
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

A Simulation-Guided Paradigm for Logic
Synthesis and Verification

Siang-Yun Lee , Heinz Riener , Alan Mishchenko, Senior Member, IEEE, Robert K. Brayton, Fellow, IEEE,

and Giovanni De Micheli , Life Fellow, IEEE

Abstract—This article proposes a new logic synthesis and ver-
ification paradigm based on circuit simulation. In this paradigm,
high quality, expressive simulation patterns are pregenerated
to be reused in multiple runs of optimization and verification
algorithms, resulting in reduced time-consuming Boolean com-
putations such as satisfiability (SAT) solving. Methods to generate
expressive simulation patterns are presented and compared, and
a bit-packing technique to compress them is integrated into the
implementation. The generated patterns are shown to be reusable
across different algorithms and after network function mod-
ifications. A logic synthesis algorithm, Boolean resubstitution,
and a verification algorithm, combinational equivalence checking,
are two examples of using this paradigm. In simulation-guided
Boolean resubstitution, simulation patterns are used for efficient
filtering of optimization choices, leading to a lower cost in expand-
ing the search space. By adopting the proposed paradigm, we
achieve a 5.9% reduction in the number of AIG nodes, compared
to 3.7% by a state-of-the-art resubstitution algorithm, within
comparable runtime. In simulation-guided equivalence checking,
the number of SAT solver calls is reduced by 9.5% with the use
of the expressive simulation patterns accumulated in earlier logic
synthesis stages.

Index Terms—Boolean methods, circuit simulation, formal
verification, logic synthesis, simulation patterns.

I. INTRODUCTION

LOGIC synthesis and verification play an important role
in electronic design automation (EDA), and extensive

research has been done on optimizing logic networks since the
emergence of this field. The numerous logic optimization meth-
ods existing in [1] and [2] can be roughly classified into two
classes, namely, algebraic methods, which treat Boolean func-
tions as polynomials and optimize the logic network locally,
and Boolean methods, which exploit global Boolean logic and
don’t-cares to improve the optimization quality. As the size
and complexity of digital circuits grow, there is often a trade-
off between efficiency and quality. Algebraic methods, as well

Manuscript received December 7, 2020; revised February 18, 2021, April
22, 2021, and July 11, 2021; accepted August 13, 2021. This work was sup-
ported in part by the EPFL Open Science Fund; in part by SRC under Contract
2867.001; and in part by the SNF “Supercool: Design methods and tools
for superconducting electronics,” under Grant 200021_1920981. This article
was recommended by Associate Editor R. Drechsler. (Corresponding author:
Siang-Yun Lee.)

Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli are with
the Integrated Systems Laboratory, Swiss Federal Institute of Technology
Lausanne, 1015 Lausanne, Switzerland (e-mail: siang-yun.lee@epfl.ch).

Alan Mishchenko and Robert K. Brayton are with the Department of EECS,
University of California at Berkeley, Berkeley, CA 94720 USA.

Digital Object Identifier 10.1109/TCAD.2021.3108704

as other local-search methods, such as structural analysis and
window simulation, are efficient but often sacrifice optimality.
In contrast, Boolean methods, such as the Boolean decompo-
sition [3], resynthesis [4], and rewriting [5], usually achieve
better quality at the cost of solving NP-hard Boolean prob-
lems using a binary decision diagram (BDD) [6], [7] package
in earlier research, or a satisfiability (SAT) problem [8], [9]
solver in more recent literature.

To balance between the two extremes, circuit simulation is
often used in Boolean methods as an efficient approximator of
the Boolean functions embedded in logic networks. However,
if the simulation is not exhaustive, formal verification, which
is usually done with SAT-solving, is still required [10]. In this
article, we introduce a new paradigm, simulation-guided logic
synthesis and verification, where efforts are made in pregen-
erating a set of high quality, expressive simulation patterns to
be reused many times. By increasing the expressive power of
the simulation patterns, synthesis, and verification algorithms
become more efficient, and the extension of the search space in
optimization algorithms becomes more affordable. The under-
lying hypothesis, which is confirmed by experimental results,
is that expressive simulation patterns can be amassed for a
logic network and used later as an efficient filter to avoid
unnecessary SAT solver calls.

The proposed paradigm is useful for algorithms dominated
by expensive Boolean computations. Two representative appli-
cations are presented in this article: Boolean resubstitution [11]
and combinational equivalence checking (CEC) [12].

The first representative application is to demonstrate a high
quality and efficient Boolean resubstitution framework based
on the simulation-guided paradigm. The classic resubstitu-
tion algorithm iterates over the nodes in a logic network and
attempts to re-express their functions using other nodes in the
network. If updating a node’s function makes other nodes
in its fan-in cone dangling (i.e., having no fan-out), they
can be deleted, resulting in the reduction of the network’s
size. For the special case of replacing a node directly with
an existing node, it is equivalent to the functional reduc-
tion (FRAIG) [13]. In the presented simulation-guided resub-
stitution framework, nodes fed into the resubstitution engine
are represented by their simulation signatures, and an SAT
solver is used to validate the computed resubstitution can-
didates. Using expressive simulation patterns, most illegal
candidates can be quickly identified and ruled out within
the engine by simply comparing simulation signatures and
without the need for SAT-based validation. The experimental

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5907-2314
https://orcid.org/0000-0003-1527-7160
https://orcid.org/0000-0002-7827-3215

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

results show that simulation-guided resubstitution allows user-
specified tuning of the efficiency-quality tradeoff and improves
optimization quality by considering a larger search space while
maintaining reasonable efficiency. Comparing to a state-of-
the-art and-inverter graph (AIG) resubstitution algorithm [11],
average reduction in the number of AIG nodes improves from
3.65% to 5.90%.

