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Abstract—Logic synthesis algorithms have been developed for
decades optimizing technology-independent representations of
digital circuits according to cost metrics defined for CMOS.
However, as new technologies and applications emerge, these cost
estimations correlate less to the actual costs of the products.
Specialized algorithms can be developed to achieve a better
quality of result (QoR), but they target only some specific
applications and are less effective for others. In this work, we
develop a cost-generic optimization framework adaptive to a wide
range of customizable cost functions. The framework is based
on Boolean resubstitution and chooses optimization candidates
greedily according to the given cost function. The implementation
is open-source and enables fast experimentation and prototyping
of newly-defined cost estimations before developing specialized
algorithms. We demonstrate with experimental results that our
framework achieves comparable QoR to specialized algorithms.

I. INTRODUCTION

Since the birth of Electronic Design Automation (EDA) as
an industry in the 1980s, design flows and algorithms have
been developed mainly targeting CMOS integrated circuits.
To address the NP-hard problems efficiently, the stage of
logic synthesis has been divided into technology-independent
optimization and technology mapping [1]. In the former
stage, algorithms work on a technology-independent represen-
tation of the logic-gate-level netlist, such as the AND-Inverter
Graph (AIG), whose simpler data structure allows for a more
efficient algorithm design [2]. Cost metrics based on AIG
properties (e.g., number of gates and logic levels), which logic
synthesis algorithms optimize for, usually serve as reasonable
estimations of the actual costs of the final product (area and
delay, respectively) because the NAND-based CMOS libraries
relate closely to AND gates in AIGs [3].

However, AIG-based cost metrics may not be good es-
timations for different target technologies or applications.
For example, highly-optimized AIGs do not always result in
smaller Look-Up Table (LUT) networks after LUT mapping
for FPGAs. [4] As another example, for cryptography and
security applications, XOR gates are preferred over AND
gates [5], and in quantum circuits, XOR gates are much
cheaper than AND gates [6], but an XOR gate can only
be represented as three AND gates in an AIG. Thus, some
specialized algorithms have been developed targeting more
accurate cost metrics for specific applications. For example,
Multiplicative Complexity (MC) [7] optimization algorithms
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minimize the number or depth of AND gates while treating
XOR gates as cost-free [8].

Nowadays, as the available computation power has dra-
matically grown since the first EDA tools were developed,
early consideration of more accurate cost functions is no
longer impossible. The success of specialized optimization
algorithms shows the importance of adopting better-estimated
cost metrics. However, these algorithms can only be ap-
plied effectively on a limited set of targets. As beyond-
CMOS technologies emerge, more complicated relations of the
technology-independent representations and the actual costs
may come in place. Moreover, approximation is inevitable.
Gaps in cost evaluations come from not only the difference
between technology-independent representations and actual
products, but also propagation errors between the global
cost of the entire circuit and the local cost estimation used
by optimization algorithms to make decisions. When faced
with various emerging technologies and possibly even more
potential cost functions, a framework to quickly prototype and
evaluate them is in need.

To this end, we propose a cost-generic optimization frame-
work where cost functions are highly customizable. The frame-
work is based on Boolean resubstitution, which computes
optimization candidates locally and on the fly. In this paper,
we first formalize a recursive definition of customizable cost
functions, which is adaptable to a wide range of practically-
useful costs. Then, we propose a cost-generic resynthesis
algorithm to find the minimum-cost optimization candidate.
We demonstrate that the proposed framework is capable of
optimizing various cost functions. Our first experiment shows
that greedily optimizing for a local cost estimation does not al-
ways lead to the best global cost evaluation. This suggests that
different cost functions should be experimented and compared
before developing specialized algorithms. Moreover, when the
cost function is chosen well, experimental results show that
our framework achieves a comparable quality of results (QoR)
compared to the state-of-the-art specialized algorithm.

