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Abstract
Adiabatic quantum-flux parametron (AQFP) is an energy-efficient

superconducting technology. Buffer and splitter (B/S) cells must

be inserted to an AQFP circuit to meet the technology-imposed

constraints on path balancing and fanout branching. These cells

account for a significant amount of the circuit’s area and delay. In

this paper, we identify that B/S insertion is a scheduling problem,

and propose (a) a linear-time algorithm for locally optimal B/S

insertion subject to a given schedule; (b) an SMT formulation to

find the global optimum; and (c) an efficient heuristic for global

B/S optimization. Experimental results show a reduction of 4% on

the B/S cost and 124× speed-up compared to the state-of-the-art

algorithm, and capability to scale to a magnitude larger benchmarks.
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1 Introduction
Superconducting electronics is an emerging domain arising from

the demand for high performance computation. It gains increas-

ing interests from both academia and industry because the high

switching speed of Josephson junctions empowers superconductor-

based circuits to push their clock frequencies beyond the limit of

CMOS-based circuits. [15] Among various superconducting logic

families, the adiabatic quantum-flux parametron (AQFP) [19] is a

technology featuring, in addition to high computation speed, zero

static energy consumption and very small switching energy dissi-

pation. Two of the challenges in AQFP circuit design come from

the path-balancing and fanout-branching requirements which are

not needed in traditional CMOS logic circuits.

Path-balancing: The AQFP gates are AC-biased. Each AQFP gate

receives an alternating excitation current to periodically release its

output signal and reset its state. All AQFP clocking schemes [17, 18]

require that the input signals of a logic gate be released at the

previous clocking phase. In other words, all data paths must be of

the same length. Whereas shortening longer paths is not always

possible, buffers need to be inserted to delay shorter paths.

Fanout-branching: In the AQFP technology, logic 0 and 1 are

represented with different current directions. As the output current

of an AQFP gate is limited, it has to be amplified by a splitter before

branching into multiple fanouts. AQFP splitters are also clocked.

As the research at the physical level rapidly develops and the

fabrication capability grows for larger and more complex circuits,

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

DAC ’22, July 10–14, 2022, San Francisco, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9142-9/22/07.

https://doi.org/10.1145/3489517.3530661

design automation tools specialized to consider buffer and split-

ter (B/S) costs are in need. In AQFP circuits, B/S often make up

for about half of the area and delay costs, even after optimiza-

tion [2, 5, 6, 8, 10, 22]. The path-balancing problem has also been re-

searched for another superconducting technology, the rapid single-

flux quantum (RSFQ), where efficient algorithms have been de-

veloped [12, 13]. However, the splitters in RSFQ are not clocked

and not involved in path balancing, whereas splitters in AQFP are.

Having to consider the path-balancing and fanout-branching con-

straints simultaneously makes the problem much harder in AQFP.

Whereas some previous works try to consider B/S cost in logic

optimization [10, 22], we focus on the problem of B/S insertion

without logic transformation, such that (1) our approach can be

applied after any existing logic synthesis algorithm; (2) the effect of

logic synthesis and B/S insertion can be separated and the impact of

the constraints can be studied; and (3) the problem is simplified and

its optimality can be analyzed. While locally-optimal B/S insertion

for a single net has been tackled in [8], a roadmap towards global

optimality is still lacking.

In this paper, we observe that B/S insertion for AQFP is a schedul-

ing [9] problem. A linear-time algorithm relating a given schedule

(depth assignment to logic gates) to the minimum possible num-

ber of B/S needed to legalize the circuit is proposed. On the one

hand, global B/S minimization is formulated as an optimization

modulo linear integer arithmetic problem, which can be solved by

a satisfiability modulo theory (SMT) [3] solver. On the other hand,

an efficient heuristic based on moving chunks (groups of gates) is

developed. Experimental results show that, when comparing to the

state-of-the-art B/S insertion algorithm [8], our heuristic not only

reduces the number of inserted B/S by 4% on average, but also pro-

vides a drastic 124× speed up. Moreover, by decoupling scheduling

and B/S insertion, our approach scales a magnitude higher than [8]

in circuit size, depth, and maximum fanout size.

2 Background
2.1 Adiabatic Quantum-Flux Parametron
The adiabatic quantum-flux parametron (AQFP) is an emerging

superconducting technology shown to achieve promising energy

efficiency. [19] The basic circuit components in AQFP are the buffer

cell and the branch cell. A majority-3 logic gate can be constructed

by combining three buffer cells with a 3-to-1 branch cell, from

which other logic gates, such as the AND gate and the OR gate,

can be built with constant cells (biased buffer cells). Input negation

of logic gates is realized using a negative mutual inductance and

is of no extra cost. [20] The commonly-used cost metric of AQFP

circuits is the Josephson junction (JJ) count. A buffer costs 2 JJs, a

branch cell is of no JJ cost, and a logic gate based on majority-3

costs 6 JJs. [20]

Logic gates in an AQFP circuit need to be activated and deac-

tivated periodically by an excitation current. [17] In other words,

every gate in an AQFP circuit is clocked, and all input signals have

to arrive at the same clock cycle. To ensure this, shorter data paths

need to be delayed with clocked buffers. Moreover, the output sig-

nal of AQFP logic gates cannot be directly branched to feed into
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multiple fanouts. Instead, splitters are placed at the output of multi-

fanout gates to amplify the output current. A splitter cell is com-

posed of a buffer cell and a 1-to-𝑛 branch cell (usually, 2 ≤ 𝑛 ≤ 4)

and is also clocked. As the cost of splitters comes mostly from the

buffer cells, in the remainder of this paper, we do not distinguish

buffers from splitters and will model them with the same abstract

data structure.