The second representative application shows that the simula-
tion patterns can be used in CEC. Similarly, simulation-guided
CEC leverages the expressive patterns generated in earlier
synthesis stages to disprove more nonequivalent nodes than
random simulation can do, thus reducing the effort needed
in SAT-based formal verification. In our experiment, a 9.5%
reduction in the number of SAT calls is achieved when
expressive patterns are used in CEC.

This motivates us to study what makes simulation pat-
terns expressive and profile different pattern generation strate-
gies, including random simulation, stuck-at-value testing [14],
observability checking [15], and combinations of these. In
the process of resubstitution and CEC, precomputed simula-
tion patterns can be refined further with the counter-examples
(CEXs) generated by SAT solving. The generated patterns and
the supplemented CEXs can be reused in two schemes: across
different algorithms, such as resubstitution followed by CEC,
and across different versions of the same design. Reusability
in the latter case is verified with experiments on engineer-
ing change order (ECO) [16] benchmarks, which are similar
networks with functional modifications.

The contributions of this article are: 1) a simulation-guided
logic synthesis and verification paradigm, which pregener-
ates and reuses expressive simulation patterns to reduce the
efforts needed in SAT-based verification; 2) methods to gener-
ate expressive simulation patterns, which are integrated with
a bit-packing technique; 3) demonstrations of the benefits of
the proposed paradigm with improved resubstitution quality
and reduced SAT calls in CEC; and 4) the reusability of the
pregenerated patterns across different applications and with
network modifications, shown with experimental results.

The remainder of this article is organized as follows.
After preliminaries are given in Section II and related works
introduced in Section III, we first describe the simulation-
guided paradigm in Section IV. Then, pattern generation and
compaction methods are explained in Section V. Two appli-
cations, Boolean resubstitution and CEC, are demonstrated in
Sections VI and VII, respectively. Finally, experimental results
are given in Section VIII, and conclusions in Section IX.

II. PRELIMINARIES

A. Logic Networks

In this article, we focus on technology-independent repre-
sentations of digital circuits, referred to as logic networks (or
simply networks). Logic networks are directed acyclic graphs
(DAGs), where nodes represent logic gates and edges represent
wires connecting them together. Incoming edges of a node are
called fan-ins, whereas outgoing edges are called fan-outs. The
transitive fan-in (TFI) or the transitive fan-out (TFO) of a node
n is the set of nodes such that there is a path between n and

these nodes in the direction of fan-in or fan-out, respectively.
A logic gate computes a Boolean function, which is a function
defined over the Boolean space B = {0, 1}, of its fan-ins and
passes the resulting output value to its fan-outs. Concatenating
the computation of the logic gates according to the structure
of a network, the global Boolean functions of each node can
be derived, which take primary inputs (PIs) as inputs. Two
nodes in a network are said to be functionally equivalent if
their global functions are logically equivalent; otherwise, they
are functionally nonequivalent. Overall, a logic network real-
izes Boolean functions of the primary output (PO) nodes. The
size of a network is determined by its number of nodes.

In this article, we work with AIGs [17], where every node is
an AND gate and the inverters are represented by edges with a
complement attribute and with no cost (that is, they do not add
to the network size). Nevertheless, this paradigm can also be
applied to other types of homogeneous logic networks, such as
Majority-Inverter Graphs [18], Xor-And-Inverter Graphs [19],
and Xor-Majority Graphs [20], as well as mapped networks
such as k-LUT networks [21].

B. Don’t-Cares

Boolean methods usually achieve better optimization quality
than algebraic methods because they consider the flexibilities
of the network, called don’t-cares. The don’t-care set in a
logic network indicates where local functions can be modified
without changing the global functions, which can be leveraged
to optimize the network. There are two types of don’t-cares.

1) For a set of internal nodes, there might be some value
combinations that never appear at these nodes. For
example, an AND gate g1 and an OR gate g2 shar-
ing the same fan-ins can never have g1 = 1 and
g2 = 0 at the same time. This combination is an SAT
don’t-care (SDC) of a common TFO node of g1 and g2.

2) A value assignment �x ∈ B
n to the PIs is said to be

un-observable with respect to a node n if none of the
POs changes its value when n is replaced by its nega-
tion n. �x is an observability don’t-care (ODC) of n
because the function of n under �x does not matter.

C. Boolean Satisfiability Problem

Boolean optimization methods are often formulated as a
Boolean SAT problem and solved with an SAT solver [9]. An
SAT problem is asking whether a Boolean formula, usually
presented in a conjunctive normal form (CNF) as a conjunction
of clauses, is satisfiable. That is, whether there exists a value
assignment making the formula evaluate to true. If so, the
solver returns a satisfiable (SAT) result along with a satisfying
value assignment; otherwise, it concludes that the problem is
unsatisfiable (UNSAT). Logic networks can be translated into
CNF formulae with the Tseytin transformation [22].

By using SAT in logic optimization, we benefit from its
global consideration of the Boolean functions and hence bet-
ter optimization quality. However, SAT is an NP-complete
problem [23]. Although many approaches have been proposed
to solve SAT problems efficiently for EDA applications [9]
and efficient SAT solvers have been developed, SAT-solving

LEE et al.: SIMULATION-GUIDED PARADIGM FOR LOGIC SYNTHESIS AND VERIFICATION 3

is still slower than algebraic and local-search methods in gen-
eral. In practice, to avoid the program being stuck in a difficult
SAT solver run, a timeout can be set to limit the time spent in
solving SAT; and/or a conflict limit can be set to restrict the
effort made by the SAT solver.