II. BACKGROUND

A. Logic Functions and Resynthesis

A (n-input, single output) Boolean function is a function
7) : B" — B over n variables & = z1,...,z, in the

/(@
Boolean space B = {0, 1}.



Logic resynthesis (or simply resynthesis) is the problem of
re-expressing a Boolean function in terms of other Boolean
functions [9]: Given a target function f : B — B over
k Boolean variables ¥ = x1,...,x; and a collection G =

{g1,...,gn} of n existing functions g; : B* — B over the
same variables, find a dependency function h : B" — B
satisfying

f(f) :h(gl(f)vag7t(f)) (D

for all £ € B*. h does not necessarily depend on all of
its n inputs. We refer to the circuit realization of h as the
dependency circuit.

B. Logic Networks

Logic networks, or simply networks, are technology-
independent representations of gate-level digital circuits. A
network is a directed acyclic graph whose vertices, referred
to as nodes, represent logic gates or primary inputs (PIs), and
edges represent wires. Incoming edges of a node n are referred
to as the fanins of n and the set of fanins is represented as
0~ (n). Similarly, outgoing edges of a n are referred to as
the fanouts of n. Examples of logic networks include AND-
Inverter Graphs (AlIGs) [2], where every node represents a 2-
input AND gate and edges can be complemented to represent
an inverter, and XOR-AND-Inverter Graphs (XAGs) [10],
where nodes represent 2-input AND or XOR gates and edges
can also be complemented.

A cut C in a network is a tuple (r, L) of a root node r and a
set of leaf nodes L, such that every path from a PI to r passes
through a leaf in L. A node n is said to be supported by a
cut C' = (r, L) if n fulfills the condition of being the root of
C. A k-feasible cut is a cut C' = (r, L) having no more than
k leaves, i.e., |L| < k. All k-feasible cuts in a network can
be enumerated by visiting each node in a topological order
and composing each pair of cuts rooted at its fanins [11].
Moreover, a higher-quality cut, a reconvergence-driven cut,
rooted at a node r can be computed by heuristically picking
one leaf n to be replaced by its fanins (to expand on n) [12].

A cone is the set of nodes on any path between a node n
and any leaf node in a cut rooted at n. The transitive-fanin
cone (TFI) of a node n is the cone between n and the set of
PIs. A fanout-free cone (FFC) of a node n is a cone between
n and a cut C, where all paths from any leaf in C' to any PO
pass through n. The maximum fanout-free cone (MFFC) of a
node n is the maximum-sized FFC of n. In other words, none
of the nodes in the MFFC of n has fanouts outside of the
cone, such that if n is removed from the network, the MFFC
can also be removed. The MFFC of a node can be identified
by recursively dereferencing and referencing the TFI of n [3].

C. Technology-Independent Logic Optimization

Logic optimization algorithms can be classified into alge-
braic methods and Boolean methods. Algebraic methods, as its
name suggests, try to apply algebraic rules based on the local
structures in the network to perform small-scale restructur-
ing [13], [14]. In contrast, Boolean methods compute Boolean
functions in the network and find the different realization
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of the sub-networks, possibly leveraging don’t-care informa-
tion [3], [12], [15], [16]. Boolean methods generally result in
more significant restructuring and achieve better performance
than algebraic methods due to their ability to exploit Boolean
logic and don’t-cares. Thus, most state-of-the-art optimization
algorithms are Boolean methods. Despite appearing in the
literature under various names, most Boolean methods adopt
either one of the two basic underlying algorithms, rewriting or
resubstitution, when it comes to restructuring and optimizing
a given network.

Rewriting algorithms [17] generally include the following
steps:

1) Enumerate cuts for each node n in the network.

2) Simulate from each cut to get the local function of n.

3) Find optimal implementations for the computed func-
tions by exact synthesis [15] or looking up in a pre-
computed database [3].

4) Evaluate each candidate by dry-replacing n with each
subgraph.

5) Rewrite the network using the chosen candidates.

