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1 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
2 Cadence Design Systems, Munich, Germany

Abstract. Don’t-care conditions are flexibilities in logic networks that
can be used to optimize the networks by re-expressing incompletely-
specified Boolean functions. Don’t cares may arise from the internal
structure of the network in the presence of reconvergent paths, or be
given externally from the environment, such as the cascaded next-stage
or previous-stage circuits. Theories on don’t-care computation have been
extensively studied in the 90s, and utilization of internal don’t cares has
become a common practice in modern logic synthesis tools. However, rep-
resentation and consideration of external don’t cares have rarely been
discussed. There is currently no open-source logic synthesis tool capa-
ble of accepting external don’t cares and utilizing them to optimize the
circuit more than what can be achieved without them. In this paper,
we first discuss different possible ways to define and represent external
don’t cares. Identifying the link between logic synthesis and Boolean re-
lations, we use Boolean relations to describe and unify different types of
don’t cares. As the first step in this line of research, we propose to adopt
the simulation-guided paradigm to consider external don’t cares in logic
optimization. Experimental results show that the presence of external
don’t cares indeed enables more optimization opportunities. The paper
concludes by illustrating future directions towards better utilization of
external don’t cares.
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1 Introduction

Logic synthesis, or more specifically, technology-independent logic optimization,
is a step in the VLSI design flow after RTL synthesis and before technology map-
ping, attempting to optimize combinational circuits on technology-independent
representations, such as AND-Inverter Graphs (AIGs). As a bottom line, the pro-
duced result of a logic synthesis algorithm must respect the given functionality
of the circuit. To date, this means that the output circuit should be functionally
equivalent to the original one, and is usually verified by performing combinational
equivalence checking (CEC) [5] on the two circuits. However, this requirement
might be too strong in some cases. Further high-effort optimization can be en-
abled by relaxing the requirement of exact functional equivalence and allowing
flexibilities external to the combinational circuit under optimization.

Don’t cares are flexibilities in logic functions or logic networks where output
values of some (local) functions can be changed without violating the (global)
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specification [3]. Don’t-care conditions may be derived on various scales, from
interconnections of logic gates within a combinational network [4] to interactions
between submodules in a system [12]. Computation and utilization of don’t-care
conditions in combinational logic synthesis have often been formulated using
incompletely-specified functions [2], also known as permissible functions [11].
Don’t cares play a central role in logic synthesis. However, due to the intrinsically
high computational complexity of don’t-care computation, methods to (under-
) approximate them were developed [9, 14, 15]. Nowadays, more powerful and
scalable computation of don’t cares enabled by satisfiability (SAT) solving and
simulation is commonly used, but consideration of don’t cares is still limited to
those within a combinational network [10].

In contrast to internal don’t cares computed within a network, external don’t
cares are flexibilities arising from outside of the combinational network under
optimization, derived from a higher-level perspective of the system. For exam-
ple, cascaded finite state machines may produce don’t-care input sequences for
each other [12]. As another example, sometimes the system is partitioned into
submodules and optimized separately. While their boundaries are intended to
be kept, flexibilities on the input-output relations of individual submodules due
to their interactions are allowed. Considering external don’t cares essentially
changes the problem from optimizing a (completely-specified) Boolean function
into optimizing a Boolean relation. The solution space is enlarged and the prob-
lem complexity is much higher, thus there is currently no open-source logic
synthesis tool that supports taking and utilizing external don’t cares. Neverthe-
less, with the increased computation power affordable nowadays, solving such
optimization problems should be possible on smaller benchmarks. Moreover, in
some applications, users of logic synthesis tools crave to optimize their circuit
as much as possible and are willing to afford higher runtime.

This paper serves as a pioneer towards support of external don’t cares in
logic synthesis. During this journey, we will lay the foundation with mathemat-
ical definitions of don’t-care conditions in general, explore different flavors of
external don’t cares, view the general problem of logic synthesis from a Boolean
relation perspective, and finally take the first step of considering external don’t
cares in logic optimization. We will show with experimental demonstrations that
external don’t cares indeed open up more optimization opportunities that would
have been impossible without them. In the end, we will also point out possible
directions for future research.