2.2 Terminology
A (logic) network is a directed acyclic graph defined by a pair (𝑉 , 𝐸)
of a set 𝑉 of nodes and a set 𝐸 of directed edges. The node set

𝑉 = 𝐼∪𝑂∪𝐺 is disjointly composed of a set 𝐼 of primary inputs (PIs),

a set𝑂 of primary outputs (POs), and a set𝐺 of (logic) gates chosen

from a library. In this paper, we assume that an AQFP-compatible

gate library (e.g., composed of AND2, OR2, MAJ3 with optional

input negation) is used. Each PI has in-degree 0 and unbounded

out-degree, whereas each PO has in-degree 1 and out-degree 0. The

out-degree of each gate is unbounded and the in-degree is a fixed

number depending on the type of the gate. For any gate 𝑔 ∈ 𝐺 , the

fanins of 𝑔, denoted as FI(𝑔), is the set of gates and PIs connected

to 𝑔 with an incoming edge. Similarly, the fanouts of 𝑔, denoted as

FO(𝑔), is the set of gates and POs connected to 𝑔 with an outgoing

edge. Fanouts are similarly defined for PIs.

Amapped network 𝑁 ′ is a networkwhose node set𝑉 ′ is extended
with a set 𝐵 of buffers. A buffer is a node with in-degree 1. In a

mapped network, the definition of the fanouts of a gate is modified

by ignoring any intermediate buffers, i.e., a path from a gate 𝑔 to

one of its fanouts 𝑔𝑜 ∈ FO(𝑔) ⊂ (𝐺 ∪𝑂) may include any number

of buffers in 𝐵, but never another gate. The definition of fanins is

modified similarly. The fanout tree of a gate 𝑔, denoted by FOT(𝑔),
is the set of buffers between 𝑔 and any gate or PO in FO(𝑔). Fanout
trees are also defined for PIs.

A schedule of a network is a function 𝑑 : 𝑉 → Z≥0 that assigns
a non-negative integer 𝑑 (𝑛) to each node 𝑛 ∈ 𝑉 , called the depth

of 𝑛. The depth of a network 𝑁 = (𝑉 = 𝐼 ∪ 𝑂 ∪ 𝐺, 𝐸) is defined
as 𝑑 (𝑁 ) = max𝑜∈𝑂 𝑑 (𝑜). The relative depth between a PI or a gate

𝑛 ∈ (𝐼 ∪𝐺) and one of its fanouts 𝑛𝑜 ∈ FO(𝑛) ⊂ (𝐺 ∪𝑂) is denoted
and defined as rd (𝑛, 𝑛𝑜 ) = 𝑑 (𝑛𝑜 ) − 𝑑 (𝑛).

2.3 Technology Assumptions
To fulfill the needs in the AQFP technology for fanout-branching

and path-balancing, we define the following two properties subject

to the splitting capacities 𝑠𝑖 = 1, 𝑠𝑔 = 1 and 𝑠𝑏 ≥ 1 of PIs, gates

and buffers, respectively. Given a mapped network 𝑁 ′ = (𝑉 ′ =
𝐼 ∪𝑂 ∪𝐺 ∪ 𝐵, 𝐸 ′) and a schedule 𝑑 ,

1. 𝑁 ′ is path-balanced if

∀𝑛1, 𝑛2 ∈ 𝑉 ′ : (𝑛1, 𝑛2) ∈ 𝐸 ′ ⇒ 𝑑 (𝑛1) = 𝑑 (𝑛2) − 1, (1)

∀𝑖 ∈ 𝐼 : 𝑑 (𝑖) = 0, and (2)

∀𝑜 ∈ 𝑂 : 𝑑 (𝑜) = 𝑑 (𝑁 ′) . (3)

2. 𝑁 ′ is properly-branched if every PI has an out-degree no larger

than 𝑠𝑖 = 1, every gate has an out-degree no larger than 𝑠𝑔 = 1,

and every buffer has an out-degree no larger than 𝑠𝑏 .

A schedule 𝑑 for an (unmapped) network 𝑁 is said to be legal if

a path-balanced and properly-branched mapped network 𝑁 ′ can
be extended from 𝑁 and 𝑑 .

