronous dynamic single-flux
quantum majority gates,” IEEE Trans. Appl. Supercond., vol. 30, no. 5,
pp. 1–7, Aug. 2020, doi: 10.1109/TASC.2020.2978428.

[240] C. J. Fourie et al., “ColdFlux superconducting EDA and TCAD
tools project: Overview and progress,” IEEE Trans. Appl. Supercond.,
vol. 29, no. 5, pp. 1–7, Aug. 2019, doi: 10.1109/TASC.2019.2892115.

[241] N. K. Katam and M. Pedram, “Logic optimization, complex
cell design, and retiming of single flux quantum circuits,” IEEE
Trans. Appl. Supercond., vol. 28, no. 7, pp. 1–9, Oct. 2018, doi:
10.1109/TASC.2018.2856833.

[242] G. Pasandi and M. Pedram, “A dynamic programming-based, path
balancing technology mapping algorithm targeting area minimiza-
tion,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD),
Nov. 2019, pp. 1–8, doi: 10.1109/ICCAD45719.2019.8942053.

[243] T. Jabbari, G. Krylov, J. Kawa, and E. G. Friedman, “Splitter trees in
single flux quantum circuits,” IEEE Trans. Appl. Supercond., vol. 31,
no. 5, pp. 1–6, Aug. 2021, doi: 10.1109/TASC.2021.3070802.

[244] C. L. Ayala, T. Tanaka, R. Saito, M. Nozoe, N. Takeuchi, and
N. Yoshikawa, “MANA: A monolithic adiabatic iNtegration architec-
ture microprocessor using 1.4 zJ/op superconductor Josephson junction
devices,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2020, pp. 1–2, doi:
10.1109/VLSICircuits18222.2020.9162792.

[245] R. Cai et al., “A majority logic synthesis framework for
adiabatic quantum-flux-parametron superconducting circuits,” in
Proc. Great Lakes Symp. VLSI, May 2019, pp. 189–194, doi:
10.1145/3299874.3317980.

[246] R. Cai, O. Chen, A. Ren, N. Liu, N. Yoshikawa, and Y. Wang,
“A buffer and splitter insertion framework for adiabatic quantum-
flux-parametron superconducting circuits,” in Proc. IEEE 37th Int.
Conf. Comput. Design (ICCD), Nov. 2019, pp. 429–436, doi:
10.1109/ICCD46524.2019.00067.

[247] E. Testa, S.-Y. Lee, H. Riener, and G. De Micheli, “Algebraic and
Boolean optimization methods for AQFP superconducting circuits,”
in Proc. 26th Asia South Pacific Design Autom. Conf., Jan. 2021,
pp. 779–785, doi: 10.1145/3394885.3431606.

[248] S.-Y. Lee, H. Riener, and G. De Micheli, “Beyond local optimality
of buffer and splitter insertion for AQFP circuits,” in Proc. 59th
ACM/IEEE Design Autom. Conf., Jul. 2022, pp. 445–450.

[249] L. Amarú et al., “First demonstration of a superconducting electronics
microcontroller RTL-to-GDSII flow,” in Proc. Government Microcircuit
Appl. Crit. Technol. Conf. (GOMACTech), 2021, pp. 1–4.

[250] R. Bairamkulov, T. Jabbari, and E. G. Friedman, “QuCTS—Single
flux quantum clock tree synthesis,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., early access, Oct. 26, 2022, doi:
10.1109/TCAD.2021.3123141.

[251] T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J. Kawa, and
E. G. Friedman, “Interconnect routing for large-scale RSFQ circuits,”
IEEE Trans. Appl. Supercond., vol. 29, no. 5, pp. 1–5, Aug. 2019.

[252] L. Schindler et al., “Standard cell layout synthesis for row-based
placement and routing of RSFQ and AQFP logic families,” in Proc.
IEEE Int. Supercond. Electron. Conf. (ISEC), Jul. 2019, pp. 1–5.