2 Background and Terminologies

2.1 Boolean Functions and Boolean Relations

A Boolean variable is a variable taking values in the Boolean domain B =
{0, 1}. The (n-dimensional) Boolean space Bn is an n-ary Cartesian power of
the Boolean domain. An (n-input, single-output, completely-specified) Boolean
function is a function f : Bn → B of n Boolean variables. Multi-output Boolean
functions can be seen as an ordered set of single-output functions.
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A Boolean relation R is a binary relation over two Boolean spaces R ⊆
Bn × Bm, a domain (Bn) and a codomain (Bm). Boolean functions are special
cases of Boolean relations. More specifically, they can be classified into two types:

– Completely-specified Boolean functions are special cases of Boolean relations
where the relations are functional (i.e., an element in the domain maps into
one unique element in the codomain) and total (i.e., every element in the
domain maps into an element in the codomain). When describing Boolean
functions as Boolean relations, an element in the domain, which is a value
assignment to all the function’s input variables, is also called a minterm.

– Incompletely-specified Boolean functions are Boolean functions for which the
output values under some minterms are not specified. In other words, for
some minterm b⃗ ∈ Bn, the output value can be either 0 or 1. In terms of
Boolean relations, we have both (⃗b, 0) ∈ R and (⃗b, 1) ∈ R. Given a non-
functional Boolean relation R ⊆ Bn × Bm, a completely-specified function
f : Bn → Bm is compatible with R if

∀⃗b ∈ Bn, (⃗b, f (⃗b)) ∈ R. (1)

When not explicitly noted, functions in the remaining of this paper refer to
single-output, completely-specified Boolean functions.

2.2 Logic Networks

Logic networks (or simply networks) are technology-independent representations
of digital circuits. A logic network N is defined by a 4-tuple N = (I, V,E,O),
where the two sets (V,E) define a directed acyclic graph. The first set I is the
set of primary inputs (PIs) to the network. Each element in the vertex set V ,
referred to as a node n, models either a logic gate or a PI. Thus, I ⊆ V . Each
element (ni, no, c) in the edge set E ⊆ V × V × B models a wire from node ni

to node no with a complementation tag c ∈ {0 = regular, 1 = complemented}
recording the existence of an inverter on the wire. ni is said to be a fanin of
no and no is said to be a fanout of ni. Finally, each primary output (PO) in O
is a tagged node (n, c) modeling an outgoing wire from a gate or a PI, with or
without an inverter.

Cuts. A cut in a network, defined over a given set R ⊆ V of root nodes, is a
set C of nodes such that any path from a PI to a root includes a node in C. Let
Cuts(R) denote the set of all cuts for the set R,

C ∈ Cuts(R) if ∀i ∈ I, r ∈ R,∀p : i
p
⇝ r, ∃n ∈ C : n ∈ p. (2)

When R contains only one node n, Cuts(R) may be abbreviated as Cuts(n)
and is also referred to as a cut of n:

Cuts(n) ≜ Cuts({n}). (3)
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Conversely, given a set C of nodes, a node n is said to be supported by C if C
is a cut of n. A logic cone between a cut C ∈ Cuts(n) and a node n is the set
of all nodes on any path from a node in C to n. All nodes in the logic cone are
supported by C.

A cut of a network N is a cut where R is the set of nodes referenced by POs.

Cuts(N) ≜ Cuts({n : ∃c, (n, c) ∈ O}). (4)

Given any set R of roots, the identical set C = R is always a cut by definition,
thus such cut is said to be a trivial cut. Also, the set I of PIs is always a cut in
a network for any possible R.

Global function of nodes. Each node n in a network computes a Boolean
function fn : B|I| → B in terms of the PIs, called the node’s global function.
To express the global functions, a Boolean variable xi is associated with each
PI i ∈ I. Let x⃗ = (x1, . . . , x|I|) be the set of all PI variables. By definition,
the function of a PI node i ∈ I is fi(x⃗) = xi. Then, in a topological order,
the functions of all nodes in the network can be computed by composing the
functions of a node’s fanins with the function of the corresponding logic gate.
Finally, the PO functions are computed by taking the function of a PO node
and inverting if the PO is complemented.

