Fanout-Bounded Logic Synthesis for Emerging
Technologies - A Top-Down Approach

Dewmini Sudara Marakkalage, Giovanni De Micheli

Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

Abstract—In logic circuits, the number of fanouts a gate
can drive is limited, and such limits are tighter in emerging
technologies such as superconducting electronic circuits. In this
work, we study the problem of re-synthesizing a given logic
network through buffer insertions and gate duplications such
that 1) the logic depth meets a predefined bound, 2) each node
meets given fanout constraints, and 3) the total area is minimized.
We first formulate this problem as an integer linear program
(ILP) and present exact solutions for small logic networks. For
large networks, we show how to construct a feasible solution
for the ILP efficiently using a top-down approach; Namely, for
the fanout net of each node in the reverse topological order, we
construct a collection of buffer trees where each tree is rooted
at a different copy of the node. To minimize gate duplication,
we minimize the number of buffer trees such that the critical
path length is not increased. Noting that minimizing the number
of trees for the fanout net of a node n can increase the costs of
fanout nets of n’s fanins, we strengthen the local optimization by
considering different numbers of buffer trees for each node and
looking ahead to one logic level below to identify which choice is
best. When using the minimum depth achievable with unbounded
fanouts as the final depth bound, the proposed approach achieves
11.82% better area as compared to the known best prior results
on EPFL benchmarks.

Index Terms—Fanout-bounded synthesis, Integer linear pro-
gram, Emerging technologies.

I. INTRODUCTION

In digital electronics, the ability to have multiple fanouts
per gate enables compact implementations of complex logic
functions. However, increasing the number of fanouts of a
gate can adversely affect delay performance, and the maximum
number of fanouts a gate can support is usually bounded. Thus
it is important to develop synthesis algorithms to effectively
utilize fanouts.

In the conventional CMOS technology, fanout optimization
has been well-studied, both as a method to improve the
critical path delay [1]-[5] and as a method of optimizing
special high-fanout nets such as clock and reset signals [6].
However, the techniques developed for CMOS technology
is not generally transferable to many emerging technologies
such as superconducting electronics (e.g., AQFP [[7]], RQL [S]],
RSFQ [9]) and spintronics [[10]], which generally have tight,
explicit fanout bounds and/or significantly different timing
models (clocked gates, for example). Thus the allowed trans-
formations in such technologies can be fundamentally differ-
ent. For example, in CMOS, the delay increase due to a high
number of fanouts can be somewhat countered with techniques
such as transistor sizing, which is not an option for post

80

CMOS technologies. Instead, when designing for emerging
technologies, fanout bounded synthesis is usually considered
early in the design process (e.g., in the logic synthesis stage)
using a combination of gate-duplications and buffer insertions.
Notably, in superconducting electronic technologies, splitters
are needed to drive multiple fanouts. However, we can model
splitters as buffers with fanout capacity at least two, thus
encompassing such scenarios under generic fanout bounded
synthesis considered in this work.

In this work, we consider the following fanout bounded
synthesis problem: Given an input logic network, a bound D
on the number of logic levels, and the fanout bounds and area
costs of different gate types/buffers, re-synthesize the logic
network by means of gate duplications and buffer insertions
such that 1) the total number of logic levels is at most D,
2) each node in the synthesized network meets the respective
fanout bounds, and 3) the total area is minimized.

An early theoretical work on fanout bounded synthesis using
gate-duplications and buffers by Hoover et al. [11] presented
an algorithm that limits the fanouts by any given constant ¢ >
2 at the expense of a constant factor increase in both the total
number of gates and the depth. Recently, Zhang and Jiang [[12]]
revisited the problem of fanout bounded synthesis, specifically
targetting emerging technologies. Their work combines several
heuristics to obtain a non-trivial algorithm for fanout bounded
synthesis in the unit delay model. (Unit delay model is an apt
timing model for technologies such as adiabatic quantum-flux-
parametron (AQFP) which have clocked gates [|13]].)

To elaborate, the algorithm of [12] first computes the
amount of duplicates needed for each gate using a recursive
evaluation procedure; the number of duplicates for a gate
is incremented if it results in an overall buffer reduction
without significantly affecting the delay. Next, for each node
in the reverse topological order, “skewed” buffer trees are
constructed using an algorithm similar to that of [[I4]. Finally,
for nodes that are equivalent, their buffer trees are considered
together and the load is re-distributed. This step does not alter
the levels of the nodes but may remove some unnecessary
nodes from the collection of duplicates.

However, we identify several opportunities for improving
this approach:

1) The computed gate copy-counts does not guarantee that
the fanout bounded version achieves the same minimum
possible delay as the original, fanout unbounded net-
work.

2) Secondly, the algorithm proposed in [12] for skewed
buffer tree construction, which uses a priority queue sim-
ilarly to the well known Huffman coding algorithm [/15],
is guaranteed to achieve the best possible level for the
root node of the tree only when fanout bound is 2. To
achieve the optimal level for the root node, the same
algorithm can be used with a different initialization of
the priority queue as shown by Golumbic [16].