Resubstitution algorithms [12] include the following steps:

1) For each node n in the network,
reconvergence-driven cut C.

Construct a window using the cut, which includes the
cone between n and C' and nodes outside of the cone
but supported by C.

Simulate the window.

Resynthesize n by solving the resynthesis problem using
the local function of m as the target and the local
functions of nodes in the window but not in the MFFC
of n as divisors.

5) Replace n with the resynthesized dependency circuit.

compute a

2)

3)
4)

The key difference between rewriting and resubstitution is
the use of divisors. In rewriting, substitution candidates are
subgraphs implementing the target local function using the
cut leaves, and logic sharing with existing nodes is identified
in the evaluation step by dry-run replacement. In contrast,
resubstitution identifies the divisor nodes, which are outside
of the MFFC and will not be removed after substituting n,
and use them as stepping stones to resynthesize n.

III. CoST FUNCTION DEFINITION

The ultimate goal of logic optimization is to reduce the
cost, such as area and delay, of the final chip product. How-
ever, as there are many EDA processes between technology-
independent logic synthesis and tape-out, such as technology
mapping, placement, and routing, it is challenging to compute
the actual product cost at this stage, and thus estimation is
inevitable. In practice, logic optimization algorithms target
minimizing pre-defined estimations of the actual cost, called
the cost functions. Most algorithms are designed only for one
or few cost functions, such as the number of gates in the
network, and are hard to be adapted for other cost functions.
In this section, we propose a way to define customizable cost
functions used in resubstitution.



We first define global cost T and global cost function ®T.
The global cost is the cost estimation result of the entire
network and an indicator of the actual cost. The global cost
function ®' is the user-specified function to calculate the
global cost I'. ®' can be arbitrarily defined as long as it
satisfies the following two restrictions:

1) Global cost function should be a recursive function.
When composing network node by node, the global cost
function should be able to calculate the cost after each
insertion, given the global cost value of the existing
network and a newly-inserted node.

2) Global cost function should only use local variables
associated with the newly-inserted node without infor-
mation from the history of traversal.

In other words, the cost generated at each node contributes
directly to the cost evaluation of the entire network. The
global cost function specifies how the contribution of each
node is collected. And once collected, the temporary result is
dissipated and not necessarily memorized. So far, some costs,
such as size and MC, can be derived, as each node contributes
to global cost individually according to the type of gate that
is locally accessible. However, for some estimations, such as
depth estimation, local attributes are not sufficient for global
cost function ®T.

Therefore, we define context ~ and global context propaga-
tion function (or simply context function) ®7. The context of
a node n, denoted -, is the variable affecting the global cost
function but generated from other parts of the network. It is
stored in the memory and assists in the evaluation of the global
cost function. The global context propagation function ®7
allow users to define how context propagates in the network
and save necessary data. We also restrict the context function
to a recursive function that can be derived from all the fanins.
Note that context can affect the global cost only if it is involved
in the global cost function.

Finally, a cost function ®, as shown in Equation (2), is the
combination of two functions.

o = (o, ®7)
I’ = o (T, v,)
Tn = (I)’y(nv Ig)a

where I = {; : i € 6~ (n)} is the set of context values
propagated from node n’s fanins, I" and T are the accumulated
global cost before and after consider node n.

After the cost function is given, we can evaluate the global
cost of the whole network using Algorithm 1. In this algo-
rithm, nodes are traversed in topological order so that when
processing the context propagation, the required context values
I7 are already computed and stored. Also, every node in the
network is visited only once to avoid multiple contributions
to the global cost. As the number of fanins of a logic gate is
usually bounded by a constant, if the cost functions are simple,
i.e., are O(1), then the global cost I' of a logic network N
can be calculated in O(|N|) operations.

In Table I, we present examples of valid cost definitions to
demonstrate the flexibility. The definitions of area (®;) and
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MC (®5) are straightforward, as no context is required. For
depth evaluation (®Pj3), the depth information is recursively
derived using context propagation. Sum of depth definition
(®4) updates global cost using sum instead of maximum. To
calculate the sum of support (®5), the set of support needs to
be calculated with the union of fanin supports and then stored
to serve its fanouts.