Node function in terms of a cut. The function of a node may also be
expressed in terms of a cut supporting it. Given a node n and a cut C ∈ Cuts(n),
the local function fC

n : B|C| → B is the Boolean function derived by associating
a Boolean variable with each node in C and computing the local functions of
each node in the logic cone between C and n in a topological order. The global
functions are a special case of local functions using the PI set I as the cut:

fn ≜ f I
n. (5)

2.3 Don’t-Care Conditions

A don’t care for an incompletely-specified function is a minterm for which the
output value is not specified. In a logic network, although all node functions (in
terms of any cut) are completely specified, for some nodes, there may be some
minterms where the output values of their functions are flexible. In other words,
the function fC

n of a node n in terms of cut C may be modified by changing its
output value under some minterms without affecting the global functions of any
PO. As a consequence, an incompletely-specified function where these minterms
are don’t cares and the output values under the other minterms are the same as
fC
n can be used to re-synthesize the logic cone between C and n. Two types of
internal don’t cares, arising from different reasons, may appear in logic networks:
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Satisfiability don’t cares. Given a cut C ∈ Cuts(R) supporting a set R of
nodes3 and let x⃗ = (x1, . . . , x|C|) be Boolean variables associated with each node

in C, a value assignment b⃗C ∈ B|C| to x⃗ (i.e., a minterm of the local functions fC
n

of any node n ∈ R) is a satisfiability don’t care (SDC) if this value combination
never appears under any PI value assignment:

∄⃗bI ∈ B|I|, (fn(⃗bI) : n ∈ C) = b⃗C . (6)

Observability don’t cares. Given a node n and a cut C ∈ Cuts(n) and
let x⃗ = (x1, . . . , x|C|) be Boolean variables associated with each node in C, a

value assignment b⃗C ∈ B|C| to x⃗ (i.e., a minterm of the local function fC
n ) is an

observability don’t care (ODC) with respect to n if none of the PO functions are

affected by flipping the output value of fC
n under b⃗C :

∀⃗bI ∈ B|I|, (fn(⃗bI) : n ∈ C) = b⃗C =⇒ ∀o ∈ O, f∗
o (⃗bI) = fo(⃗bI), (7)

where f∗
o is the PO function derived by replacing any regular outgoing edge of

n with a complemented one and replacing any complemented outgoing edge of
n with a regular one.

3 Computation of Internal Don’t Cares

Appearance of “don’t care” as a technical term in the literature dates back
to as early as the 80s [3]. Pioneering research attempted to derive don’t cares
in multi-level networks and use them in two-level minimization to resynthesize
part of the network [2]. Theories on don’t-care computation were formulated
based on symbolic computations propagated through the network [4, 11]. Until
the late 90s, computation of don’t cares had been implemented using Binary
Decision Diagrams (BDDs). Due to scalability concerns, approximated compu-
tation was adopted [9], and the compatibility of ODCs was studied to avoid
re-computation of ODCs in the network once an ODC is used to change the
function of a node [14]. Since the early 00s, computation tools of don’t cares
have moved from BDDs to SAT, enabling using complete, instead of approxi-
mate, don’t cares while maintaining scalability [10].

In many modern logic synthesis tools, internal don’t cares are derived locally
(under-approximated) using bit-parallel circuit simulation:

– To compute the SDCs for a given set C of nodes, we first find another
cut C0 ∈ Cuts(C) supporting C. Then, we perform circuit simulation by
assigning projection functions to nodes in C0 and obtain the local functions of
nodes in C in terms of C0, represented as truth tables. Finally, by analyzing

3 The supported set R does not involve in the definition of SDCs, so it can, in theory,
be empty and C is not necessarily a cut. Although one may define and compute
SDCs for any set C of nodes, in practice, SDCs are only meaningful when C is
indeed a cut, as SDCs are used to optimize nodes in R.



6 Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli

each bit in the truth tables, we identify the value combinations at C that do
not happen, which are the SDCs at C.

– To compute the ODCs with respect to a node n, we first mark the transitive
fanout cone of n for a pre-defined number of levels and collect the set R
of nodes having fanouts outside of this transitive fanout cone. Then, we
find a cut C ∈ Cuts(R) supporting R and perform circuit simulation to
obtain the local functions fR of nodes in R in terms of C. After adding a
temporary inverter at the output of n, we perform another simulation to
obtain f∗

R. Finally, we compare the two simulation results to identify the
minterms where fR and f∗

R have identical values, which are the ODCs with
respect to n.

4 Definition and Representation of External Don’t cares

The general problem of technology-independent combinational logic synthesis
asks for generating a logic network that implements the desired output functions
and is optimized according to some predefined cost objective. Often, the desired
functionalities are given as an un-optimized network. Besides improving the cost
objective, a logic synthesis algorithm must preserve the functionalities of the
given network. More precisely, the global PO functions must not change after
optimization.