It is not stated how the fanout nodes are assigned to
the duplicated copies before the skewed buffer trees
are constructed. Moreover, in the process for evaluating
whether to duplicate a gate or not, when checking if
there is an impact on the delay, it is not specified at
which levels the copies of a gate are placed. We note
that there are situations where the effect on the overall
delay is mitigated if the copies can be placed at different
levels, as compared to placing all copies at the same
level. But such decisions on levels of the copies of a
gate can be more effectively made if we know the levels
of the fanouts beforehand.

Buffer forest re-balancing step does not guarantee that
we get the minimum possible duplicate count (even
locally for a considered set of equivalent nodes). This
is because the re-balancing step is run after fixing the
levels of the duplicated nodes.

3)

4)

In this work, we mitigate the above shortcomings by taking
a more rigorous approach. Namely, we first formulate the
minimum area fanout bounded synthesis problem for a given
circuit delay D as an integer linear program (ILP) and solve
it for small logic networks with relatively few logic levels to
find the optimum area.. We then present a top-down approach
to find a feasible (though not necessarily optimal) solution
to the ILP together with an algorithm to construct a fanout-
bounded logic network from any feasible solution to this ILP.
To elaborate, for each gate n in the input network and for
each possible level 1 < ¢ < D in the output network, we
use the number of duplicates of gate n that are in level ¢ and
the number of buffers associated with gate n that are in level
¢ as our ILP variables. We then add constraints relating the
total number of available and required fanouts by each logic
level, which must be satisfied by any valid fanout bounded
circuit. Our top-down approach can be viewed as considering
nodes in the input network in the reverse topological order and
constructing a buffer forest for each node without increasing
the overall circuit delay. The number of trees in the constructed
buffer forest for a given node n determines the number of
copies of n in the output network.

The proposed top-down approach achieves ~10.9% better
area in comparison to [[12] on the same EPFL benchmarks
while a slightly more improved version of our algorithm yields
~11.8% better area. We remark that for all benchmarks, our
approach achieves matching or better delays as compared
to [12] since we never increase the critical path delay. Our
approach is versatile, and can be used on any graph represen-
tation of logic. In this work, we use and-inverter graphs (AIGs)

81

as the preferred logic representation in order to perform a fair
comparison with [12].

The rest of the paper is organised as follows: In
we summarize some concepts useful to better understand our
work. In [Section IlI} we discuss the ILP formulation in detail
and also present our top-down algorithm for fanout bounded
synthesis. Next, in [Section IV| we present our experimental

results, and finally, in we conclude with a brief
discussion on the results and possible future directions.

II. BACKGROUND

In this section, we give background on and-inverter graphs
(AIGs), static timing analysis with the unit delay model, and
node equivalence.

A. And-Inverter Graphs

The and-inverter graph (AIG) is a directed acyclic graph
(DAG) representation of logic where nodes represent either
primary inputs (which have in-degree zero) or 2-input AND
gates (which have in-degree 2). AIGs have two possible types
of directed edges, representing non-inverted or inverted fanins.
The AIG is a universal representation, meaning that an AIG
can represent an arbitrary logic function, and is supported by
many logic synthesis tools and libraries such as ABC [17] and
mockturtle [|[18]] owing to its simplicity and wider compatibility
with many logic synthesis algorithms. At the same time, AIGs
support efficient structural hashing which enables efficient
collapsing of logically equivalent nodes.

B. Static Timing Analysis

In this work, we use the unit delay model which assumes
that a signal incurs a l-unit delay when it passes through a
gate. The arrival time of a node n, denoted by ¢3™ is defined
as follows: If n is a primary input, t3™ = 0. Otherwise t3'" =
1 + maxX,,cpi(n) th,' » Where FI(n) denotes the set of fanin
nodes of n. Note that the arrival time of a node is equal to
the maximum length of a path from the node to any primary
input. Hence, we sometimes use the term level to refer to the
arrival time. The overall circuit delay, also called the depth
of the circuit, is defined as the maximum arrival time of any
primary output.

For a given target delay D, the required time of a node
n, which we denote by ¢,°4 is defined as follows: If n has
no fanout nodes which are internal to the logic network (i.e.,
all fanouts are primary outputs), ¢,°¢ = D. Otherwise, ;79 =
min,cro(n) et — 1, where FO(n) denote the set of fanout
nodes of node n.

A critical path in a network is an input-to-output path of
nodes where each node n on the path satisfies ¢°9 = t2'". We
say a node is critical if it lies on at least one critical path.

C. Node Equivalence

In general, we say two nodes m and n in a logic network are
equivalent if their outputs are equal under all possible value
combinations of primary inputs. If the input graph contains two
or more equivalent nodes, their fanouts can be re-distributed

among themselves at the discretion of a synthesis algorithm
without altering the overall output of the circuit. However, for
a network with many primary inputs, it can be computationally
very expensive to identify all nodes that are equivalent to
a given node. Thus, a more practical approach is to find
equivalent nodes by considering a node’s function with respect
to a small cut, i.e., a set of nodes that separates the considered
node from primary inputs. An example of this type of weaker
equivalence checking is structural hashing; For AIGs, a widely
used structural hashing technique is to identify each gate with
a signature consisting of the gate’s fanins and flags denoting
which fanins are inverted.

In this work, we do not explicitly check for equivalent
nodes; instead, we assume the AIG data-structure internally
uses structural hashing to collapse any equivalent nodes.
However, for the output circuit, the algorithm may need some
explicitly duplicated gates, thus we disable structural hashing
for the output network.