Algorithm 1: Global Cost Calculation

input : Logic network N, global cost function ®',
context function ®”
output: Global cost I', context ~,, for each node n
1 TopologicalSort(G);

2 '+ 0

3 forn e N do

4 1)+ &;

5 for i € 7 (n) do
6 | I.push(v;);
7 end

8 Yo — PV (n, I);
9 L'« CI)F(Fv 77L>
10 end

11 return I’

Users can specify more cost functions according to different
applications, provided that global cost and context can be
derived recursively. It is possible to extend the recursive
function to higher-order (propagate context from deeper nodes
in TFI instead of only fanins). However, cost functions in-
volving complicated global calculations, such as the sum of
all-pairs-min-cut (SAPMC) [18], are not compatible with our
framework. In Section IV, we will demonstrate its advantages
and explain why the restrictions are necessary.

TABLE I: Cost Function Definition Examples

Cost Name Cost Functions

Y (T,yn) =T +1
q)’ly(nv L) =2

®; | Area Cost

I'+1 nis AND

oL (T =
2 (1) T otherwise

@g(n’ I’v) =9

P9 | MC Cost

(PE(F:’Yn) = maX(F7’7’ﬂ)

@Y (n,Iy) = max v; + 1
Y€l

3 | Depth Cost

@) (n,Iy) = ma i + 1

®4 | Sum of Depth

r _
®5 | Sum of Support [19] ©5 (0, 7n) =T+ [l

{n} n € Pl
®J(n, 1) = U i otherwise
Yi€ln
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Repeat for each node in the network in a topological order
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Fig. 1: Cost-generic Resubstitution Flow

IV. GENERIC RESUBSTITUTION ALGORITHM

Even though the global cost can be evaluated to estimate
the actual cost, we cannot optimize it directly. Restricted by
the space complexity of truth table operations and the time
complexity of finding dependency functions, Boolean method
is not affordable to the whole network and algorithms have to
optimize global cost by estimating and improving it locally.

In this section, we describe our cost-generic resubstitution
algorithm. The generic resubstitution takes the initial network
and a defined cost function as inputs and outputs the final
network. As shown in Figure 1, our algorithm can be divided
into four steps:

1) The initial network is traversed, the initial global cost is
calculated, and the context information is stored.

The windowing engine extracts a window from the
network, simulates the target function, and constructs a
resynthesis problem that contains the context of divisors
and an upper bound on the size of the dependency
circuit.

The resynthesis engine solves the problem and updates
the network using the dependency circuit with the lowest
cost. The local cost is evaluated before and after resyn-
thesis. Steps 2 and 3 are repeated for each node in the
network once in topologically order.

The final network is re-evaluated using the cost function,
and we get the final global cost.

2)

3)

4)

Our algorithm is an extension of the classical resubstitution
algorithm described in Section II, which is usually targeted
for size (node count) optimization. As marked as bold in
Figure 1, the novelties of this work are: (i) defining the cost-
aware resynthesis problem that brings cost information into
the window resynthesis algorithm, and (ii) solving the cost-
aware resynthesis problem using the cost-generic searching
algorithm. Other steps in the resubstitution algorithm, such
as window construction, simulation, and substitution of the
resynthesized dependency circuit, are the same as previous
works as described in Section II.

A. Local Cost in a Global Context

In a cost-aware resynthesis problem, both functional equiv-
alence and cost reduction are required. In other words, the
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resynthesis engine needs to not only check the feasibility of
a dependency circuit but also evaluate it in terms of given
cost function. Dependency circuit’s evaluation is inaccurate
if taken out of its context and regarded as a network. For
example, in depth optimization, a skewed dependency circuit
could be preferred over a balanced one if the level of divisors
are different; however, as an entire network, the skewed one
has a larger depth than the balanced one.