However, the desired functionalities may not be completely specified and
there may be don’t-care conditions external to the network under synthesis. For
example, due to the interplay between the network and its environment (other
cascaded circuits, previous- and next-stage sequential circuits, or user inputs),
some input value combinations may never appear, or some output values are not
used (“observed”) under certain conditions. These external don’t cares (EXDCs)
can be leveraged to further optimize the network. As it is impossible to derive
external don’t cares from the network alone, they have to be given to a combi-
national optimization algorithm from a higher-level algorithm.

4.1 External Controllability Don’t cares (External SDCs)

Extending the definition of SDC to the input boundary, a value assignment to
the PIs that will never appear is called an external controllability don’t care (EX-
CDC). These don’t cares are controlled by the environment external to the net-
work.

Mathematically, EXCDCs are essentially a special case of SDCs where the
cut C is the set of PIs. The set of EXCDCs of a network N may be given as a
function fCDC : B|I| → B:

fCDC(⃗bI) = 1 ⇐⇒ b⃗I is an EXCDC. (8)

4.2 External Observability Don’t cares

Extending the definition of ODCs to the output boundary, external ODCs are
conditions under which some PO values are not of interest. Depending on the
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reasons of such situations, there are several ways one may wish to define external
ODCs.

As a function of PIs. For each PO o ∈ O, the condition under which the value
of o is not observed may be specified as a function of PI values. For example,
when the network describes the transition and output logic of a Mealy finite
state machine, it may appear that for some previous states (PIs of the network),
an output is not used. In this case, the external ODCs are described as a multi-
output function fODCI : B|I| → B|O|:

For each o ∈ O, fODCI
o (⃗bI) = 1 ⇐⇒ b⃗I is an EXODC for o. (9)

As a function of other POs. For each PO o ∈ O, the condition under which
the value of o is not observed may be specified as a function of other PO values.
For example, when the outputs of the network are used in the next stage as a
series of cascaded conditional statements such that if a PO of higher priority
evaluates to 1, then the lower-priority POs do not matter. In this case, the
external ODCs are described as a multi-output function fODCO : B|O| → B|O|:

For each o ∈ O, fODCO
o (⃗bO) = 1 ⇐⇒ b⃗O is an EXODC for o. (10)

The i-th output of fODCO should not depend on its i-th input. Note that in
this case, the don’t-care conditions depend on the actual implementation of the
network. Using one ODC to optimize and change the function of a PO may
invalidate opportunities of using another ODC to optimize some other POs.

As equivalence classes. Instead of specifying external ODCs separately for
each PO, the flexible conditions might be some value combinations of a subset
of POs. Figure 1 gives an example. Because of the cascaded next-stage logic
at the output of N , the value combinations o1 = 0, o2 = 1 and o1 = 1, o2 =
0 have the same effect as seen from the system output (both map into y1 =
1, y2 = 1). Thus, these two PO value combinations may be classified into the
same external observability equivalence class (EXOEC) and PI minterms that
map to one of them are flexible to be re-mapped to either one. More generally,
two PO value combinations are observably equivalent (in the same EXOEC) if
their difference may not be observed when the network is immersed in a larger
system. By definition, this is an equivalence relation and is reflexive (i.e., if
a is observably equivalent to b then b is observably equivalent to a [a and b
are indistinguishable]), symmetric (i.e., any PO value combination is observably
equivalent to itself [trivial]), and transitive (i.e., if a is observably equivalent to
b and b is observably equivalent to c, then a is observably equivalent to c [a, b
and c are indistinguishable]).

EXOECs can be given as a function fOEC : B2·|O| → B:

fOEC(⃗aO, b⃗O) = 1 ⇐⇒ a⃗O and b⃗O are observably equivalent. (11)

Because fOEC describes an equivalence relation, it must fulfill the reflexivity,
symmetry and transitivity properties as described above.
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Fig. 1: Example of external observability equivalence classes.

4.3 Logic Synthesis from A Boolean Relation Perspective

A logic network computes a multi-output Boolean function at its primary out-
puts (i.e., the collection of PO global functions). Hence, it can be described as
a Boolean relation. The task of logic synthesis is thus finding an (optimized)
network whose output function is compatible with a given Boolean relation R.
The presence of external don’t cares adds more elements into R.