D. Windowing

A window is a subgraph constructed from a root node r and
a cut C = (r, L), which is a pair of the root node and a set
of leaf nodes L. The set of leaf nodes fulfills the requirement
that any path from a PI to r passes through exactly one node
in L. All the internal nodes on the paths from any node in L to
r are included in the window. Additionally, nodes outside of
the TFI cone of r but having all of their fan-ins in the window
can also be added into the window. A window can be viewed
as a smaller network with the leaf nodes as PIs and the root
node as the PO.

E. Circuit Simulation

A simulation pattern (or abbreviated as a pattern) is a col-
lection of Boolean values assigned to each PI of a network.
Circuit simulation is done by visiting nodes in a topologi-
cal order and computing their output values using their input
values. In practice, several simulation patterns can be bun-
dled together by using machine words, instead of a single bit,
to represent a sequence of Boolean values. This way, 32 or
64 patterns can be computed for a node within a single CPU
instruction using bitwise logical operations supported by mod-
ern arithmetic logic units. The simulation signature of a node
is an ordered set of values produced at the node under each
simulation pattern.

A set of simulation patterns is exhaustive if it covers all
possible combinations of value assignment, which requires 2k

patterns for k PIs. The simulation signatures produced by sim-
ulating an exhaustive pattern set are also called truth tables and
they completely specify the Boolean functions of the nodes.

Simulation can be done globally in the entire network or
locally in a small window. In the former case, the simula-
tion pattern set is possibly nonexhaustive because 216 patterns
are already impractical to handle, but the number of PIs is
usually larger than 16. To use an exhaustive set of patterns,
simulation must be restricted to a window of less than 16
(typically 8 to 10) leaf nodes.

F. Resubstitution

Boolean resubstitution is one of the combinational
optimization methods aiming at reducing sizes of logic
networks. For each node in a network, called the root, the
algorithm tries to find a smaller replacement for the subgraph
that only contributes to the root, called the maximum fan-out
free cone (MFFC) [24]. A node n is said to be in the MFFC
of the root node r if n is in the TFI of r and all paths from n
to the POs pass through r. The MFFC of a node can be effi-
ciently computed by recursively referencing and dereferencing
nodes in the network. If the root node is replaced and deleted,
all nodes in its MFFC can also be deleted, reducing the size
of the network.

The replacement for the root node, called the dependency
circuit, is built upon a set of potentially useful nodes exist-
ing in the network, called divisors. A divisor should not
be in the TFO cone of the root, otherwise the resulting
network would be cyclic. It should also not be in the MFFC
because nodes in the MFFC are to be removed after resub-
stitution. Nodes depending on PIs that are not in the TFI of
the root node can also be filtered out from the set of divisors
because their functions are unrelated to that of the root node.
In practice, to keep the runtime reasonable, a priority is given
to nodes in a window composed of the TFI cone of the root
with maximum support size K and nodes outside of the TFI
depending entirely on other divisors [11].

A resubstitution candidate (also abbreviated as a candidate)
is either a divisor itself or a single-output function, named the
dependency function, built with several divisors. In the latter
case, the candidate is represented by the top-most node of the
dependency circuit. A resubstitution, or simply substitution, is
a pair (r, c) of a root node r and a resubstitution candidate c,
and it is said to be legal if replacing r with c does not change
the functions of any PO. Otherwise, the resubstitution is said
to be illegal.

III. RELATED WORK

Random simulation is a core tool in logic synthesis and
verification, which has been used successfully to reduce the
runtime of various computations. In this section, we first
review some works leveraging the power of random simu-
lation. Then, with the Boolean resubstitution being our main
example algorithm adopting the simulation-guided paradigm,
some existing resubstitution techniques are also described.

In functional reduction [13], random and guided simula-
tion are used to identify equivalent nodes and merge them. In
CEC [12], simulation is also used to find cut-points between
two networks that serve as stepping stones for the proof of
equivalence at the POs. In [10] and [25], a combination of
random simulation and SAT solving was proposed to compute
flexibilities (don’t-cares) of Boolean networks within a win-
dow, and to compute the dependency function in resubstitution.
Motivated by the efficacy of these techniques adopting ran-
dom simulation, the simulation-guided paradigm in this article
focuses on identifying a set of expressive simulation patterns
to further strengthen the power of simulation. Once identified,
the patterns can be reused multiple times to speed up logic
synthesis and verification for the same or a similar network in
various applications.

Research in Boolean resubstitution techniques dates back
to the 1990s [26], [27]. In the 2000s, efforts were made
to improve the scalability of BDD-based computations [28]
and to move away from BDDs to simulation and SAT solv-
ing [4], [10]. In [10], the dependency function is computed by
enumerating its onset and offset cubes using SAT and inter-
polation [29], where random simulation is used for the initial
filtering of potentially useful divisors. In [4], structural anal-
ysis (windowing) was introduced to speed up the algorithm
further. Windowing is used to limit the search space and the
SAT instance size, with the inner window as a working space,
and the outer window as the scope for computing don’t-cares.