Logic networks defined in Section 2.2 model the combinational

parts of digital circuits. In practice, PIs of a network are usually

provided by the register outputs of the previous sequential stage

and POs are connected to the register inputs of the next stage. As

different implementations of AQFP registers are still rapidly being

developed [14], different assumptions on whether PIs and POs need

to be balanced or branched may arise.

Path-balancing of PIs andPOs. It is possible to design registers
that can hold and output their values at every clock cycle [14]. In

this case, the PI nodes in our model can be placed at any depth,

i.e., condition 2 is removed. Similarly, if the PI values are always

available and stable until the next register update, shorter paths

stabilize to the same result in the later cycles when longer paths are

still computing. In this case, shorter paths do not have to be aligned

with the longest path (the critical path) [14]. In other words, the

POs in our model are no longer limited to be placed at the same

depth, i.e., condition 3 is removed.

Branching of PIs. When a register drives multiple outputs, we

may or may not need to insert splitters to ensure a large-enough

current, depending on the physical implementation of the register.

If the registers are capable of producing large current, 𝑠𝑖 can be set

to infinity. Otherwise, it is also possible to duplicate the frequently-

used PIs in the register file to avoid deep splitter trees, or to design

special large-capacity buffers having a higher 𝑠𝑏 value and use them

for PIs with many fanouts.

Branching and inversion of POs. If a gate output feeds into
multiple registers, then splitters are always needed. If the negated

output of a majority gate is required by the next sequential stage,

we can push the output inversion to the gate’s inputs because the

majority function is self-dual [11] and input negation is for free in

AQFP. However, if a gate output is needed by the next stage in both

negated and non-negated forms, then we not only need a splitter,

but also an additional NOT gate made of an input-negated buffer.

2.4 Problem Formulation
In this paper, we focus on the problem of AQFP B/S insertion af-

ter logic synthesis without changing the structure of the original

network, formulated as follows:

Given a network 𝑁 = (𝑉 = 𝐼 ∪𝑂 ∪𝐺, 𝐸) and the value of the

parameter 𝑠𝑏 , find a mapped network 𝑁 ′ = (𝑉 ′ = 𝐼 ∪𝑂 ∪𝐺 ∪𝐵, 𝐸 ′),
such that:

1. 𝑁 ′ is path-balanced and properly-branched.

2. For all gates 𝑔 ∈ 𝐺 , FO(𝑔) and FI(𝑔) remain the same in 𝑁 ′

as in 𝑁 .

3. |𝑉 ′ | is minimized. Since 𝑉 ′ = 𝑉 ∪ 𝐵, it is equivalent to |𝐵 |
being minimized.

We call such 𝑁 ′ a minimum mapped network for 𝑁 .

3 Locally-Optimal Buffer Insertion
In this section, we will explain how the problem formulated in Sec-

tion 2.4 can be approached, starting from the following observation.

Claim 1. Given an unmapped network, finding a minimum mapped

network is equivalent to finding an optimum, legal schedule.

To show why Claim 1 is true, we will first introduce the no-

tion of irredundant mapped network in Definition 2 and formulate

Proposition 3 to show that the buffer set in an irredundant mapped

network can be decomposed into fanout trees of each gate. Then,

we will present Algorithm 1 to show how the irredundant fanout

tree of a gate 𝑔 can be constructed given the relative depths of its

fanouts. Thus, once a schedule is given, the locally optimal fanout

trees are determined, i.e., the size of the mapped network (Claim 1).

Definition 2. A mapped network is said to be irredundant if the

following two conditions hold.

1. There is no dangling buffer, i.e., every buffer has at least one out-

going edge.

446



Beyond Local Optimality of Buffer and Splitter Insertion for AQFP Circuits DAC ’22, July 10–14, 2022, San Francisco, CA, USA

2. There does not exist any pair of two buffers whose incoming edges

are connected from the same node and both of them have out-

degrees smaller than 𝑠𝑏 .

Proposition 3. In any irredundant mapped network with PI set 𝐼 ,

gate set 𝐺 , and buffer set 𝐵,

𝐵 =
⋃
𝑔∈𝐺

FOT(𝑔) ∪
⋃
𝑖∈𝐼

FOT(𝑖) .

Proof. By definition, a buffer has exactly one incoming edge. The

adjacent node connected to a buffer with its incoming edge is either

another buffer in 𝐵, a gate in 𝐺 , or an PI in 𝐼 because POs have

no outgoing edge. Going from a buffer 𝑏 in the opposite direction

of the edges and continue tracing until a gate 𝑔 or a PI 𝑖 is met,

we have 𝑏 ∈ FOT(𝑔) (or 𝑏 ∈ FOT(𝑖)) because there is no dangling

buffer tree (rule 1 for irredundant networks). Hence, for each buffer

𝑏 ∈ 𝐵, there is either a gate 𝑔 ∈ 𝐺 such that 𝑏 ∈ FOT(𝑔), or there is
a PI 𝑖 ∈ 𝐼 such that 𝑏 ∈ FOT(𝑖). Moreover, this gate or PI is unique

for each 𝑏. For each gate 𝑔 ∈ 𝐺 and for each PI 𝑖 ∈ 𝐼 , FOT(𝑔) ⊆ 𝐵

and FOT(𝑖) ⊆ 𝐵 by definition. Thus, the set of non-empty fanout

trees is a partition of 𝐵.