III. METHOD

In this section, we first present our ILP formulation of
fanout bounded synthesis. We then present a top-down heuris-
tic algorithm to greedily find a feasible solution to the de-
rived ILP.

A. Fanout-Bounded Synthesis ILP Formulation

We formulate the fanout bounded synthesis with a prede-
fined depth bound D as an ILP. Namely, in our ILP, we aim
to minimize the total number of gates and buffers subject to
the constraint that all input-to-output path lengths are bounded
by D while all gates and buffers meet the given fanout bounds.
We remark that we do not aim to make any logic restructuring;
instead, our ILP determines how to duplicate gates and add
buffers to the original network.

To derive the ILP, we start with the following notation: Let
P be the set of all primary inputs of the input network, let
G be the set of all gates, and let N = P U G be the set
of all nodes. For example, in the example network shown in

P, P, Ps P,

Fig. 1: Example logic network with node labels.

82

, P = {pl,...,p4}7G = {711,712,...,717} and N =
{pl,...,p4,n1,...,n7}ﬂ For a node n € N, let FO(n) be
the collection of fanout nodes of n. Let k, be the number
of primary outputs directly connected to node n. Thus, for
example, for the network in we have FO(p3)
{ng2,n3} and FO(n1) = {n3,n4}, and ky, = kn, = kn,
kng = kn, = 1.

Let cgate be the area of a gate (we assume the network
is homogeneous, but our ILP can easily be generalized to
support different types of gates), let ¢y, be the area of a
buffer, let fqatc be the fanout capacity of a gate, and let fi,,g
be the fanout capacity of a buffer. For example, consider the
AQFP technology. In this technology, whenever a gate has
more than one fanouts, splitters must be used, and a splitter can
be modelled as a buffer that support multiple fanouts (usually
three or four [[19]], [20]). In AQFP technology, the area is
measured in terms of the number of Josephson Junctions (JJs),
and a gate (And, Or, or Majority-3) needs 6 JJs while a splitter
needs only 2 JJs [[19]. Thus we can set Cgate = 6, Chug = 2,
feate = 1 and fiug = 4 for this case. We remark that,
similar to other superconducting technologies, AQFP circuits
also needs all input-to-output paths to be of same length, which
is achieved by inserting buffers of fanout one on unbalanced
paths. This step can either be performed separately after fanout
bounded synthesis or it can be integrated into the algorithm
described in this work.

Let n € N be a node in the original graph. We say a node
m in a fanout bounded circuit is n-equivalent if one of the
following holds:

1) nis a primary input and m is the corresponding primary
input in the fanout bounded circuit.

2) n is a gate with fanins ni,ne and m is a gate with
fanins mj, my such that m; is n;-equivalent and my is
ng-equivalent.

Note that, in the logic networks depicted in this work, the primary inputs
are at the bottom and the primary outputs are at the top.

P

Fig. 2: A possible fanout bounded version of the logic network

shown in

3) m is a buffer such that its fanin m; is n-equivalent.

Note that by the third criterion, any buffer in a buffer tree
rooted at an n-equivalent gate is also n-equivalent. According
this definition, in the example network shown in
(which shows a fanout bounded version of the sample network
of where fgate = fout = 2), there are two nj-
equivalent gates and two no-equivalent gates (represented by
overlapping circles). Moreover, the two buffers represented as
blue triangles in level 2 are nq-equivalent.

Variables

We use two kinds of integer variables. For each node n € N
and for each level £ € {1,..., D}, we introduce variables g,, ¢
to denote the number of gate copies in level ¢ in the fanout
bounded circuit that are n-equivalent. Similarly, we introduce
variables b,, ¢ to denote the number of buffers in level ¢ in the
fanout bounded circuit that are n-equivalent. For example, for
the logic network shown in the introduced variables
take the following values: g,,1 = 2,0n,10 = 1,Gng,2 =
2,9n43 = LiGns3 = L,gne,3 = 1,gn,3 = labn2,2 = 2 and

9n,e = 0 for all unspecified variables g,, o where n =1,...,7
and £ =0,...,3.
Constraints

Next, we introduce constraints to ensure that the values of
variables indeed correspond to a valid fanout bounded logic
network that is equivalent to the input network. To this end,
we first have that g,0 = 0 and b, = 0 forall n € N
since there cannot be any gates or buffers in the same level
as the primary inputs. (In fact, these variables are redundant
and we can write the ILP without them, but having these
variables with the above constraint makes it easier to specify
the remaining constraints in a concise manner.) Next, consider
a fixed level L € {1,...,D} and a fixed gate n € N.
We denote by avl(n, L), which stands for “availability of n-
equivalent signals by level L,” the total fanout capacity of all
n-equivalent gates/buffers that are placed in levels strictly less
than L. Note that

L—1

aVl(ny L) = Z(fbuff . bn,é + fgate . gn,@)a

£=0
which is a linear function of the ILP variables. We de-
note by req(n, L), which stands for the “requirement of n-
equivalent signals by level L,” the total fanout requirement of
n-equivalent gates/buffers by all gates and buffers in level L or
below. Note that each copy of a fanout of an n-equivalent gate
increases the fanout requirement by one, and each n-equivalent
buffer also increases the fanout requirement by one. Namely,
we can write

n,L + Z 9m,L | »

meFO(n)