[253] T. Jabbari and E. G. Friedman, “Flux mitigation in wide superconduc-
tive striplines,” IEEE Trans. Appl. Supercond., vol. 32, no. 5, pp. 1–6,
Aug. 2022.

[254] G. Krylov and E. G. Friedman, Single Flux Quantum Integrated Circuit
Design. Cham, Switzerland: Springer, 2022.

[255] N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adi-
abatic quantum flux parametron as an ultra-low-power logic device,”
Supercond. Sci. Technol., vol. 26, no. 3, Mar. 2013, Art. no. 035010,
doi: 10.1088/0953-2048/26/3/035010.

[256] E. Goto, “The parametron, a digital computing element which utilizes
parametric oscillation,” Proc. IRE, vol. 47, no. 8, pp. 1304–1316,
Aug. 1959, doi: 10.1109/JRPROC.1959.287195.

[257] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-
flux-parametron cell library adopting minimalist design,” J. Appl. Phys.,
vol. 117, no. 17, May 2015, Art. no. 173912, doi: 10.1063/1.4919838.

[258] C. L. Ayala, N. Takeuchi, Y. Yamanashi, T. Ortlepp, and N. Yoshikawa,
“Majority-logic-optimized parallel prefix carry look-ahead adder fam-
ilies using adiabatic quantum-flux-parametron logic,” IEEE Trans.
Appl. Supercond., vol. 27, no. 4, pp. 1–7, Jun. 2017, doi:
10.1109/TASC.2016.2642041.

[259] C. L. Ayala et al., “A semi-custom design methodology and envi-
ronment for implementing superconductor adiabatic quantum-flux-
parametron microprocessors,” Supercond. Sci. Technol., vol. 33, no. 5,
May 2020, Art. no. 054006, doi: 10.1088/1361-6668/ab7ec3.

http://dx.doi.org/10.1063/1.3585849
http://dx.doi.org/10.1109/77.80745
http://dx.doi.org/10.1109/TASC.2010.2096792
http://dx.doi.org/10.1109/TASC.2013.2240555
http://dx.doi.org/10.1109/TASC.2020.2978428
http://dx.doi.org/10.1109/TASC.2019.2892115
http://dx.doi.org/10.1109/TASC.2018.2856833
http://dx.doi.org/10.1109/ICCAD45719.2019.8942053
http://dx.doi.org/10.1109/TASC.2021.3070802
http://dx.doi.org/10.1109/VLSICircuits18222.2020.9162792
http://dx.doi.org/10.1145/3299874.3317980
http://dx.doi.org/10.1109/ICCD46524.2019.00067
http://dx.doi.org/10.1145/3394885.3431606
http://dx.doi.org/10.1109/TCAD.2021.3123141
http://dx.doi.org/10.1088/0953-2048/26/3/035010
http://dx.doi.org/10.1109/JRPROC.1959.287195
http://dx.doi.org/10.1063/1.4919838
http://dx.doi.org/10.1109/TASC.2016.2642041
http://dx.doi.org/10.1088/1361-6668/ab7ec3


DE MICHELI et al.: ADVANCES IN QC AND QUANTUM TECHNOLOGIES: A DESIGN AUTOMATION PERSPECTIVE 601

[260] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter
graph: A novel data-structure and algorithms for efficient logic opti-
mization,” in Proc. The 51st Annu. Design Autom. Conf. Design Autom.
Conf., 2014, p. 194, doi: 10.1145/2593069.2593158.

[261] L. Amaru, P. E. Gaillardon, and G. D. Micheli, “Majority-inverter
graph: A new paradigm for logic optimization,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 35, no. 5, pp. 806–819,
May 2015, doi: 10.1109/TCAD.2015.2488484.

[262] W. P. Burleson, M. Ciesielski, F. Klass, and W. Liu, “Wave-pipelining:
A tutorial and research survey,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 6, no. 3, pp. 464–474, Sep. 1998, doi:
10.1109/92.711317.

[263] T. V. Filippov et al., “20 GHz operation of an asynchronous wave-
pipelined RSFQ arithmetic-logic unit,” Phys. Proc., vol. 36, pp. 59–65,
Jan. 2012, doi: 10.1016/j.phpro.2012.06.130.