Input: A gate 𝑔 and a schedule 𝑑

Output: The size |FOT(𝑔) | of the fanout tree of 𝑔
1 𝑙max ← max

𝑔𝑜 ∈FO(𝑔)
rd (𝑔,𝑔𝑜 )

2 count ← 0

3 edges ← |{𝑔𝑜 ∈ FO(𝑔) : rd (𝑔,𝑔𝑜 ) = 𝑙max } |
4 for 𝑙 = 𝑙max − 1 downto 1 do
5 buffers ← ⌈ edges

𝑠𝑏
⌉

6 count ← count + buffers
7 edges ← buffers + | {𝑔𝑜 ∈ FO(𝑔) : rd (𝑔,𝑔𝑜 ) = 𝑙 } |
8 assert edges = 1

9 return count

Algorithm 1: Irredundant fanout tree construction given rela-

tive depths of fanouts.

For any gate 𝑔, given relative depths rd (𝑔,𝑔𝑜 ) of its fanouts

𝑔𝑜 ∈ FO(𝑔), the size of its fanout tree |𝐹𝑂𝑇 (𝑔) | can be computed

with Algorithm 1. The algorithm iterates over all possible values

of relative depth (variable 𝑙) and counts the number of buffers

(variable buffers) needed at each 𝑙 . The total number of buffers is

accumulated in variable count (line 6). Variable edges keeps the

number of edges ending in some node of relative depth 𝑙 , which is

the number of buffers and fanouts at 𝑙 (line 7). Then, the number

of buffers needed at 𝑙 − 1 is computed from the number of edges

starting at 𝑙 − 1 (i.e., the number of edges ending at 𝑙), divided by

the splitting capacity 𝑠𝑏 and rounded up (line 5). This algorithm

works also for constructing the fanout tree of a given PI. Figure 1

illustrates an example execution of Algorithm 1, where circles are

gates and squares are buffers, and 𝑠𝑏 = 2. The concerned gate 𝑔 has

one fanout of relative depth 2 and three fanouts of relative depth 5.

The total number of buffers in the fanout tree is 5.

Algorithm 1 runs in linear time with respect to |FO(𝑔) |. The
constructed fanout tree is irredundant because only the minimum

number of buffers is inserted at each relative depth 𝑙 based on

the number of outgoing edges needed. The retiming optimization

proposed in [5], which pushes buffers from the outputs of a splitter

to its input, is subsumed in the construction of irredundant fanout

trees.

Algorithm 1 also verifies whether it is possible to build a properly-

branched network with the given schedule. In line 8, the assertion

makes sure that the gate 𝑔 has only one outgoing edge. Running

𝑔

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑙 = 5

buffers = ⌈ 2
2
⌉ = 1,

buffers = ⌈ 1
2
⌉ = 1,

buffers = ⌈ 2
2
⌉ = 1,

buffers = ⌈ 3
2
⌉ = 2,

edges = 1

edges = 2

edges = 1

edges = 2

edges = 3

Figure 1. Example sub-network to illustrate Algorithm 1.

the algorithm for all PIs and gates in a depth-assigned network,

by Proposition 3, an irredundant mapped network is derived. The

mapped network is properly-branched if the assertion in line 8

never fails. It is also path-balanced as each node is connected to

a node at relative depth 1. An irredundant network is locally op-

timal with respect to the given schedule. Thus, we consider only

irredundant networks in the remainder of this paper.

4 Solving for Global Optimum
In this section, we formulate the global B/S insertion problem as

a satisfiability modulo theory (SMT) [3] problem using linear inte-

ger arithmetic as the underlying theory. The primary variables of

the instance are integers corresponding to the depth of each gate.

Auxiliary variables are used to compute the total number of B/S

using Algorithm 1 and Proposition 3. Four types of constraints are

encoded:

1. Bounds:An upper bound on the network depth is assumed. Lower

and upper bounds on the possible depths of each gate can be

obtained using as-soon-as-possible scheduling (ASAP) and as-late-

as-possible scheduling (ALAP), respectively.

2. Sequencing: The directed edges are encoded by asserting ∀𝑔 ∈
𝐺,∀𝑔𝑜 ∈ FO(𝑔) : 𝑑 (𝑔) < 𝑑 (𝑔𝑜 ).

3. B/S counting: The number of buffers at the fanout of each gate

can be counted by unrolling the for-loop in Algorithm 1. The

maximum possible relative depth is used as 𝑙max, and lines 5 and

7 are encoded 𝑙max−1 times using 2(𝑙max−1) auxiliary variables.
Line 5 is encoded by

buffers =
⌈ edges

𝑠𝑏

⌉
⇐⇒ 𝑠𝑏 (buffers − 1) < edges ≤ 𝑠𝑏 · buffers,

where 𝑠𝑏 is a constant. Line 7 is encoded with the help of the

if-then-else (ITE) operator. Finally, all the buffers variables are

summed up.