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 1. Simulation-guided logic synthesis and verification paradigm. For each design (named design1 in the figure), a set of expressive simulation patterns is
generated once (design1.pat) and is used several times throughout logic synthesis and verification. The same pattern set is applicable for various versions
of the design with functional modifications (design1_v1, design1_v2, etc.). When the pattern set is used in one of the simulation-guided algorithms, it
is also supplemented and refined with the CEXs generated as side-products during execution of the algorithm. The blocks shaded in gray are implemented and
described in this article: pattern generation in Section V, resubstitution in Section VI, and equivalence checking in Section VII. While other logic synthesis
algorithms may also benefit from adopting the paradigm (the blank blocks in the figure), we present only resubstitution as an example in this article.

An efficient Boolean resubstitution algorithm for AIGs
using windowing was presented in [11], which is considered
as the state-of-the-art to be compared to in this article. It relies
entirely on truth table computation, without any use of BDDs
or SAT. The search for divisors is limited to a window near
the root node, which is constructed from a size-limited cut to
allow exhaustive simulation. The node functions in the win-
dow are expressed in terms of the cut nodes. The dependency
function is not computed as a separate step after minimizing
its support, as in [4]. Instead, simple dependency circuits of
up to three AND gates are explicitly tried for resubstitution
using several heuristic filters. This resubstitution framework
has been generalized for many different gate types, including
majority gates [30] and complex gates [31].

IV. SIMULATION-GUIDED PARADIGM

This article introduces a new paradigm for logic synthe-
sis and verification that exploits fast bit-parallel simulation to
reduce the number of expensive NP-hard equivalence checks
based on SAT. The rationale behind the idea is to precompute a
set of simulation patterns for a given logic network, which can
efficiently rule out most nonequivalences by simply compar-
ing simulation signatures. Motivated by the fact that detecting
and verifying functional equivalence are needed in many
logic optimization (especially Boolean methods) and verifi-
cation algorithms, we define expressive simulation patterns as
follows.

Definition: A nonexhaustive set of simulation patterns for
a logic network is said to be expressive if the simulation sig-
natures obtained by simulating the patterns can be used to
pair-wisely distinguish functionally nonequivalent nodes that
either already exist in the logic network or can be derived
from some existing nodes.

The exhaustive set of simulation patterns satisfies the latter
part of this definition, but this is typically too large for logic

networks with 16 or more PIs. In practice, only expressive
simulation patterns that can be efficiently stored and simulated
using less than, say, a few hundred or thousand bits are of
interest.

We assume that, for a given logic network of interest, a
set of expressive simulation patterns with size proportional to
the network size can be found. This means that, as depicted in
Fig. 1, the expressive simulation patterns can be precomputed,
stored, and reused by different logic synthesis or verification
algorithms when applied to the same network, or by the same
algorithm when invoked multiple times with slightly different
networks. The assumption is verified with experimental results
in Section VIII by showing pattern reusability after ECOs,
which are typically small functional modifications to networks
under design [16]. With this assumption, we claim that the
time needed to generate the expressive patterns is not critical
because they will be reused many times.

Expressive simulation patterns cannot be derived directly
from the Boolean functions of the POs, but must account
for some structural information of the network. An intuitive
explanation of this observation is that a PO function can be
implemented by a large number of structurally different logic
networks. Despite this, the idea of reusing simulation pat-
terns in multiple optimization or verification runs is still valid
because the initial structure of the network often is determined
by high-level synthesis and later carefully fine tuned by logic
optimization. Consequently, only a small fraction of closely
related structures is encountered during logic optimization and
the final verification of the network. Several pattern generation
strategies are discussed in Section V.

The proposed simulation-guided paradigm can be adopted
by algorithms dealing with the Boolean relation among nodes
in logic networks. For example, in Section VI, the paradigm is
demonstrated with the Boolean resubstitution, where simula-
tion signatures are used as an approximation of node functions

LEE et al.: SIMULATION-GUIDED PARADIGM FOR LOGIC SYNTHESIS AND VERIFICATION 5

when finding resubstitution candidates. This way, restriction
to local windows is avoided and global information is utilized
with low cost. In Section VII, benefits of the expressive pat-
terns in CEC are demonstrated as another application of this
paradigm. As simulation patterns are already generated for the
optimization algorithms prior to verification, reusing them in
CEC comes at no extra cost. With their stronger ability to dis-
tinguish nonequivalent nodes without SAT solving, the overall
number of SAT calls in CEC can be reduced. The paradigm is
potentially suitable for other algorithms, such as computation
of structural choices [32], to improve the quality of mapping
and gate matching between several versions of the same logic
network. Furthermore, the resulting patterns can also be used
in automatic test pattern generation (ATPG) [33] and in circuit
reliability analysis [34].

To conclude, simulation signatures are used as efficient
approximations of node functions to reduce NP-hard equiva-
lence checks. As they may not cover all circuit states under all
possible input assignments, formal verification (in this article,
by SAT-solving) is inevitable in simulation-guided algorithms,
which generates CEXs in terms of PI value assignments, i.e.,
new simulation patterns. To reduce unnecessary SAT-solving,
we seek to increase the accuracy of this approximation. On
the one hand, we propose to pregenerate an expressive pattern
set to be reused across multiple optimization runs and across
different algorithms, and we study methods to ensure the good
quality of these patterns in the first place. On the other hand,
motivated by the success of various CEX-guided logic synthe-
sis and verification works [10], [13], [35], [36], we propose to
collect and keep the CEXs generated by different algorithms
and use them to enhance the initial pattern set.