L
req(n, L) = Z b
=1

which is again a linear function of the ILP variables.
Now, observe that, in any variable assignment that corre-
sponds to a valid fanout bounded network with depth D, it

83

must hold that avl(n,L) > req(n,L) for all n € G and
Lel,...,D. To see this, consider any valid depth-D fanout
bounded version of the input network. Let gy, 1, b, 1 be the
corresponding ILP variable values. Fix any gate n € G and
let L = 1. Note that for any gate m € FO(n), gn,1 must
be 0. Otherwise, there must be a copy of n at level 0, which
is a contradiction as n is not a primary input. Similarly, there
cannot be any n-equivalent buffer at level 1 either. Thus it must
hold that avl(n,1) = 0 > 0 = req(n, 1). Now, suppose that
avl(n, L) > req(n, L) must hold for any valid depth-D fanout
bounded version. We inductively show that avl(n, L + 1) >
req(n, L 4+ 1) must also hold. Observe that the total number
of connections between n-equivalent gates/buffers and their
fanouts that must cross the boundary between level L and L+1
is at least ZmeFO(n) 9n,L+1 + bp,L4+1. The total remaining
capacity of n-equivalent gates/buffers that are at levels below
L is avl(n, L)—req(n, L). Thus the additional capacity needed
to support all crossing connections must be provided by n-
equivalent gates/buffer that are at level L. Namely, we must
have

fgate *In,L + fbuff : bn7L > Z 9n,L+1 + bn,L+1
meFO(n)

— (avl(n, L) — req(n, L)),
which yields

avl(n, L) + fgate *Gn,L + fbuff : bn,L

>req(n, L) + Z In,L+1 + bn, 141,
meFO(n)

or equivalently, avl(n,L + 1) > req(n,L + 1) after re-
arranging.

Finally, we ensure that we have enough capacity remaining
in n-equivalent gates/buffers to support the respective primary
outputs (if any). Namely, for all n, it must hold that avl(n, D+
1)—req(n, D) > k,,. (The same can be achieve by viewing all
fanouts connected to a gate n as n-equivalent buffers placed at
level D+ 1, and simply adding the constraint avl(n, D+1) >
req(n, D +1).)

We thus get the following ILP formulation for fanout
bounded synthesis under a predetermined depth bound D,
where the objective function is to minimize the total area.

o D
Minimize), . > o—1(Cgate - Gn,e + Couft - Dn,e),
Subject to

avl(n,L) —req(n,L) >0 VneN,1<L<D,

avl(n, D + 1) —req(n, D) > ky, Vn € N,
gn,OZO neGa
bn,O:() ne N,

Gn.Lsbn €Z VneN,1<L<D.

Let OPT be the optimum area of a fanout bounded version
of the input network with maximum depth D. Since any such
valid network corresponds to a feasible solution for the ILP, it
is clear that the value of ILP is at most OPT. We now give an

Algorithm 1: Algorithm for constructing a fanout
bounded network using a feasible solution to the ILP.

input : Input network ntk, parameters fgatc, fouft,

and a feasible ILP solution g, 1, by, 1, for

neNand0< L <D.

A fanout bounded network that is logically

equivalent to ntk.

1 Let newsig be a map from nodes in ntk to a queue of
pairs (new node, remaining capacity)

2 for all p € ntk.PIs do

3 | newsig[p] < newntk.create_pi()

output:

Let data be an empty list.

for all nonzero g, 1 do Add (L,n, “gate”) to data

for all nonzero b, 1, do Add (L,n, “buff”) to data

Sort data in the ascending order of levels.

for all (¢, m,t) € data in the ascending order of
levels do

if t = “gate” then

Look up fanins of m in newsig.

newgate < Create a new gate by choosing the
first available node from the corresponding
queues in newsig as fanin.

Decrement the remaining capacity for used
fanin nodes and remove them from the queue
if the remaining capacity reach zero.

newsiglm].push((newgate, feate))

4
5
6
7
8

10
11

12

13

14 else
15

16

Look up m in newstg.

newbuff <— Create a new buffer by choosing
the first available node from the
corresponding queue as the fanin.

Decrement the remaining capacity for the used
fanin.

| newsig[m].push((newbuf f, fout)

17

18

return the constructed network.

algorithm to transform any feasible ILP solution to a fanout
bounded network of maximum depth D, which is equivalent
to the original network, thus showing that our ILP in fact finds
the optimal area.

The algorithm first sorts all variables gy ¢, by, ¢ in the in-
creasing order of ¢. Then, considering the variable values in
that order, construct the g, ¢ gate copies or b, o buffers in a
new network. To facilitate this constructions, for each n € N,
the algorithm maintains a queue of currently constructed n-
equivalent gates/buffers together with their remaining fanout
capacities. Each time it uses such a gate/buffer, it decrements
the count; once the count reaches zero, the corresponding
gate/buffer instance is removed from the queue. Since the
algorithms constructs gates/buffers in a level-by-level fashion
using a feasible variable assignment, we can see that the
corresponding queues of n-equivalent gates/buffers do not
prematurely get empty due to the availability-requirement

&4

Algorithm 2: Algorithm for determining g,, 7, and by, r,
values for a node n € N, given E?i" and the levels of
all external fanouts of n-equivalent gates/buffers.

input : Input network ntk, parameters fgate, fouft, @
node n, t&'", and a list folev,, of levels of n’s

s bp

fanouts.
output: Values of gy, 1, b, 1 variables for
L=1,...,D.