4. Legality: The legality of 𝑑 is ensured by assuming the assertion

in line 8 of Algorithm 1.

To find the global minimum, the satisfiability problem is ex-

tended to an optimization problem, either by using an optimization

modulo theory solver [4], or by imposing an upper bound on the

B/S count and iteratively decreasing the bound until the problem

becomes UNSAT. The problem has an exponential search space and

optimization modulo theory is NP-hard, thus this formulation may

be only practical for small networks. Nevertheless, it provides the

possibility to understand how good existing and future-developed

heuristics are, and can possibly be used to generate databases of

small optimum circuits.

5 Heuristic Global Optimization
Following Claim 1, in this section, we attempt to find a good sched-

ule to minimize |𝐵 | heuristically. During the entire process, we
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always ensure that the network is legal and count the buffers irre-

dundantly using Algorithm 1.

First, an initial schedule can be obtained by ASAP. To ensure

that the network can be path-balanced and properly-branched after

mapping, enough depths for a balanced fanout tree are reserved

at the output of each multi-fanout gate, which is calculated as

⌈log( |FO(𝑔) |)/log(𝑠𝑏 )⌉. Then, optionally, ALAP can be applied sim-

ilarly using an upper bound 𝑑 (𝑁 ) obtained by ASAP. Depending

on the technology assumptions made, ASAP and ALAP can lead

to big differences in buffer count. For example, when PIs need to

be balanced but POs need not, ASAP usually lead to better results,

whereas in the opposite case ALAP often perform better.

Next, we try tomove gates up or down to reduce the total number

of buffers. Moving a gate 𝑔 up (down) by 𝑙 levels means that 𝑑 (𝑔)
is increased (resp. decreased) by 𝑙 while the depths of the other

gates remain the same. A movement is legal if the network remains

legal after the movement. For example, if a gate 𝑔 has a fanout 𝑔𝑜
of relative depth rd (𝑔,𝑔𝑜 ) = 1, then moving 𝑔 up alone is not legal.

Similarly, if a gate 𝑔 has more than one fanout, then moving any of

its fanouts down to 𝑑 (𝑔) + 1 is not legal because there must be a

splitter occupying the only outgoing edge of 𝑔 at 𝑑 (𝑔) + 1.
We observe that sometimes it is impossible to legally move a

single gate, or that moving it alone does not reduce the total buffer

count. However, rearranging some neighboring gates altogether

might eventually lead to further reduction. Thus, we propose to

identify groups of connected gates and move them together as

chunks.

A pair of gates (𝑔,𝑔𝑜 ) : 𝑔𝑜 ∈ FO(𝑔) are said to be close if either

one of the following conditions holds:

1. rd (𝑔,𝑔𝑜 ) = 1, implying that 𝑔𝑜 is the only fanout of 𝑔.

2. |FO(𝑔) | > 1 and rd (𝑔,𝑔𝑜 ) = 2.

If a gate 𝑔 and its fanout 𝑔𝑜 are not close, then there is flexibility

at the output of 𝑔 and at the input of 𝑔𝑜 . A chunk is a set 𝐶 of

closely-connected gates. Seen as a group altogether, it has multiple

incoming and outgoing edges, called the input interfaces (IIs) and

output interfaces (OIs), respectively. An interface is a pair (𝑔𝑐 , 𝑔𝑒 )
of a gate in the chunk (𝑔𝑐 ∈ 𝐶) and an external gate (𝑔𝑒 ∉ 𝐶), where

either 𝑔𝑒 ∈ FI(𝑔𝑐 ) (for an II) or 𝑔𝑒 ∈ FO(𝑔𝑐 ) (for an OI).

Input: An initial gate 𝑔0
Output: A chunk𝐶 and its interfaces𝑇

1 𝐶 ← {𝑔0 }
2 𝐹 ← {(𝑔0, 𝑔) : 𝑔 ∈ FI(𝑔0) ∪ FO(𝑔0) }
3 𝑇 ← ∅
4 while 𝐹 ≠ ∅ do
5 (𝑔𝑐 , 𝑔𝑒 ) ← pop(𝐹 )

6 if 𝑔𝑒 ∈ 𝐶 then continue
7 if 𝑔𝑐 and 𝑔𝑒 are close then
8 𝐶 ←𝐶 ∪ 𝑔𝑒

9 𝐹 ← 𝐹 ∪ {(𝑔𝑒 , 𝑔) : 𝑔 ∈ FI(𝑔𝑒 ) ∪ FO(𝑔𝑒 ) }
10 else
11 𝑇 ←𝑇 ∪ {(𝑔𝑐 , 𝑔𝑒 ) }
12 return𝐶,𝑇

Algorithm 2: Chunk construction.