V. SIMULATION PATTERN GENERATION

Following the previous section, several strategies to gen-
erate expressive simulation patterns are formulated in this
section. Two types of patterns are used as the basis: random
patterns which are random values generated with equal prob-
ability of 0 or 1 for each PI, and stuck-at patterns which are
generated by trying to distinguish each node from constant
functions 0 and 1. Generating random patterns is straightfor-
ward. The procedure to generate stuck-at patterns is described
in Section V-A. Then, in Section V-B, an observability-based
method to strengthen stuck-at patterns is elaborated. Finally,
a bit-packing method to compress the pattern set is explained
in Section V-C.

A. Stuck-at Values

In random simulation, the possibility of a certain bit value
(0 or 1) appearing in the simulation signature of some nodes
in the network may be relatively low. For example, a 2-input
AND gate only produces 1 when both of its fan-ins are 1,
which is of 25% possibility if the fan-in values are randomly
assigned. However, a value of 1 at this node may be necessary
for disproving some nonequivalence. Thus, we refine the set
of simulation patterns by checking that every node has both
values appearing in its simulation signature. If only one value
occurs, a new simulation pattern is created by solving an SAT
problem, which forces the node to have the other value.

Fig. 2. Algorithm StuckAtCheck: Generation of expressive simulation pattern
by asserting stuck-at values.

The algorithm, named StuckAtCheck, is illustrated in Fig. 2.
In lines 01 and 02, we start with a small set of random sim-
ulation patterns and simulate the network to get the initial
simulation signatures of each node. An SAT solver is also ini-
tialized and loaded with the CNF clauses translated from the
network in lines 03 and 04. Then, in line 05, for each node
in the network, if 0 or 1 does not appear, we try to generate
a pattern by assuming the missing value and solving the SAT
instance (lines 06-11). If the solver finds a satisfying assign-
ment, the desired pattern is generated (lines 12 and 13). In an
un-optimized network, there may be nodes which never take
one of the values and the solver will conclude that the problem
is unsatisfiable (line 14). These nodes can be replaced by a
constant node in line 15. If the solver times-out or a given con-
flict limit is exceeded, we simply skip the node and continue
the process with the next node.

An example is shown in Fig. 3. Suppose there are two
random patterns in the initial set S = {000,110}. After sim-
ulation, the simulation signature obtained for node n is 00
where 1 does not appear. Hence, by assuming n = 1 and solv-
ing SAT a new pattern 011 is generated and added to the end
of S. Now, the simulation signature of n is 001.

B. Observability

As described in Section II-B, there may be some sim-
ulation patterns that are not observable with respect to an
internal node; these patterns are possibly less useful in dis-
proving nonequivalence. Here, two cases are identified where
a generation or regeneration of an observable pattern may be
done.

Case 1: In StuckAtCheck when a node is stuck at a value,
and a new pattern is generated to express the other
value, but this pattern is not observable.

Case 2: A node assumes both values, but for all the patterns
under which the node assumes one of the values,
it is not observable.

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 3. Example network for pattern generation methods. A simulation pattern
is a value assignment to �x = (a, b, c). Suppose initially, two patterns 000 and
110 are generated randomly. Node n is stuck at 0 because its output value is
0 under both patterns. StuckAtCheck thus generates a pattern 011 to produce
a 1 at n. However, this pattern is not observable because flipping the value
of n from 1 to 0 does not affect the PO f , as a = 0 keeps the PO value at 0.
Hence, another pattern 101 is generated by ObservablePatternGeneration to
ensure that the pattern is observable and makes n = 1.

The first case is identified during StuckAtCheck. Whenever
a new pattern is generated (line 13), its observability with
respect to the node n is checked according to the definition in
Section II-B using the following steps: 1) simulate the network
to obtain the PO values under this pattern; 2) flip the simula-
tion value at the output of n and simulate its TFO cone again;
3) check if all of the PO values remain the same. If so, the
pattern is un-observable; and 4) restore the value of n and
simulate again.

The second case is checked after procedure StuckAtCheck is
completed. We iterate over all the nodes in the network again
and check if for each node, there is at least two patterns which
are observable with respect to the node and the node assumes
0 and 1, respectively, under the two patterns. The procedure
to check whether each pattern is observable is the same as
described above.

To resolve un-observable patterns, a procedure
ObservablePatternGeneration is devised, which gener-
ates an observable simulation pattern �x with respect to a
given node n and makes sure that n expresses a specified
value v under �x. This procedure builds a CNF instance,
whose corresponding network is shown in Fig. 4, and solves
it using the SAT solver. If the instance is SAT, an observable
pattern is generated (Claim 1), and we say that the originally
un-observable pattern is resolved. Otherwise, if the solver
returns UNSAT, n is found to be un-observable with value v
and can be replaced by the constant node in the respective
polarity (Claim 2).

Claim 1: A satisfying input assignment �x in the network of
Fig. 4 is an observable pattern with respect to node n.

Proof: By the definition in Section II-B, �x is observable
with respect to n if the value of at least one of the POs of
the network under �x is different when n is replaced by n. This
condition is ensured by the miter of the TFO cones of n and
n in Fig. 4.

Fig. 4. Corresponding network of the CNF instance built in procedure
ObservablePatternGeneration. The lower two triangles TFI1 and TFI2 are
the TFI cones of the two fan-ins of node n. n is created and connected to
the same TFI cones as n. The TFO cone of n is duplicated (the upper two
triangles) and the counterpart is connected to n. POs in the two TFO cones
are matched and connected to XOR gates, and the XOR gates are fed to an
OR gate, whose output is asserted to be 1, forming a miter subnetwork. The
output value of node n is asserted to be v.

Claim 2: If a node n is never observable with value
v (v ∈ {0, 1}), then it can be replaced by constant
¬v (¬0 = 1,¬1 = 0) without changing the network func-
tion(s). That is, there does not exist a PI assignment �x, such
that one of the POs has different values in the original network
and in the modified network.