More generally, given a set C1 of nodes and a cut C0 ∈ Cuts(C1) supporting
it, a Boolean relation R01 can be derived to describe the network functionality
between C0 and C1. Moreover, if C1 is also a cut supporting another set C2,
another Boolean relation R12 can be derived and cascaded with R01.

Example 1. Let C1 ∈ Cuts(N) be a cut of the network. Let C0 = I and let
C2 = {n : ∃c, (n, c) ∈ O}. We may derive two Boolean relations

R01 = {(⃗b0, fC0

C1
(⃗b0)) : b⃗0 ∈ B|C0|} (12)

R12 = {(⃗b1, fC1

C2
(⃗b1)) : b⃗1 ∈ B|C1|}, (13)

where fC0

C1
is the function the nodes in C1 compute in terms of C0, and similarly

for fC1

C2
.

Figure 2 illustrates the example. According to the definitions in Section 2.3,
an (internal) SDC is an element b⃗1 ∈ B|C1| such that

∄⃗b0 ∈ B|C0|, (⃗b0, b⃗1) ∈ R01. (14)

Whereas an (internal) ODC for a node n ∈ C1 is an element b⃗0 ∈ B|C0| such

that, let b⃗1 = fC1−{n}(⃗b0) be the values at C1 − {n} under b⃗0,

if ((⃗b1, 0), b⃗2) ∈ R12, then also ((⃗b1, 1), b⃗2) ∈ R12. (15)

Generalizing internal and external don’t cares, SDCs are elements in a Boolean
space (which corresponds to any cut in the network) that are not mapped to
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Fig. 2: Illustration of Example 1.

by any element in a previous-stage Boolean space. In contrast, ODCs arise from
two elements in a Boolean space that map to the same element in a next-stage
Boolean space.

4.4 Boolean Relation as Unified Representation of External Don’t
Cares.

We observe that none of fODCI, fODCO, fOEC is general enough to express the
other two. More concretely,

– fODCI cannot be represented using fODCO or fOEC because the latter ones
lack conditioning on the PI values. There can be multiple PI value com-
binations leading to the same PO value but only some of them are don’t
cares.

– The example in Figure 1 cannot be represented using fODCI or fODCO be-
cause the condition is not simply ignoring the value of a single PO, but
flipping the values of both POs.

It is worth noting that fODCO can be converted into fOEC, but the conver-
sion is not straightforward. Starting from fOEC(⃗aO, b⃗O) = a⃗O ↔ b⃗O, for each

b⃗O ∈ B|O| such that fODCO
o (⃗bO) = 1, we make fOEC(⃗bO, b⃗

∗
O) = 1, where b⃗∗O is

derived by flipping the value corresponding to o in b⃗O. The complication comes
from propagating the equivalence and keeping the transitivity property of the
equivalence relation during the process.

As discussed in Section 4.3, the specification of a logic synthesis problem can
be seen as a Boolean relation. In the presence of external don’t-care conditions,
representation using Boolean relations is inevitable. Figure 3 shows how all of
the EXDC functions (represented as networks) introduced in this section may
be combined with an initial network to form the relaxed functional specification.
This specification function f spec : B|I|+|O| → B is the characteristic function of
the implicitly-represented Boolean relation Rspec, asking if a certain pair of PI
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Fig. 3: Circuit representation of a Boolean relation combining an initial network
Nspec and possible external CDCs and ODCs.

and PO minterms is in Rspec:

f spec(⃗bI , b⃗O) = 1 ⇐⇒ Under b⃗I , b⃗O is acceptable at POs. (16)

⇐⇒ (⃗bI , b⃗O) ∈ Rspec (17)

Given f spec, a network is compatible if its global PO function f impl fulfills:

∀⃗b ∈ B|I|, f spec(⃗b, f impl(⃗b)) = 1. (18)

After logic optimization, a verification step is usually done to ensure the
functional correctness of the optimized circuit. Classical CEC verifies if the op-
timized circuit computes exactly the same global PO function as the original
circuit. However, when optimization is performed with external don’t cares, such
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exact equivalence requirement is too strong. Verification must be modified to use
the f spec network instead of a miter network.