I Pl

(b) Initial solution

(c) Solution 1 (d) Solution 2

Fig. 2: Example of resynthesis problem with multiple solutions

Therefore, we define local cost in a global context (or sim-
ply local cost) I. Algorithm 2 illustrates the procedure of local
cost estimation. Similar to Algorithm 1, the cost is evaluated
by collecting contributions at each node in topological order.
The difference is that only nodes in the MFFC commit to
the local estimation because the other nodes will remain in
the network no matter they are utilized or not. Therefore,
the recursion stops at the divisors and reads the hidden cost
directly from the global evaluation. Moreover, during recursive
estimation, the context information of the pivot node is also



derived and updated. Figure 2 shows an example of a cost-
aware resynthesis problem. As shown in Figure 2b, to run local
optimization of the target node, the resubstitution algorithm
first finds divisors A and B as the leaves of a reconvergence-
driven cut. Node D is in the MFFC because it only supports
the target node, while C' is collected as a divisor because it
is in the window but not the MFFC. Then, while the classical
resubstitution algorithm completely isolates its window from
the global network, our algorithm allows divisors to obtain
context from the external network and updates the context of
the root node.

Algorithm 2: Local Cost in Global Perspective

input : Logic network N, target node n € N, set of
divisors S C N, their contexts {~; : i € S}
from global evaluation, cost function
o = (07, d7)

output: Local cost I, updated context 7,

1 Function ComputeCostRec (I, v):
2 if v € S or v is visited then

3 | return v,

4 end

5 I+ o

6 for i € 7 (n) do

7 | I7 .push( ComputeCostRec (I, 7) )
8 end

9 Yo — PV (v, I7)

10 [+ @F(f,v,%)

11 return -,
2«0
13 v, < ComputeCostRec (f, n)
14 return I’

With the utilization of global context, our local cost estima-
tion is accurate because of the assumptions and restrictions in
Section III. On one hand, local cost evaluation in the MFFC is
not affected by nodes in the TFI because the ®' is irrelevant
to the history of traversal. On the other hand, divisors provide
sufficient context for the root node. As a cut of the root
node is included in the divisors’ set, the context propagation
from PIs to the root node passes through at least one divisor,
where contexts of the TFI are accumulated. Notice that in
our workflow, the root node of windows are selected in a
topological order so that later windows can obtain the updated
context of the network. However, when solving one resynthesis
problem, its influence of updates on latter resynthesis problems
is unpredictable, and the gap between local cost and global
cost remains.

B. Cost-generic Searching Algorithm

Given a cost-aware resynthesis problem, solutions are de-
pendency circuits. A solution is feasible if it implements the
correct functionality. A Solution forest is a set of feasible
solutions. And the optimal solution is a feasible solution with
the lowest local cost in the forest.

The same functionality can be implemented by multiple
dependency circuits, and the number of feasible solutions for
a given problem might be large. In the example from Figure 2,
the target of the resynthesis problem is (1000) and the divisors
are A : (1010), B : (1100), C' : (0001). Besides the initial
solution shown in Figure 2b, we can also derive the same target
function using two different dependency functions: A A B
and !A ® B @ C. Function A A B implies the dependency
circuit in Figure 2c, where blank circles are AND gates and
@ are XOR gates. Except for Figure 2d, two more dependency
circuits can be generated by applying the commutativity law
on !A@® B @& C. To be cost-generic, all four solutions need
to be collected and evaluated because different cost functions
may imply different optimalities. For example, solution 1 is
better when optimizing for size, and solution 2 is better if the
cost is MC. Also, in depth optimization, the three different
structures of !A@® B@ C could have different costs, depending
on the arrival times of A, B, and C. Note that we use XAG
as the logic network in this example and in the rest of this
paper, but our generic resubstitution algorithm, as well as the
cost-generic framework, is not limited to XAGs and can be
extended to other networks.