Proof: Assume the opposite: there exists a PI assignment �x,
such that at least one of the POs has a different value after
replacing n with ¬v. If the value of n is ¬v under �x, all node
values in the network, including POs, remain unchanged if n
is replaced by ¬v. If the value of n is v under �x, because n is
not observable with v, all POs remain at the same value when
the node value of n changes to n = ¬v, which contradicts the
assumption.

In order to limit the computation in large networks, the TFO
in Fig. 4 can be restricted to nodes within a certain distance
from n, called the depth of the TFO cone, instead of extending
all the way to POs. In this case, all the leaves of the cone
should be XOR-ed with their counterparts to build the miter.
Note that restricting the TFO depth weakens the definition of
observability, but is essential for scalability. Empirically, using
a depth of five logic levels is a good tradeoff between quality
and runtime.

After an observable pattern �x is generated, in case 1, we
can replace the pattern generated by StuckAtCheck with �x. In
case 2, we simply add �x to the set of patterns.

We continue with the example in Fig. 3 with three patterns
in the set S = {000,110,011}. By checking the observabil-
ity of each pattern, it is found that only 110 is observable
and the value of n under this pattern is 0. Hence, procedure
ObservablePatternGeneration generates another pattern 101

LEE et al.: SIMULATION-GUIDED PARADIGM FOR LOGIC SYNTHESIS AND VERIFICATION 7

making n = 1. This pattern is indeed observable because flip-
ping the value of n from 1 to 0 also makes the PO value f
change from 1 to 0.

C. Bit-Packing

For some large benchmarks with many PIs, the size of the
generated pattern set can be large, slowing down simulation. In
the field of ATPG, test patterns are often compressed by first
identifying care and don’t-care bits in them [37]. The set of
care bits in a test pattern is the set of PI values that contribute
to detecting a certain fault, while the don’t-care bits are the
PIs that can be assigned to any value. We integrated a similar
technique in our simulation pattern generation.

Similar to test pattern compression, the care bits in a simula-
tion pattern are the PI values that contribute to proving that the
node is not stuck-at and in fact observable at one of the out-
puts. During simulation pattern generation with the previously
described methods, care bits are identified by a simple struc-
tural support analysis, which highlights control paths from the
inputs to the target node, and from the target node to at least
one output where it is observed.

After generating several patterns, the pattern set is com-
pressed by trying to pack each new pattern into one of the
preceding patterns. Two patterns can be packed together if
their care bits do not overlap. To pack a pattern p1 into another
pattern p2, the care bits of p1 are written into don’t-care bits
of p2, and these bits are marked as cares in p2.

D. Discussion

In this section, we illustrate methods to derive an ini-
tial set of expressive patterns serving as the basis of the
simulation-guided paradigm. Starting from a mixture of ran-
dom patterns and stuck-at patterns as the basis and depending
on the computation effort taken by the pattern generation
phase, observability checks can be applied to strengthen or
append the pattern set. It may seem, from the algorithms, that
each pattern is generated for a specific node in the network,
which may be removed later during logic optimization and the
pattern becomes useless. However, we argue that this is not
a problem because even random patterns play an important
role in this paradigm, as shown in our experimental results.
Moreover, our experimental results on ECO benchmarks show
that the generated patterns are as useful for a functionally
modified network even if they are generated with the original
version of the design.

VI. SIMULATION-GUIDED RESUBSTITUTION

In this section, the simulation-guided paradigm is demon-
strated with the Boolean resubstitution as an example applica-
tion in logic synthesis. The main difference of our algorithm,
compared to a state-of-the-art resubstitution algorithm [11], is
in the representation of the divisors. Instead of using the com-
plete truth table of the local function of the node, we use the
simulation signature approximating the global function of the
node. The algorithm consists of the following steps.

1) Generation of a set of expressive simulation patterns, as
described in Section V.

2) Simulation of the network with these patterns to obtain
simulation signatures for each node.

3) Iterating over all nodes in the network and calling the
currently chosen node the root node. Estimating the gain
by computing the root node’s MFFC and collecting the
divisors. Skipping the node if the gain is too small or if
there are no divisors. This step is the same as in [11],
so we omit the details here.

4) Searching for resubstitution candidates in terms of
dependency functions using simulation signatures.

5) Validating the resubstitution with SAT solving by assum-
ing nonequivalence. A UNSAT result validates the
resubstitution, while an SAT result provides an input
assignment under which the optimized network is not
equivalent to the original network. In the latter case, the
CEX is added to the set of simulation patterns.

6) Iterating starting from step 3, until all nodes in the
network have been processed.

Simulation of the entire network in step 2 enables better
incorporation of global SAT don’t-cares without extra cost,
which allows more optimization potential comparing to the
windowing-based approach as in [11]. The collection of CEXs
in step 5 expands the simulation pattern set, which further
improves the efficiency of later optimization runs. In the
remainder of this section, we focus on steps 4 and 5, shown
in Fig. 5, which differ the most.