1 Set gn,,bn,r =0 for all L

2 for ¢t = 1 to length(folev,) do

3 Let rem < length(folevy,) —t - feate

4 if rem < 0 then

5 for i = 1 to length(folevy,) in steps of faate
do

|

LastBufLoad < rem mod (fpug — 1)
if LastbufLoad > 0 then
Add foug — LastBuf Load many copies of oo
to folev, (i.e., dummy fanouts with
unbounded required time).
Use the skewed buffer tree construction from
[12] until we have t buffer forests.
if All roots of the trees in the forest are at least
t2'" then
Determine g, 1, and b, 1, using the
constructed buffer forest
return variable values

Increment g,, foico,, [i]—1-
return variable values

10

11
12
13

14

constraints of an ILP. The pseudo-code of this algorithm is
presented in

Remark: Recall that, in technologies such as AQFP,
in addition to the fanout constraints, there is an additional
requirement that for each gate, its inputs must arrive at the
same time. In our ILP formulation, this is easy to ensure; we
simply re-define the quantities avl(n, L) and req(n, L) to be,
respectively, the available number of fanouts by n-equivalent
gates and buffers in exactly level L—1 and the required number
n-equivalent fanouts for gates and buffers in exactly level L.

B. Top-Down Fanout-Bounded Synthesis
Although solving the ILP introduced in [Section I1I-A| gives

the optimal solution, solving it optimally for large networks
which we often encounter in practice is a prohibitively expen-
sive computation, and hence not a viable approach. Motivated
by this, we now show how to find a feasible, but not necessar-
ily the optimal solution to the ILP using a fop-down approach.

Namely, we consider the gates n € G in the reverse
topological order, and for each n in this order, determine
values for variables g, 1, and b, such that the constraints
avl(n, L) —req(n, L) > 0 and avl(n, D+1) —req(n, D) > k,
are satisfied. Note that by considering nodes in the reverse
topological order, when we consider a node n, we already

know the levels of all fanouts of n-equivalent gates/buffers
except for those fanouts that arise due to fanins of n-equivalent
buffers. We call those fanouts external fanouts of n-equivalent
gates/buffers.

When determining the values for g, . and b, 1, we prefer
minimizing the number of gate copies, and utilize buffers
as much as possible to support the fanout requirement. This
decision is motivated by the following facts: First, duplicating
a gate will increase the fanout requirement of other nodes:
For example, suppose that n’s fanins are m; and ms. Then,
duplicating a n-equivalent gate increases the fanout load of m,
and ms-equivalent gates/buffers. This is in contrast to adding a
buffer which only increases the fanout load by one. Secondly,
it is natural to assume that the area of a buffer is not more than
that of a gate, and the fanout capacity of a buffer is usually
more than that of a gate. Thus, in terms of area, replacing a
gate copy with a buffer is always beneficial.

However, we cannot completely eliminate gate duplication
because addition of buffers can increase the number of logic
levels (i.e., the critical path length). Recall that {2 is the
minimum level node n can be at even if we assume unbounded
fanout capacities. Thus, for any ¢ < t2', setting g, to a
non-zero value makes the solution infeasible. Similarly, for
any ¢ <2 (note the inclusion of equality), setting b, ¢ to a
non-zero value also makes the solution infeasible.

For a given levels of external fanouts of n-equivalent
gates/buffers and the minimum possible level (i.e., t2'") for
an n-equivalent gate, we use to determine the
values of g, and b, ; variables. Considering each node in
the reverse topological order, we thus use [Algorithm 2| to
determine values of g, and b, , for all gates n € G, and

then use to construct the corresponding fanout

bounded logic network.

We remark that our top-down approach is fundamentally
different from the work of Zhang and Jiang [12f]. In [12],
a set of n-equivalent gates and their corresponding levels are
already determined when the buffer-forest re-balancing algo-
rithm is run in order to reduce the number of gate duplicates,
by re-wiring the buffers which may or may not render some
n-equivalent gates redundant. In contrast, our algorithm uses
to decide the set of n-equivalent gates that we
absolutely need along with their levels, thus redundant gate
copies are never created. Moreover, in the “skewed buffer tree
construction” and “buffer-forest re-balancing” algorithms of
[12], there can be situations where it does not construct the
best buffer tree/forest when fgate, four > 2 and cgate > Chust-
In contrast, our algorithm always constructs the optimum
buffer forest for given levels of external fanouts and ¢2™.
Namely, for r = 1,2,..., we consider r copies for the root
gate, employ a slightly modified version of the algorithm of
Golumbic [16] to derive r buffer trees, and find the minimum
value of r such that roots of all trees meet the arrival time
requirement.