Algorithm 3: Generic Resynthesis Algorithm

input : Window W, cost function ¢, upper bound
1—‘lmax
output: A solution ¢
1 // Phase 1:
Q<+ o
for each structure do
for each input combination of W .divisors do
q' < BuildNetwork()
f < Simulate(q’)
if f = W.target then
| Q.push(q)
end

e e N N R W N

10 end

11 end

12 // Phase 2:

13 1+ Thax

14 g I

15 for ¢’ € Q do

16 IV < EvaluateCost(q’, ®)
17 if I'" < T then
18 g+ ¢

19 I'«1’

20 end

21 end

22 return g

Our cost-generic searching algorithm is shown in Algo-
rithm 3. The algorithm is divided into two phases. In phase 1,
the resynthesis engine enumerates all the possible structures
with all possible divisor permutations. For each possible
circuit, the engine plugs in the divisors’ truth table and runs
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a simulation. Circuits with correct functionality are collected
to a solution forest. Then, in phase 2, we estimate the cost
of each candidate solution using Algorithm 2, and return the
solution that reduces cost the most. The local cost of the initial
solution is set to be the upper bound I';,,« so that the returned
dependency circuit is strictly better than the initial circuit.

Since phase 2 only returns one solution, whether the optimal
solution is contained in the forest determines the effectiveness
of our algorithm. Meanwhile, the size of the solution space we
explored in phase 1 to find the optimal solution determines the
efficiency. The effectiveness can be improved by extending the
search space and enumerating more possible circuits because
the solution we collected updates the result only when it has
a lower cost. However, this approach would result in poor
efficiency.

A better search sequence is crucial to improve both effec-
tiveness and efficiency. Table II shows three different searching
orders of potential structures with less or equal to three nodes.
Structures are sorted in the ascending order of multiplicative
complexity, the number of gates, and the complexity of enu-
merating divisors’ permutations, respectively. Note that the
size and MC evaluation are context-free, meaning that the
cost will monotonically increase in these sequences without
knowing the divisors’ context information. Since solutions
found in the latter structures are worse than the former
solutions and will not update the best result, we can terminate
the search immediately after seeing the first feasible solution.
A monotonic sequence is efficient, because we collect only one
solution to the forest and waste no effort on simulation and
evaluation of other candidates. However, such monotonicity
does not hold for every cost definition, and the majority of
practical cost functions, such as depth and support size, depend
heavily on the divisors’ context.

In this scenario, we define a heuristic sequence based on
effort and likelihood of finding the feasible solution, which
is expected to be efficient for different costs in general. The
sequence, as well as the enumeration complexity of each
structure, is shown in Table II. Note that the complexity of
a brute-force searching is the number of permutations, and
we reduced it using two techniques based on the type of
the topmost node: (i) hash table look-up for XORs, and (ii)
unateness-based pruning for ANDs.

Figure 3 visualizes the distribution of feasible solutions
using effort-first-order. Dots in the scatter plot are the feasible
solutions, and the coordinates of each node represent the
effort it takes to find this solution. The x-axis is the index
of this solution in the forest, which indicates the number of
other solutions evaluated before it. And y-axis is the run-time
in seconds. The node is colored black if it has the lowest
cost, returned in phase 2, and is useful. On the opposite,
it is colored grey if it is collected and evaluated but not
used. In both plots, we randomly sampled 1M solutions from
more than ten thousand resynthesis problems in a dry-run
on voter circuit [20]. Observe that though the number of
feasible solutions can be more than 5000 for some resynthesis
problems, the useful solutions are located at the bottom-left
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Fig. 3: Distribution of useful solution among all feasible
solutions in heuristic effort-first-search

corner of the plot. Therefore, users can set an upper bound
on the size of the solution forest, and our resynthesis process
can be terminated after the limit is reached without losing too
much effectiveness.