An SAT solver is initialized and the CNF clauses encoding
gate logic are generated and added to the solver in lines 01
and 02. In line 04, a simulation-signature-based dependency
function computation algorithm is used to find a dependency
circuit of up to N∗ nodes, where N∗ is the smaller value among a
user-specified parameter N and the size of the MFFC. Procedure
compute_function heuristically searches for a minimum-node
AIG implementation F of the target function ft using a set of
divisors D as PIs. Both the target function and the divisors
are represented by their simulation signatures. The PO of F
has the same signature as the given target ft. The divisors
are classified as either unate or binate by the implication
relationship of their signatures fd with the target function ft.
If either fd → ft or ft → fd holds, the divisor d is said to be
unate. Since inverters are for free in AIGs, the complement d
of a divisor d is also considered, separately from d. If neither
d nor d is unate, d is said to be binate. First, it is checked if
the function can be implemented by a constant node or if one
divisor can implement it in the direct or complemented polarity,
both meaning that no gate insertion is needed to express the
function. Next, it is checked if the function or its complement
can be implemented with an AND gate, leading to a single-
node dependency circuit. Then, if there are some unate divisors,
the function or its complement is implemented using an AND
gate whose one input is a unate divisor d and the other input
is an incompletely specified remainder function fr satisfying
fr ∧ fd = ft. The unate divisor covering the most of the onset (or
offset) minterms of ft is selected first, and the implementation
of fr is computed by calling compute_function recursively.

Since the simulation signatures are an approximation of
the node’s function, the resubstitution candidate needs to be
formally verified. Procedure verify in line 06 uses the SAT

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 5. Algorithm SimResub: One iteration of steps 4 and 5 in the simulation-
guided Boolean resubstitution.

solver to try to find a pattern, under which nodes n and Fout
have different values. The resubstitution is legal if the solver
returns UNSAT (lines 17 and 18); otherwise, a new pattern is
added to the set and the network is resimulated if the solver
returns SAT (lines 19–21 and 09, 10). Note that if the simu-
lation signatures are stored as sequences of multiple machine
words, a new pattern is appended to the end of the last word
and only this word needs to be recomputed because the other
words remain the same. With the appended signatures, com-
pute_function gives a different result in the next invocation.
The process continues until one resubstitution is validated
(lines 07 and 08), or the SAT solver times-out (lines 11
and 22), or until the engine cannot find another candidate
dependency function (line 12).

VII. SIMULATION-GUIDED EQUIVALENCE CHECKING

CEC after logic synthesis can benefit from the simulation
information collected and used for logic optimization. This
is because, in the process of CEC [12], one of the major
tasks is disproving candidate equivalences, which relies on
SAT-solving when CEXs cannot be easily found with random
simulation. The precomputed expressive simulation patterns
provided to the CEC engine can be used to disprove many of
the nonequivalent nodes directly without any SAT-solving.

The command &cec in ABC1 [38], which is an improved
version of cec [12], compares AIGs derived from two ver-
sions of the design presented for CEC. Internally, it generates
random simulation patterns iteratively to detect candidate
equivalent pairs and to filter out nonequivalent nodes. Random
simulation is repeated until no more refinement can be made,
i.e., no more nonequivalent nodes being distinguished. Then,
an SAT solver is called to formally prove the equivalence pairs
by assuming nonequivalence, similarly to the verification pro-
cedure in the resubstitution algorithm presented in the previous
section. If the solver returns UNSAT, the equivalence pair is
formally proved; otherwise, if the solver returns SAT, a CEX is
generated. The CEX disproves the given candidate equivalence
and potentially other unproved ones.

We implemented simulation-guided CEC by modifying
command &cec to use pregenerated patterns instead of gener-
ating random patterns. This can be useful when the design is
optimized with the proposed paradigm, so that an expressive
set of patterns is already in hand. Without any extra cost, the
patterns can be reused in CEC to reduce SAT calls disproving
equivalence.

VIII. EXPERIMENTAL RESULTS

The pattern generation algorithms and the simulation-guided
resubstitution framework are implemented in C+ + −17 as
part of the EPFL logic synthesis library mockturtle2 [39]. In
Sections VIII-A and VIII-B, we first investigate the expressive-
ness of simulation patterns generated using different methods
by comparing the number of CEXs encountered in resubsti-
tution. After finding a good strategy, we use it to generate a
pattern set to be used for other experiments and report its
size before and after bit-packing in Section VIII-C. Then,
Section VIII-D demonstrates how an expressive pattern set
makes a shift in runtime from optimization to pattern genera-
tion, and Section VIII-E confirms the reusability of patterns for
functionally modified networks with a set of ECO benchmarks.
Finally, the advantages of simulation-guided resubstitution
and simulation-guided equivalence checking are shown in
Sections VIII-F and VIII-G, respectively.

The experiments are performed on a Linux machine with
Xeon 2.5-GHz CPU and 256-GB RAM. The OpenCore
designs from IWLS’05 benchmark3 are used in all experi-
ments, except for those in Section VIII-E. When generating the
patterns and testing the quality of resubstitution and equiva-
lence checking in Sections VIII-C, VIII-D, VIII-F, and VIII-G,
the benchmarks are preprocessed with redundancy removal
by iterating command ifraig in ABC until no reduction in
size. The results for the preprocessed benchmarks are reported
in Table I. The preprocessed benchmarks and the simulation
patterns used can be found online.4

A. Size of Simulation Pattern Set

Intuitively, the more simulation patterns used, the higher is
the chance that the paradigm saves time by not attempting to

1Available: github.com/berkeley-abc/abc
2Available: github.com/lsils/mockturtle
3Available: iwls.org/iwls2005/benchmarks.html
4Available: github.com/lsils/sim-LSV_exp

LEE et al.: SIMULATION-GUIDED PARADIGM FOR LOGIC SYNTHESIS AND VERIFICATION 9

TABLE I
NUMBER OF GENERATED PATTERNS BEFORE AND AFTER BIT PACKING

prove nonequivalences, i.e., a larger set of simulation patterns
is expected to be more expressive. Following the definition of
expressive patterns in Section IV, we measure the expressive
power of a pattern set using the percentage decrease, as com-
pared to a baseline set, in the number of CEXs encountered in
resubstitution, which is calculated separately for each bench-
mark. Different from the resubstitution framework described
in Section VI, the CEXs are not added to the simulation set,
to isolate the impact of the provided patterns.