C. Improving the Top-Down Approach by Allowing Over-
Duplication

In the previous section, we explained how to find the
smallest buffer forest that does not increase circuit delay for a
given fanout net. The intuition behind settling for the smallest
buffer forest is to minimize gate duplication in order to avoid
increasing the load of their fanins. One potential drawback of
not duplicating more than what is absolutely necessary to meet
the critical path delay constraint is the following: We end up
placing some node n at level ¢2'" although we may have the
option of placing two copies of n at level t2™ 4 1 instead,
thus forcing more duplication for n’s fanin nodes as their
fanout nets does not have enough slack to add buffers. As such,
allowing more duplicates than absolutely necessary, which we
call “over-duplication”, can be still good if the increased load
to fanins does not increase their buffer requirement, while
increasing the room to add buffers in the fanout nets of those
fanins. In contrast to our approach, in [12], the decision of
duplication is made ignoring the final levels of subsequent
gates, and hence it is not guaranteed to retain the minimum
possible circuit delay.

In an improved version of our top-down approach, we
incorporate this idea of “over-duplication” as follows: For the
fanout net of a considered node n, instead of stopping the
algorithm at minimum possible number of trees ¢, we continue
increasing ¢ and construct the corresponding buffer forests. For
each such buffer forest, we consider the overall area incurred
by the fanout net of the considered node and the fanout nets of
its fanin nodes, assuming that we do not use over-duplication
for those fanin nodes. Then for node n we choose the buffer
forest that gives the minimum overall area computed in the
above step.

There are two issues with this approach: First, due to the
top-down implementation, when considering node n, all levels
of its fanouts (including their potential copies) are known.
However, for a fanin m of n, there can be some fanouts that
are yet to be considered by the algorithm, and hence their final
levels are not known. Secondly, Suppose that a node m has
k fanouts. For each of those fanouts, the cost of the fanout
net of m will be re-evaluated multiple times. L.e., the fanout
net of m is evaluated at least k-times. Since each evaluation
also takes time at least linear in &, the total work involved
in evaluating a node’s fanout net can be very expensive for
high-fanout nodes.

To circumvent the first issue, we propose to use a proxy
level for the so-far unconsidered nodes; namely we use their
maximum possible level (i.e., the required time) as the proxy
level. To mitigate the effects of the second issue, we set a
constant bound Fj,,, (e.g., 10) and ignore nodes with more
than F),,, fanouts when computing the overall area impact.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
from our ILP formulation and the top-down fanout bounded
synthesis algorithm. We compare the result of our top-down
approach with the results of [12].

85

TABLE I: Exact fanout-bounded synthesis results using ILP

from [Section III-A| solved with Gurobi optimizer [21].

Input network

Output network

Total
Benchmark And Levels And Buffers gates Levels Time(s)
gates gates (Area)
adder 1019 255 1021 126 1147 255 8538.26
bar 3141 12 3901 0 3901 12 24297
cavlc 662 16 733 13 746 16 12.14
ctrl 108 8 123 3 126 8 0.24
dec 304 3 768 0 768 3 0.21
i2c 1162 15 1255 113 1368 15 59.27
int2float 214 15 224 7 231 15 2.76
router 177 19 180 5 185 19 1.52
adderl 7 4 7 0 7 4 0.01
adder8 77 17 78 7 85 17 0.37
mult8 439 35 447 13 460 35 1129.73
counterl6 49 13 55 4 59 13 0.10
counter32 125 19 139 11 150 19 2.55
counter64 285 25 311 28 339 25 11.71
counter128 613 31 650 76 726 31 67.21
cl7 6 3 6 0 6 3 0.03
c432 121 26 136 6 142 26 1.92
c499 387 18 410 42 452 18 8.15
c880 306 27 322 28 350 27 16.84
c1355 388 17 412 44 456 17 3.92
c1908 286 21 318 32 350 21 6.31
2670 169 9 178 9 187 9 0.33
3540 789 32 905 127 1032 32 3521.49
c5315 1294 26 1403 118 1521 26 553.95
c7552 1385 33 1562 192 1754 33 1335.10
sorter32 480 15 512 0 512 15 4.31
sorter48 984 25 984 64 1048 25 68.47

First, for a set of small benchmarks, we use the ILP to
find the exact solutions; Using the minimum possible circuit
delay as the delay bound, we write the ILP introduced in
and solve it using Gurobi optimizer [21]] using
an academic product license. In the ILP formulation, we use
the same setting as [12] where we have a fanout bound of
2 and unit-area AND gates and buffers. The experiment was
run on a MacBook Pro M1 with 10 cores of CPU, 16 cores of
GPU, and 32 GB of RAM. The results are shown in
The first 8 benchmarks are from the EPFL logic synthesis
benchmarks suite [22] whereas the rest of the benchmarks are
a subset of those used in [23].

Next, we present the results (in of our top-down
algorithm on the full set of EPFL benchmarks, together with
the results of [12] for a comparison. Similarly to [12]], our
algorithm was also run on top of the resulting circuits after
one round of resyn2 command in ABC. We remark that the
measure of quality of results (QoR) used in [|12] is slightly dif-
ferent, and if we were to use their QoR measure on our results,
our approach would score even higher. Namely, the QoR mea-
sure used in [12] is size(G)/size(G’) +depth(G)/depth(G’)
where G is the original input network and G’ is the fanout
bounded version produced by the algorithm. In our approach,
the depths of G and G’ are always equal, whereas in [[12]],
depth(G) < depth(G’) with strict inequality for some bench-
marks (e.g.: see the results for benchmark “sqrt”).