V. EXPERIMENTAL RESULTS

The proposed framework is implemented as part of the
C++ logic network library mockturtle [21]. Customizable cost
functions may be defined using the structure described in
Section III. Experiments are run on an AMD Ryzen 7 5800H
CPU at 3.2GHz with 16 GB of RAM. The input size of our
window (k) is set to be 8, with the maximum number of
divisors (d) equal to 150. We use the benchmarks from EPFL
Benchmark Suite [20]. All results passed the equivalence
checking command from ABC (cec). In Section V-A, we
demonstrate that the framework is capable of optimizing
towards various cost functions. In Section V-B, we compare
the effectiveness of our generic resubstitution on the MC cost
against the state-of-the-art specialized algorithm optimizing
for MC and against a non-specialized algorithm optimizing
for size.

A. Cost Functions

In the first experiment, we optimized 20 circuits using
five different cost functions in Table I. In each run, two
cost functions are used: the local cost function (®;,cq;) iS
passed into the windowing and resynthesis engine for local
cost estimation, and the global cost function (P g;0441) is used
to calculate the cost of the entire circuit before and after the
optimization. The script is operated on the circuit only once.

Table IIT shows the normalized average improvement on all
20 benchmarks. The first five rows in the table represent five
separate optimizations, each targeting a cost function from ®;
to @5, respectively. The sixth row is a baseline, where no cost
function is given, and the resynthesis engine returns the first
feasible solution without evaluation. We measure all the five
global costs in the column before and after each optimization.
Entries in the table are the improvement of geometric mean of
cost (i.e. impr. = 1 —I7/T). Positive improvement means the
cost is reduced after optimization and vice versa. The result



TABLE II: Enumeration of potential solution using different searching order

(a) Multiplexitive complexity

o—il

Aham A

dh &k % dh dh db

(b) Gate number

O—il

AADRD%

€0 ah dh an g

(c) Effort (let d be the number of divisors)

A o G

dh db 4 dh dh s

O(d?) o(d?) o(d?) o(d*)

o(d)  ©(d) o d2)
TABLE III: Normalized Average Improvement
Evaluation Cost Function (% g;5pq1)

Piocal @, P2 D3 L2 @5
[ 19.35%  29.74% -5.89% 16.56% 18.14%
Do 13.51%  49.59%  -33.58%  -9.31% 13.62%
®3 15.85%  27.03% 1217%  27.40% 16.75%
Py 20.29%  30.76% -2.73% 20.86 % 19.48%
D5 19.68%  31.01% -6.11% 17.07%  18.50%
2] [ 1.55% 5.63% -4.13% 1.01% 2.83%

on the diagonal indicates the effectiveness of our algorithm
for each cost function.

Results show that our algorithm is cost-generic. For the five
selected cost functions, our resubstitution algorithm optimized
the circuit accordingly and reduced the costs by 19.35%,
49.59%, 12.17%, 20.86%, and 18.50%, respectively. In each
row, the trade-off between different cost objectives can be
observed. For example, depth is sacrificed to obtain better size
reduction.

Besides, we notice that for ®;, ®,, ®5, the best result is
achieved when optimizing each window using different cost
functions. It means that the gap between local cost and global
cost indeed exists. Even though we take hidden costs into
consideration and improve the accuracy of cost estimation, we
still cannot fully predict the impact of modifying the network
on later optimization. Greedily selecting resynthesis solution
is not always the optimal strategy for global optimization.

B. Comparison to Specialized Algorithm

Table IV shows a comparison of our algorithm with two
state-of-the-art algorithms on MC optimization problems. The
“specialized algorithm” is a cut-rewriting-based algorithm
using an MC-oriented database [5]. The “non-specialized algo-
rithm” is the state-of-the-art resubstitution algorithm targeting
total gate count [22]. All three algorithms take the same

initial networks and traverse the network only once. The QoR
and run-time on all the benchmarks are presented, and the
normalized improvement is calculated. Our method achieved
the best overall QoR among the three algorithms.