5 Optimization with External Don’t Cares

To utilize both internal and external don’t-care conditions, a Boolean method,
which considers Boolean functions of the nodes instead of analyzing the network
as algebraic expressions (i.e., an algebraic method), must be used. As it is com-
putationally too hard to synthesize (or resynthesize) the entire network from a
Boolean function or Boolean relation, modern Boolean methods often perform
resynthesis and substitution locally within a smaller region, called a window.

However, in order to leverage the flexibilities provided by external don’t cares,
these conditions must be propagated from the boundaries of the network inwards
to the windows being resynthesized. For this purpose, we propose to adopt the
simulation-guided paradigm [7]. In this paradigm, node functions are approxi-
mated by their simulation signatures, obtained by performing global simulations
using a non-exhaustive set of simulation patterns (value assignments to primary
inputs). An optimization flow adopting the simulation-guided paradigm consists
of the following key steps:

1. Generate a set of simulation patterns.
2. Simulate the network to obtain simulation signatures and use the signatures

to compute optimization candidates. The resynthesis computation can be
done in a window of any size. Optionally, ODCs may be computed by re-
simulating the transitive fanout cone, similar to the method described in
Section 3.

3. As the simulation is not exhaustive, a candidate needs to be formally verified
before it can be substituted into the network. This is done by solving a SAT
instance converted from the network. If a satisfiable assignment is derived by
the SAT solver, it is a counter-example proving that the candidate produces
unwanted output under a certain PI assignment. The counter-example is
added into the simulation patterns. Otherwise, an unsatisfiable result proves
that the candidate is valid and thus it is used to substitute the original
sub-network.

Using global simulation, internal SDCs are accumulated and propagated
within the network as missing bit-patterns in the simulation signatures. EX-
CDCs can be easily integrated by removing simulation patterns that are don’t
cares in Step 1. In contrast, EXODCs may only be used when ODC computation
is enabled in Step 2 and is considered until primary outputs. In such case, ODC
computation is modified as follows: To compute ODCs of a node n, two sets S
and S∗ of PO simulation signatures are obtained, one (S) by normal simulation
and the other (S∗) by adding an inverter at the output of n. For each bit in
the simulation signatures (corresponding to a PI simulation pattern), instead of
checking if all POs have the same value in S and in S∗, we check if the PO value
combination in S∗ is in the Boolean relation Rspec.
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The SAT instance in Step 3 also needs to be relaxed to take external don’t
cares into account. Mathematically speaking, the desired SAT instance encodes
the complement of Equation (18). Practically, we construct a network Nspec as
in Figure 3 and convert it into CNF, convert the optimized network Nopt also
into CNF using the same PI variables I and the same PO variables O as Nspec,
and assert the output of Nspec to be 0. When the instance is unsatisfiable, Equa-
tion (18) is true; when the instance is satisfiable, a counter-example violating
the Boolean relation is found.

6 Experimental Demonstration

To demonstrate the effectiveness of considering external don’t cares in logic syn-
thesis, we present some experimental results in this section. As external don’t
cares are not provided along with commonly-used benchmarks, we have to gen-
erate them by ourselves. The algorithm presented in Section 5 is implemented
in the open-source C++ logic synthesis library mockturtle4 [16].

6.1 Applying Randomly-Generated External Don’t Cares on
Highly-Optimized Circuits

We select 10 medium-sized (comparing to other benchmarks in the same suite)
benchmarks from the IWLS’22 programming contest5. These benchmarks are
originally provided as truth tables of PO functions in terms of PIs (i.e., completely-
specified functions). In this experiment, we use the best (smallest in terms of
number of gates) synthesized AIGs we have obtained in participation of the con-
test as the starting point. Without external don’t cares, they cannot be optimized
any further using the highest-effort (using the entire network as windows, con-
sidering internal ODCs until POs, and no limitation on the size of dependency
circuits) simulation-guided resubstitution [7].

Table 1 summarizes the optimization results using randomly-generated ex-
ternal don’t cares. All of the 10 benchmarks have 12 PIs and 3 POs. Column
#Gates lists the number of gates before optimization using EXDCs, columns ∆
list the reduction on the number of gates after optimization, columns % list the
reduction percentage, and columns Time list the runtime in seconds. All bench-
marks use the same external don’t care conditions. Column EXCDC is optimized
providing only a randomly-generated fCDC having 248 minterms evaluating to
1, column EXODC is optimized providing only fODCO = (fODCO

y1
= 0, fODCO

y2
=

¬y1, fODCO
y3

= 0), and column Both is optimized with both fCDC and fODCO.