Algorithm 2 illustrates how a chunk can be constructed. Starting

from an initial gate 𝑔0, a chunk is formed by exploring towards

its fanins and fanouts and adding gates into the chunk if they are

close (line 8), or recording an input or output interface if there is

flexibility (line 11). When a new gate is added into the chunk, its

fanins and fanouts are also explored (line 9).

A chunk constructed with Algorithm 2 has flexibilities at all

of its interfaces. Thus, even though individual gates in the chunk

cannot be moved legally, a chunk may be moved as a whole. Fig-

ure 2 shows an example chunk. Starting from the initial gate 𝑔0,

II

slack=1

BII

slack=1

BII

slack=1

BII,

slack=2
OI

OI

𝑔0 𝑔4

𝑔1 𝑔3

𝑔2

Figure 2. A chunk to be moved down.

closely-connected gates 𝑔1, 𝑔2, 𝑔3, 𝑔4 are added into the chunk in

the respective order. The gate 𝑔1, for example, cannot be moved

up nor down legally without moving other gates at the same time.

Also, although the gate 𝑔0 can be legally moved down, moving it

alone increases the total number of buffers.

To see how many levels a chunk can be moved and whether the

movement reduces the total number of buffers, we define the slack

of a chunk and beneficial interfaces as follows.

Moving down: When trying to move a chunk downwards, a slack

is computed at each input interface (𝑔𝑐 , 𝑔𝑒 ) by

slack(𝑔𝑐 , 𝑔𝑒 ) =
{

rd (𝑔𝑒 , 𝑔𝑐 ) − 1, if |FO(𝑔𝑒 ) | = 1

rd (𝑔𝑒 , 𝑔𝑐 ) − 2, otherwise
(4)

Taking the minimum slacks at all IIs, the slack of the chunk is the

maximum number of levels by which we can move the chunk down.

Moreover, (𝑔𝑐 , 𝑔𝑒 ) is said to be a beneficial input interface (BII) if

∀𝑔𝑜 ∈ FO(𝑔𝑒 ), 𝑔𝑜 ≠ 𝑔𝑐 : rd (𝑔𝑒 , 𝑔𝑜 ) < rd (𝑔𝑒 , 𝑔𝑐 ) . (5)

If a chunk has 𝑥 BIIs and 𝑦 OIs with distinct 𝑔𝑐 , moving the chunk

down by 𝑙 levels eliminates 𝑙 · (𝑥 − 𝑦) buffers in total.

Moving up: Similarly but conversely, when trying to move a

chunk upwards, a slack is computed at each output interface (𝑔𝑐 , 𝑔𝑒 )
by

slack(𝑔𝑐 , 𝑔𝑒 ) =
{

rd (𝑔𝑐 , 𝑔𝑒 ) − 1, if |FO(𝑔𝑐 ) | = 1

rd (𝑔𝑐 , 𝑔𝑒 ) − 2, otherwise
(6)

The slack of the chunk is the minimum slack at all of its OIs. Output

interfaces are always beneficial. If a chunk has 𝑥 OIs with distinct

𝑔𝑐 and 𝑦 IIs, moving the chunk up by 𝑙 levels eliminates 𝑙 · (𝑥 − 𝑦)
buffers in total.

Overall, our heuristic algorithm first chooses a better initial

schedule among ASAP and ALAP. Then, in each iteration, it con-

structs a chunk using Algorithm 2 for each node which is not yet

in a chunk and tries to move the chunk up or down, applying the

movement only when it is legal and beneficial. Depending on the

desired optimization effort, no iteration at all, one iteration, or many

iterations until no more beneficial movement is found, of chunked

movement is executed. Finally, B/S are inserted using Algorithm 1

and the resulting mapped circuit is written out and verified.

6 Experimental Results
The proposed algorithms are implemented in C++ as part of the

EPFL logic synthesis library mockturtle
1
[16]. Experiments were

conducted on a 1.6 GHz dual-core Intel i5 CPU with 8 GB RAM. We

have verified that our mapping results fulfill the path-balancing and

1
Available: https://github.com/lsils/mockturtle
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Table 1. Comparison against state of the art.

Initial circuit State of the art [8] Our heuristic Global optimum

Bench. #gates max |FO| 𝑑 (𝑁 ) #B/S #JJs 𝑑 (𝑁 ′) Time (s) #B/S #JJs 𝑑 (𝑁 ′) Time (s) #B/S #JJs 𝑑 (𝑁 ′)
adder1 7 2 4 16 74 8 0.13 16 74 8 0.00 16 74 8