Note that, in our top-down approach (without over-

duplication), the average improvement over all standard EPFL
benchmarks is 10.93%. However, for benchmark “bar”, our
algorithm’s result is 12.2% worse. Remarkably, combining
the top-down algorithm with over-duplication step from
achieves the same results as [[12]] for that bench-
mark, while increasing the average improvement over all EPFL
benchmarks to 11.82%. Notably, our method results in fanout
bounded circuits that are much closer to the optimum results
on several benchmarks (e.g., on benchmarks adder, cavlc,
int2float, and router).

As per the running time, both our top-down algorithms
can be implemented to run in O(nlogn) time where n is
the size of the input network, and hence it scales well to
large networks. The over-duplication version is only a constant
factor slower (recall that we restrict over-duplication to nodes
with a constant number of fanouts) than the naive top-down
version due to re-computation of costs in the duplication step.

V. CONCLUSION

In this work, we take a rigorous approach for fanout
bounded synthesis of circuits in the unit-delay model. To this
end, we formulate the problem of fanout bounded synthesis
for fixed target delay as an ILP, and we showed how to find a
feasible solution to the ILP using a top-down approach while
mitigating some shortcomings of earlier work. As compared
to the known best results for this problem, our algorithm
produces 11.82% improved area while achieve matching or
better delays.

As we see from the over-duplication heuristic
with a local cost function improves the area reduction. It
will be interesting to find a more elaborate but efficiently
computable cost function for evaluating heuristic choices such
as the one we introduced in[Section III-=Cl We also believe that
a deeper analysis of benchmark “bar” might hint at what kind
of real-world circuit patterns benefit more from such heuristics.

Another promising research direction is to investigate if
the ILP can be relaxed to be a simple linear program on
real variables, and then use the possibly fractional optimum
solution to guide a fanout bounded synthesis algorithm. For
example, the fractional values of g, ;, variables may be good
approximations to the duplicate gate counts in the optimal
integral solution. Or, the fractional values may be rounded
to integral values (with some loss in the objective value)
without violating the availability-requirement constraints of
the ILP. If such a rounding is possible, it may also yield some
provable guarantees for the quality of algorithm output. In any
case, we hope that our ILP would serve as a theoretical basis
for future research in fanout bounded synthesis for emerging
technologies with hard fanout constraints.

ACKNOWLEDGMENTS

This research was supported by the SNSF grant Supercool
200021_1920981.

86

TABLE II: Results of the top-down fanout bounded synthesis algorithm on EPFL benchmarks.

Input network Output of [12]

Output (top-down)

Output (top-down with over-duplication)

Total gates

Total gates

Area Time Total gates Area Time

Benchmark And gates Levels (Area) Levels And gates Buffers (Area) Impr.% ©) And gates Buffers (Area) Impr.% ©)

adder 1019 255 1273 255 1020 128 1148 9.82 0.00 1020 128 1148 9.82 0.08

arbiter 11839 87 22011 87 11839 10176 22015 391 0.01 11839 10176 22015 391 0.04

bar 3141 12 3901 12 3425 952 4377 -12.20 0.00 3901 0 3901 0.00 0.01

cavle 662 16 840 16 663 128 791 5.83 0.00 677 100 777 7.50 0.00

ctrl 108 8 147 8 108 26 134 8.84 0.00 114 14 128 1293 0.00
dec 304 3 768 3 768 0 768 0.00 0.00 768 0 768 0.00 0.00

div 40772 4361 79413 4365 41087 12126 53213 3299 0.04 41131 12038 53169 33.05 1.72

hyp 211330 24794 332744 24817 211458 45199 256657 22.87 0.20 212237 43641 255878 23.10 41.01

i2c 1162 15 1530 15 1162 264 1426 6.80 0.00 1171 247 1418 7.32 0.01

int2float 214 15 251 15 214 23 237 558 0.00 216 19 235 6.37 0.00

log2 29370 376 56617 376 29893 15018 44911 20.68 0.03 29857 15045 44902 20.69 1.08

max 2834 204 4157 206 3094 997 4091 1.59 0.00 3096 993 4089 1.64 0.09

mem_ctrl 45614 110 63788 110 45662 15326 60988 439 0.04 46140 14642 60782 4.71 2.18

multiplier 24556 262 31930 262 24567 7011 31578 1.10 0.02 24618 6909 31527 126 0.90

priority 676 203 795 203 676 59 735 7.55 0.00 676 59 735 755 0.05

router 177 19 222 19 177 8 185 16.67 0.00 177 8 185 16.67 0.00

sin 5039 177 10329 178 5415 2747 8162 2098 0.01 5431 2677 8108 21.50 0.13

sqrt 19437 4968 32141 5449 20152 9432 29584 796 0.02 20152 9432 29584 796 0.65

square 16623 248 27556 248 16625 1533 18158 34.11 0.01 16720 1343 18063 34.45 1.44

voter 9756 57 13158 58 9810 1185 10995 16.44 0.01 9810 1185 10995 16.44 0.06

sixteen 11976864 99 24461292 99 11976864 9510308 21487172 12.16 23.61 12084231 9443891 21528122 11.99 527.31

twenty 15317374 86 31481612 86 15317374 12493285 27810659 11.66 29.84 15460597 12411371 27871968 11.47 520.78

twentythree 17168790 94 35358029 94 17168790 14056097 31224887 11.69 32.97 17316727 13968865 31285592 11.52 655.45