This experiment shows that providing external don’t cares indeed enables fur-
ther optimization opportunities, and that the presented optimization technique
works in practice.

4 Available: https://github.com/lsils/mockturtle
5 https://www.iwls.org/iwls2022/



External Don’t Cares in Logic Synthesis 13

Table 1: Optimization results of using randomly-generated external don’t cares
on highly-optimized benchmarks.

Benchmark EXCDC EXODC Both

Name #PIs #POs #Gates ∆ % Time ∆ % Time ∆ % Time

ex70 12 3 263 15 5.70 0.24 0 0.00 0.27 15 5.70 0.35
ex71 12 3 369 2 0.54 0.70 13 3.52 0.75 13 3.52 0.70
ex72 12 3 456 83 18.20 2.03 38 8.33 1.80 35 7.68 2.13
ex73 12 3 208 1 0.48 0.36 1 0.48 0.28 1 0.48 0.24
ex74 12 3 468 40 8.55 3.78 0 0.00 3.78 37 7.91 3.78
ex75 12 3 489 78 15.95 1.43 114 23.31 1.20 132 26.99 1.03
ex76 12 3 246 2 0.81 0.22 1 0.41 0.24 4 1.63 0.27
ex77 12 3 319 89 27.90 0.37 25 7.84 0.32 98 30.72 0.29
ex78 12 3 369 42 11.38 0.36 56 15.18 0.35 52 14.09 0.35
ex79 12 3 365 0 0.00 0.92 20 5.48 0.70 17 4.66 0.78

7 Conclusion and Future Work

This paper aims primarily at raising and defining the problem of logic synthe-
sis with external don’t cares. It provides a review on the theoretical definition
of don’t-care conditions in general, and identifies different ways of representing
external don’t cares. An emphasis is made on the relation of don’t cares and
Boolean relations. Finally, using partial simulation and SAT-based verification,
we present how external don’t cares may be considered in logic optimization. In
conclusion, this paper is the first step towards involving external don’t cares in
logic synthesis. While the theoretical formulations serve as a foundation for fu-
ture research, the optimization technique is still limited in achievable optimiza-
tion quality and scalability. In the following, we discuss some future research
directions.

7.1 Multi-target Resynthesis

From the Boolean relation point of view, the classical definition of internal ODCs
(Equation (7)) is additionally restricted to pairs of elements that only differ in
one bit (corresponding to the node under consideration) instead of any pair that
map to the same next-stage minterm. The advantage of this approach is that
the don’t care conditions are used to optimize one node at a time without the
need to modify the other nodes. However, it is possible to generalize this class
of don’t cares by grouping all elements that map to the same element in the
next-stage Boolean space together as an OEC and drop the dependency of the
definition on a certain node. In this case, multiple nodes need to be optimized
together and change their output values.

It is shown in [8] that considering the resynthesis problem of multiple nodes
at the same time is necessary for some optimization opportunities to emerge, and
the work provides algorithms to describe internal DCs as Boolean relations and
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to resynthesize windows from Boolean relations. The problem of multi-target
resynthesis specified by a Boolean relation is intrinsically more complex than
the well-researched single-target resynthesis [6, 13]. While [1] discusses Boolean
relation solving based on divide-and-conquer, further investigation still has po-
tential. With such Boolean relation solver available, logic optimization with ex-
ternal don’t cares can be further enhanced.

7.2 Propagation and Management of Observability Equivalence
Classes

The biggest problem encountered in the utilization of external don’t cares is to
properly and efficiently propagate these conditions into the network. Propagation
of EXCDCs by partial simulation is relatively straightforward without scalability
concern. In contrast, propagation of external ODCs as presented in Section 5 is
not scalable. On the one hand, computation of ODCs involves re-simulating the
entire transitive fanout cone of the node and verification with EXODCs requires
duplicating at least the transitive fanout cone, if not the entire network, in
the SAT instance. One possibility to address this issue is to develop methods
to propagate external OECs into a cut in the network. On the other hand,
management of the OECs is not scalable with respect to the number of POs
if PO minterms are explicitly represented. Thus, symbolic representations of
OECs and their management methods (especially, merging equivalence classes
according to the transitivity rule) need to be developed.
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