adder8 77 3 17 371 1204 33 0.16 371 1204 33 0.00 371 1204 33

mult8 439 9 35 1833 6300 70 0.47 1869 6372 71 0.00 - - -

counter16 29 4 9 82 338 17 0.18 65 304 17 0.00 65 304 17

counter32 82 4 13 189 912 23 0.18 155 802 23 0.00 154 800 23

counter64 195 4 17 419 2134 30 0.23 352 1874 30 0.00 347 1864 30

counter128 428 4 22 895 4652 38 0.56 760 4088 38 0.00 747 4062 38

c17 6 2 3 12 60 5 0.15 12 60 5 0.00 12 60 5

c432 121 10 26 837 2406 37 0.34 874 2474 38 0.00 - - -

c499 387 8 18 1251 4858 30 0.38 1275 4872 31 0.00 - - -

c880 306 9 27 1723 5296 40 0.45 1703 5242 41 0.01 - - -

c1355 389 9 18 1216 4784 29 0.40 1290 4914 31 0.00 - - -

c1908 289 14 21 1505 4810 35 0.35 1298 4330 35 0.01 - - -

c2670 368 32 21 2055 7392 27 0.71 2132 6472 30 0.02 - - -

c3540 794 38 32 2395 9610 53 1.15 2266 9296 55 0.10 - - -

c5315 1302 41 26 6447 20854 41 4.00 6026 19864 42 0.12 - - -

c6288 1870 17 89 9297 29814 179 5.70 9893 31006 180 0.12 - - -

c7552 1394 170 33 8342 25140 59 85.27 8759 25882 66 0.12 - - -

sorter32 480 2 15 480 3840 30 0.35 480 3840 30 0.00 480 3840 30

sorter48 880 3 20 880 7040 35 0.52 880 7040 35 0.00 880 7040 35

alu32 1513 128 100 17178 43574 170 64.68 14655 38388 171 0.84 - - -

Total 57423 185092 166.36 55131 178398 1.34

Table 2. Evaluation on larger EPFL benchmarks.

Initial circuit ASAP/ALAP One iteration Until convergence

Bench. #gates max |FO| 𝑑 (𝑁 ) #B/S Time (s) #B/S Δ (%) Time (s) #chunks #B/S Δ (%) Time (s) #chunks 𝑑 (𝑁 ′)
div 53225 425 2467 2214406 1.43 2094310 5.42 173.24 14492 2084772 5.85 271.71 8313 4918

hyp 136299 377 8911 8335403 158.61 - - > 300 - - - > 300 - 17910

log2 24419 343 204 157429 0.32 102027 35.19 146.11 8559 98047 37.72 194.92 1619 414

multiplier 19355 194 142 109153 0.20 79658 27.02 6.16 428 79651 27.03 13.21 157 286

sin 4274 81 126 21818 0.03 18098 17.05 2.42 1463 17470 19.93 5.67 515 225

sqrt 21042 186 4933 1751842 5.71 1751745 0.01 5.27 11 1751742 0.01 5.64 4 8191

square 12184 81 126 68029 0.16 61061 10.24 20.18 2433 60552 10.99 42.71 363 256

arbiter 6997 43 59 33398 0.02 31282 6.34 3.70 830 31011 7.15 5.80 125 65

mem_ctrl 42627 763 95 311821 0.09 305714 1.96 57.47 1968 305689 1.97 87.86 786 182

voter 7538 9 54 21431 0.03 18129 15.41 4.71 2105 18044 15.80 5.43 842 99

fanout-branching constraints subject to the technology assump-

tions made and have published the best results of our mapped

circuits for public validation
2
.

6.1 Comparison Against State of the Art
Considering the state-of-the-art B/S insertion algorithms [5, 8],

as [8] has shown to outperform [5], we only compare our pro-

posed method against [8]. We use the same benchmarks
3
and the

same technology assumptions, i.e., both PIs and POs are branched

and balanced, and the splitting capacity of buffers 𝑠𝑏 = 4. Our

heuristic applies chunked movement repeatedly until convergence.

Table 1 shows the number of gates after structural hashing (#gates),

maximum fanout size (max |FO|), depth of the unmapped networks

(𝑑 (𝑁 )), the number of inserted B/S (#B/S)
4
, the total number of JJs in-

cluding those from B/S and those from logic gates (#JJs), the mapped

network depths (𝑑 (𝑁 ′)), and the runtime in seconds (Time)
5
. The

2
Available: https://github.com/lsils/SCE-benchmarks

3
We obtained the benchmarks from the authors of [8]. However, we noticed that

some of the circuits are not structurally hashed, and some redundant inverter cells are

included which should have been integrated as input negations. Thus, there are still

slight differences in our starting points.

4
This information is not provided in [8] and is inferred by subtracting #JJs of the

(unstrashed) initial circuit from #JJs of their mapped circuit and dividing by 2.

5
Values smaller than 0.005 are written as 0.00

global optimum results are listed for some smaller benchmarks
6
.

For five benchmarks (marked in blue), both [8] and our heuristic

obtained the optimum. For the counters, the B/S counts given by

our heuristic are within 2% difference to the optimum, whereas

the B/S counts of [8] are about 20% more. On average, we insert

4% less B/S and reduce JJ count by 3.6%. Moreover, the runtime of

our algorithm is significantly lower than state of the art, giving an

124× speed-up.