Compared to the non-specialized algorithm for size, our
algorithm has a more accurate cost evaluation. Therefore,
though both algorithms are able to find the same candidate
resynthesis solutions, we make better decisions and choose
the solution that reduces cost the most. And compared to the
specialized algorithm, though both algorithms update the local
dependency circuit greedily, cut-based methods are limited by
the size of the cut and cannot find those solutions based on
divisors in a large window.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we consider different target technologies in
logic synthesis and propose a generic resubstitution algorithm.
Our implementation allows fast prototyping and experimenting
with different cost functions. Users only need to describe
the cost with a few lines of code, and our algorithm can
optimize the circuit accordingly. The cost definition method
we propose has good flexibility and is compatible with various
optimization objectives. Moreover, with the help of divisors
and a more accurate cost estimation, our algorithm can find
the appropriate dependency circuit to optimize the total cost.
Experiments show that our algorithm can achieve similar or
even better results than specialized algorithms in multiplicative
complexity optimization.

As future work, we plan to improve the flexibility and effi-
ciency of our algorithm. Currently, cost functions are restricted
to be recursively defined, and our algorithm takes much longer
to find a resynthesis solution because cost-specific pruning is
not applicable. It would be interesting if a more efficient cost-
generic searching algorithm could be developed.
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TABLE IV: Multiplicative Complexity Optimization

original MC-specialized Algorithm Non-specialized Algorithm ours
(k=4) (k=8) (k=8)
benchmark AND [#] Level [#] AND [#] time [s] impr. AND [#] time [s] impr. AND [#] time [s] impr.
Adder 1020 255 134 0.05 86.9% 764 0.10  25.1% 255 0.63  75.0%
Barrel Shifter 3336 12 2365 025 29.1% 3136 0.53 6.0% 1578 287  52.7%
Divisors 57247 4372 36207 478  36.8% 33298 5.84 41.8% 17600 2362  69.3%
Hypotenuse 214335 24801 95557 17.04  55.4% 203842 14.77 4.9% 74984 8246  65.0%
Log2 32060 444 20190 3.00 37.0% 29154 5.02 9.1% 19260 66.08  39.9%
Max 2865 287 1660 030 42.1% 2863 0.25 0.1% 1776 236 38.0%
Multiplier 27062 274 14287 216 47.2% 24817 434 8.3% 13836 48.69  48.9%
Sine 5416 225 3519 0.66  35.0% 4882 1.30 9.9% 3209 19.56  40.7%
Square-root 24618 5058 13307 233 459% 18348 218 25.5% 7041 11.81  71.4%
Square 18484 250 11602 1.65  37.2% 15729 239  149% 6846 1554  63.0%
Round-robin Arbiter 11839 87 7212 1.08  39.1% 11839 2.19 0.0% 11839 35.77 0.0%
Coding-cavlc 693 16 646 0.26 6.8% 612 098 11.7% 456 10.77  342%
ALU control unit 174 10 121 0.08  30.5% 91 0.10  47.7% 50 .13 71.3%
Decoder 304 3 304 0.01 0.0% 304 0.08 0.0% 278 6.52 8.6%
i2¢ controller 1342 20 1086 0.19  19.1% 1207 026  10.1% 1082 235  194%
int to float converter 260 16 217 0.09 16.5% 220 0.50 15.4% 183 239  29.6%
Memory controller 46836 114 36398 351 223% 44448 8.50 5.1% 37092 72.07  20.8%
Priority Encoder 978 250 428 0.09  56.2% 586 0.10  40.1% 643 1.55  343%
Lookahead XY router 257 54 196 0.04  23.7% 229 0.04 10.9% 165 040  35.8%
Voter 13758 70 5437 1.19  60.5% 7413 149  46.1% 3033 7.76  78.0%
geo.mean 4364 136 2595 0.47 3568 0.82 2197 7.70

normalized impr. 1.000 40.5% 18.2% 49.6%
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