Average 10.93 11.82

REFERENCES [12] H.-T. Zhang and J.-H. R. Jiang, “Sfo: A scalable approach to fanout-
bounded logic synthesis for emerging technologies,” in 2020 57th

[1] R. Murgai, “On the global fanout optimization problem,” in /999 ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1-6.
IEEE/ACM International Conference on Computer-Aided Design. Digest [13] N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adiabatic
of Technical Papers (Cat. No.99CH37051), 1999, pp. 511-515. quantum flux parametron as an ultra-low-power logic device,” Supercon-

[2] A. Srivastava, R. Kastner, and M. Sarrafzadeh, “Timing driven gate du- ductor Science and Technology, vol. 26, no. 3, p. 035010, 2013.
plication: complexity issues and algorithms,” in IEEE/ACM International [14] A. Mishchenko, R. Brayton, S. Jang, and V. Kravets, “Delay opti-
Conference on Computer Aided Design. ICCAD - 2000. IEEE/ACM mization using sop balancing,” in Proceedings of the International
Digest of Technical Papers (Cat. No.0OCH37140), 2000, pp. 447-450. Conference on Computer-Aided Design, ser. ICCAD ’11. IEEE Press,

[3] D. Baneres, J. Cortadella, and M. Kishinevsky, “Layout-aware gate 2011, p. 375-382.
duplication and buffer insertion,” in 2007 Design, Automation Test in [15] D. A. Huffman, “A method for the construction of minimum-redundancy
Europe Conference Exhibition, 2007, pp. 1-6. codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098-1101, 1952.

[4] Z. Li, D. A. Papa, C. J. Alpert, S. Hu, W. Shi, C. Sze, and Y. Zhou, [16] M. Golumbic, “Combinatorial merging,” IEEE Transactions on Com-
“Ultra-fast interconnect driven cell cloning for minimizing critical puters, vol. 25, no. 11, pp. 1164-1167, nov 1976.
path delay,” in Proceedings of the 19th International Symposium on [17] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
Physical Design, ser. ISPD *10. New York, NY, USA: Association verification tool,” in Computer Aided Verification, T. Touili, B. Cook,
for Computing Machinery, 2010, p. 75-82. [Online]. Available: and P. Jackson, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
https://doi.org/10.1145/1735023.1735047 2010, pp. 24-40.

[5] D. A. Papa and I. L. Markov, “Physically-driven logic restructuring,” [18] M. Socken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
in Multi-Objective Optimization in Physical Synthesis of Integrated F. Mozafari, and G. De Micheli, “The EPFL logic synthesis libraries,”
Circuits. Springer, 2013, pp. 83-103. Nov. 2019, arXiv:1805.05121v2.

[6] J.-L. Tsai, L. Zhang, and C. C.-P. Chen, “Statistical timing analy- [19] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-
sis driven post-silicon-tunable clock-tree synthesis,” in ICCAD-2005. parametron cell library adopting minimalist design,” Journal of Applied
IEEE/ACM International Conference on Computer-Aided Design, 2005., Physics, vol. 117, no. 17, p. 173912, 2015.

2005, pp. 575-581. [20] R. Cai, O. Chen, A. Ren, N. Liu, N. Yoshikawa, and Y. Wang, “A buffer

[7] N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adiabatic and splitter insertion framework for adiabatic quantum-flux-parametron
quantum flux parametron as an ultra-low-power logic device,” Supercon- superconducting circuits,” in 2019 IEEE 37th International Conference
ductor Science and Technology, vol. 26, no. 3, p. 035010, 2013. on Computer Design (ICCD). 1EEE, 2019, pp. 429-436.

[8] A. L. Braun and D. C. Harms, “RQL majority gates, and gates, and or ~ [21] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
gates,” Sep. 25 2018, US Patent 10,084,454. 2022. [Online]. Available: https://www.gurobi.com

[9] K.K. Likharev and V. K. Semenov, “RSFQ logic/memory family: anew [22] L. Amard, P.-E. Gaillardon, and G. De Micheli, in The EPFL
josephson-junction technology for sub-terahertz-clock-frequency digital Combinational Benchmark Suite, 2015. [Online]. Available: |http:
systems,” IEEE Transactions on Applied Superconductivity, vol. 1, no. 1, Jlinfoscience.epfl.ch/record/207551
pp. 3-28, 1991. [23] C.-Y. Huang, Y.-C. Chang, M.-J. Tsai, and T.-Y. Ho, “An optimal

[10]

(1]

V. Calayir, D. E. Nikonov, S. Manipatruni, and I. A. Young, “Static
and clocked spintronic circuit design and simulation with performance
analysis relative to cmos,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 61, no. 2, pp. 393-406, 2014.

H. J. Hoover, M. M. Klawe, and N. J. Pippenger, “Bounding fan-out
in logical networks,” Journal of the ACM (JACM), vol. 31, no. 1, pp.
13-18, 1984.

87

algorithm for splitter and buffer insertion in adiabatic quantum-flux-
parametron circuits,” in 2021 IEEE/ACM International Conference On
Computer Aided Design (ICCAD). 1EEE Press, 2021, p. 1-8. [Online].
Available: https://doi.org/10.1109/ICCADS51958.2021.9643456