6.2 Evaluation on Larger Benchmarks
As many of the benchmarks in Table 1 are small, we use the EPFL

benchmark suite [1] to demonstrate the scalability of our heuris-

tic
7
. As the intrinsic logic gate in AQFP is the majority-3 gate, the

benchmarks are mapped into majority-inverter graphs (MIGs) us-

ing a graph mapper [21]. The assumptions are made the same as

in the previous section (both PIs and POs are branched and bal-

anced, 𝑠𝑏 = 4). Table 2 lists B/S count (#B/S) and total runtime

of scheduling, optimization and B/S insertion (Time) with zero

(ASAP/ALAP), one (One iteration), or many (Until convergence)

iterations of chunked movement. Columns Δ show the reduction

6
We use the Z3 SMT solver extended with optimization objectives [4, 7]. Where no

result is listed in the table, the instances are still being solved on a server at the time

of submission.

7
Due to space limitation, only the 10 largest benchmarks are shown.
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Table 3. Comparison of different technology assumptions.

Branch PIs? Yes No

Balance PIs? Yes No No

Balance POs? Yes No Yes No Yes No

𝑠𝑏 = 3

∑
#B/S 58135 41363 47213 35059 31544 22482∑
𝑑 (𝑁 ′) 1045 1045 1027 1040 1003 1004

𝑠𝑏 = 4

∑
#B/S 55516 39043 45279 33392 29974 21518∑
𝑑 (𝑁 ′) 1012 1012 996 1005 977 977

𝑠𝑏 = 8

∑
#B/S 53047 37120 44160 32635 29023 21237∑
𝑑 (𝑁 ′) 988 988 982 985 963 964

percentage of B/S count comparing to ASAP/ALAP, and columns

#chunks show the number of chunks constructed in the last itera-

tion. For the largest benchmark (hyp), although chunked movement

times out after 300 seconds, a legal B/S insertion can still be ob-

tained using ASAP/ALAP. On average, one iteration of chunked

movement eliminates 13% of B/S. Our heuristic is capable of opti-

mizing (within 5 minutes) large circuits with tens of thousands of

gates, of over 100 in depth, and having maximum fanout sizes of up

to several hundreds, which are a magnitude higher in all metrics

than the largest ones [8] can deal with.

6.3 Impact of Technology Assumptions
As the physical constraints on the technology are ever-changing

and assumptions on the requirements are often unclear, in this sec-

tion, we study the impact of different technology assumptions dis-

cussed in Section 2.3. Table 3 lists the B/S insertion results obtained

by applying our heuristic on the benchmarks used in Section 6.1.

Due to space limitation, only the total number of B/S (

∑
# B/S)

and the total depth (

∑
𝑑 (𝑁 ′)), summed over all benchmarks, are

shown. The three header rows list all the possible combinations

about branching and balancing of PIs and POs. It can be observed

that branching of PIs increase B/S count by about 50% because

PIs often have a large fanout size. Thus, designing high driving-

capacity registers will largely reduce the B/S cost in AQFP. Because

the majority-3 gate uses a 3-to-1 branch cell, which has the same

dimension as the one in an 1-to-3 splitter, there may be benefits in

cell placement to use 1-to-3 splitters instead of 1-to-4. Decreasing 𝑠𝑏
from 4 to 3 increases B/S count for about 5%, whereas the impact of

having high-capacity splitters with 𝑠𝑏 = 8 is smaller. These results

motivate future research on the design of AQFP registers.

7 Conclusion and Discussion
Based on the observation that B/S insertion for AQFP is a scheduling

problem (Claim 1), in this paper, we (a) proposed a linear-time

locally-optimal B/S insertion algorithm subject to a given schedule

(Algorithm 1); (b) formulated the search of the global optimum as

an SMT problem; and (c) designed an efficient heuristic for global

B/S insertion. While previous works focus on local optimality, this

is the first work providing a global view on AQFP B/S insertion.

Although some related works integrate B/S cost in logic opti-

mization, this paper focuses on B/S insertion and can be interleaved

with, or applied after, logic synthesis. The state-of-the-art B/S in-

sertion [8] focuses on an optimal algorithm for inserting B/S for a

single net subject to a complex cost composed of maximum and to-

tal additional delay and number of B/S. Their local insertion allows

increasing the depths of fanout gates (“additional delay”), but tries

to minimize it. As a result, the time complexity of their local inser-

tion is𝑂 (𝑛3 log𝑛), where 𝑛 is the fanout size, and cannot guarantee

global optimality due to the interplay between gates. In contrast,

our local B/S insertion is optimal in terms of B/S count subject to a

given schedule and is of 𝑂 (𝑛) complexity. An initial schedule can

be found in𝑂 (𝑚) time, where𝑚 is the number of gates. Our global

heuristic focuses on refining the schedule by chunked movement,

whose effort is adjustable according to user demands. Thus, our ap-

proach provides a drastic 124× speed-up and is scalable to circuits

of at least one magnitude larger.
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