[264] Z. J. Deng, N. Yoshikawa, J. A. Tierno, S. R. Whiteley, and
T. Van Duzer, “Asynchronous circuits and systems in supercon-
ducting RSFQ digital technology,” in Proc. 4th Int. Symp. Adv.
Res. Asynchronous Circuits Syst., Mar./Apr. 1998, pp. 274–285, doi:
10.1109/ASYNC.1998.666512.

[265] F. Ke, O. Chen, Y. Wang, and N. Yoshikawa, “Demonstration of
a 47.8 GHz high-speed FFT processor using single-flux-quantum
technology,” IEEE Trans. Appl. Supercond., vol. 31, no. 5, pp. 1–5,
Aug. 2021, doi: 10.1109/TASC.2021.3059984.

[266] M. Beverland, E. Campbell, M. Howard, and V. Kliuchnikov, “Lower
bounds on the non-Clifford resources for quantum computations,”
Quantum Sci. Technol., vol. 5, no. 3, Jun. 2020, Art. no. 035009.

Giovanni De Micheli (Life Fellow, IEEE) received
the Nuclear Engineer degree from the Politecnico
di Milano in 1979, and the M.S. and Ph.D. degrees
in electrical engineering and computer science from
the University of California at Berkeley in 1980 and
1983, respectively.

He is currently a Professor in electronics and
computer Science at EPFL, Lausanne, Switzerland.
He is credited for the invention of the network
on chip design automation paradigm and for the
creation of algorithms and design tools for electronic

design automation (EDA). He is also the Director of the Integrated Systems
Laboratory, EPFL. Previously, he was a Professor of electrical engineering at
Stanford University. He was the Director of the Electrical Engineering Institute
(IEL), EPFL, from 2008 to 2019, and a Program Leader of the Swiss Federal
Nano-Tera.ch Program. He is the author of Synthesis and Optimization of
Digital Circuits (McGraw-Hill, 1994), the coauthor and/or the co-editor of
ten other books and of over 900 technical articles. His citation H-index is
above 100 according to Google Scholar. His current research interests include
several aspects of design technologies for integrated circuits and systems, such
as synthesis for emerging technologies. He is also interested in heterogeneous
platform design, including electrical components and biosensors, as well as
in data processing of biomedical information.

Prof. De Micheli is a fellow of ACM and AAAS. He is a member
of the Academia Europaea and an International Honorary Member of the
American Academy of Arts and Sciences. He is a member of the Scientific
Advisory Board of IMEC (Leuven, B) and STMicroelectronics. He was
a recipient of the 2020 IEEE/TC Achievement Award in Cyberphysical
Systems, the 2020 IEEE/CEDA Richard Newton Technical Impact Award,
the 2019 ACM/SIGDA Pioneering Achievement Award, the 2016 EDAA
Lifetime Achievement Award, the 2016 IEEE/CS Harry Goode Award for
seminal contributions to design and design tools of networks on chips,
the 2012 IEEE/CAS Mac Van Valkenburg Award for contributions to theory,
practice and experimentation in design methods and tools, and the 2003 IEEE
Emanuel Piore Award for contributions to computer-aided synthesis of digital
systems. He received the Golden Jubilee Medal for outstanding contributions
to the IEEE CAS Society in 2000, the D. Pederson Award for the Best
Paper on the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMS in 1987 and 2018, and several Best
Paper Awards, including DAC in 1983 and 1993, DATE in 2005, Nanoarch
in 2010 and 2012, and Mobihealth in 2016. He has been the Chair of several
conferences, including Memocode in 2014, DATE in 2010, pHealth in 2006,
VLSI SOC in 2006, DAC in 2000, and ICCD in 1989. He has been serving
IEEE in several capacities, namely the Division 1 Director (2008–2009), the
Co-Founder and the President Elect of the IEEE Council on EDA (2005–
2007), the President of the IEEE CAS Society in 2003, and the Editor-
in-Chief of the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS (1997–2001).

Jie-Hong R. Jiang (Member, IEEE) received the
B.S. and M.S. degrees in electronics engineering
from the National Chiao Tung University, Hsinchu,
Taiwan, in 1996 and 1998, respectively, and the
Ph.D. degree in electrical engineering and computer
sciences from the University of California at Berke-
ley, Berkeley, CA, USA, in 2004.

He is currently a Professor with the Department
of Electrical Engineering and the Graduate Institute
of Electronics Engineering, National Taiwan Univer-
sity, Taipei, Taiwan. He leads the Applied Logic

and Computation Laboratory, and worked extensively on logic synthesis,
formal verification, electronic design automation, and computation models
of biological and physical systems.

Dr. Jiang is a member of the Phi Tau Phi and the Association for Computing
Machinery.

Robert Rand received the B.A. degree in mathemat-
ics and computer science from Yeshiva University in
2011 and the Ph.D. degree in computer science from
the University of Pennsylvania in 2018.

He is currently an Assistant Professor of computer
science at The University of Chicago (UChicago),
where he leads the Chicago Quantum Program-
ming Languages Laboratory (ChiQP). Before joining
UChicago, he was a Basili Post-Doctoral Fellow at
the Joint Center for Quantum Information and Com-
puter Science (QUiCS), University of Maryland.

He is a member of the Chicago’s Programming Languages Research Group,
the Chicago Quantum Exchange, and the Argonne National Laboratory, where
he maintains an affiliate appointment. His main projects include the QWIRE
quantum circuit language, the VOQC compiler for quantum circuits, and a
stabilizer-based type system for quantum programs. He is also developing
tools for promising models of quantum computation like the ZX-calculus and
the one-way quantum computer. He also works on formalizing and verifying
existing languages like Microsoft’s Q# and the quantum assembly language
OpenQASM, as well as programs like Grover’s search algorithm and Shor’s
factoring algorithm. He led the development of the INQWIRE QuantumLib,
an open source library for verified quantum computing in the Coq proof
assistant, which underlies many of his projects, including his online textbook
Verified Quantum Computing. His main research interests include applying
techniques from programming languages and formal verification to the domain
of quantum computation.

Kaitlin Smith (Member, IEEE) received the B.S.
degree in mathematics and electrical engineering and
the M.S. and Ph.D. degrees in electrical engineering
from Southern Methodist University (SMU) in 2014,
2015, and December 2019, respectively. She is cur-
rently a CQE/IBM Post-Doctoral Scholar with the
Department of Computer Science, The University of
Chicago. Within the focus of quantum computing,
her work involves technology-aware programming,
computer architecture, distributed computing, and
security. She was named a 2021 MIT EECS Rising

Star. She was a recipient of the 2021 IEEE Computer Society Technical
Committee on Multiple Valued Logic (TC-MVL) Kenneth C. Smith Early
Career Award in Microelectronics.

Mathias Soeken (Member, IEEE) received the
Ph.D. degree (Dr.-Ing.) in computer science from
the University of Bremen, Germany, in 2013.
From 2009 to 2015, he worked at the University of
Bremen, Germany, where he was a Co-Founder of
RevKit, a framework for reversible logic synthesis.
From 2015 to 2020, he has been a Post-Doctoral
Scientist with the École Polytechnique Fédérale
Lausanne (EPFL), Switzerland, where he pioneered
the EPFL Logic Synthesis Libraries, a set of
industrial-strength academic logic synthesis tools,

which today are the backbone of many logic synthesis and quantum compila-
tion tools. He currently works at the Quantum Team, Microsoft. His research
interests include logic synthesis, quantum computing, and formal verification.

http://dx.doi.org/10.1145/2593069.2593158
http://dx.doi.org/10.1109/TCAD.2015.2488484
http://dx.doi.org/10.1109/92.711317
http://dx.doi.org/10.1016/j.phpro.2012.06.130
http://dx.doi.org/10.1109/ASYNC.1998.666512
http://dx.doi.org/10.1109/TASC.2021.3059984


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