We start by investigating the expressive power of random
patterns based on their count. In Fig. 6, each bar represents
how expressive is a pattern set of the respective size, com-
pared to the baseline of using only four simulation patterns.
The smaller sets are subsets of the larger sets to avoid the
biasing effect of randomness. Since the trend is similar for
each benchmark, only some medium-sized benchmarks (with
around 10 to 20 thousand nodes) are shown here. As the size
grows by the factor of four (leading to 4, 16, 64, etc., patterns),
the expressive power increases very fast at first, as expected,
but saturates at a few hundreds to a few thousands of patterns.
Fortunately, a thousand patterns is still a practical size, for
which bit-parallel simulation runs fast.

A similar phenomenon is observed when patterns are gen-
erated by StuckAtCheck. Additional patterns can be used to
ensure that every node has at least b bits of 0 and b bits
of 1 in its signature. In the following experiments, stuck-at
patterns are abbreviated as “s-a,” with a prefix “bx” listing
parameter b. In Fig. 7, since the stuck-at pattern counts are
different for each benchmark, the pattern set size is normalized
to the network size and plotted in the logarithmic scale. Only
benchmarks that are smaller than 25k nodes are included. The
baseline pattern set is “1x s-a.” It is observed that larger sets
of patterns are usually more expressive. Note that randomness
plays a role in this case, since the default variable polarities,

Fig. 6. Decreased percentages of CEXs when provided with different number
(#pat) of random simulation patterns, compared to the baseline #pat = 4.

Fig. 7. Decreased percentages of CEXs when using different sets of stuck-at
simulation patterns, compared to the baseline set “1x s-a.”

which determine initial variable values in the SAT solver, are
randomly reset before each run.

B. Pattern Generation Strategies

In this section, the expressive power of simulation patterns
generated by StuckAtCheck is compared with the case when
observability is used (suffix “-obs”) and/or when an initial
random pattern set of size 256 is used (prefix “rand 256”).

The observability check and observable pattern generation
are done with a fan-out depth of five levels. A conflict limit
of 1000 is set for the SAT solver, and there is no time-out
limit set. A set of 256 random patterns is used as the base-
line in Fig. 8. Four small benchmarks, for which the random
pattern sets are more expressive than “1x s-a” and/or “1x
s-a-obs,” are not shown in the figure. Larger benchmarks
with more than 25k nodes are also excluded. The geometric
means of the sizes of the pattern sets are 143 for “1x s-a,”
244 for “1x s-a-obs,” 354 for “rand 256 + 1x s-a”
and 462 for “rand 256 + 1x s-a-obs.” On the other
hand, the geometric means of the decreased percentages of
the CEXs are 91.3%, 96.5%, 97.1%, and 99.5%, respectively.

It is observed that patterns generated by StuckAtCheck are
usually more expressive than random patterns, except for
a few, typically small, benchmarks. Also, using observabil-
ity increases the expressive power of the generated patterns.

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 8. Decreased percentages of CEXs when using pattern sets generated
with different strategies, compared to the baseline set “rand 256.”

Finally, seeding the pattern generation engine with an initial set
of random patterns not only speeds up the generation process,
but also makes the resulting patterns more expressive.

As the patterns generated with “rand 256 + 1x
s-a-obs” are shown to be the most expressive, these
pattern sets are used in the following experiments in
Sections VIII-C, VIII-D, VIII-F, and VIII-G. Table I lists
some information of the benchmarks and their pattern sets.
On average, about 80% of the runtime (about 50% for the
largest five benchmarks) in pattern generation were spent in
the observability-based methods, including time for checking
if a pattern is observable, SAT-solving with the TFO cone,
and resimulation after a new pattern is generated. As seen
in Fig. 8, using observability increases the expressive power
of the generated patterns, but not much. Thus, in practice,
one may consider disabling observability awareness for larger
benchmarks. There is no constant node detected because the
benchmarks are preprocessed with redundancy removal, and
there is about 0.1% un-observable nodes found, on average.

C. Pattern Compression With Bit Packing

As discussed in Section V-C, the generated patterns can be
packed together to reduce the pattern set size and speed up the
simulation. This technique becomes more important in larger
benchmarks with huge amounts of PIs. The middle part of
Table I shows the total number of generated patterns (column
gen.), the final number of patterns after bit packing (column
packed), and the ratio of the two sizes [column (%)]. The
256 random patterns are not bit-packed, neither included in
this table. On average, the sizes of the packed pattern sets are
about 70% of the original sets.

D. Effect of Expressive Patterns in Resubstitution

As stated in the introduction, an expressive set of simula-
tion patterns is used to shift the computation effort from the
optimization algorithms to pattern precomputation. Table II
shows how the quality of the patterns affects the runtime of
pattern generation (patgen) and resubstitution (resub). For sim-
plicity, only some of the larger benchmarks with more obvious
effect are shown in this table. A better set of patterns (Table II,

TABLE II
RESUBSTITUTION RUNTIME AS A FUNCTION OF THE NUMBER OF CEXS

PRODUCED

“rand 256 + 1x s-a-obs”) efficiently filters out many
illegal resubstitutions without calling the SAT solver, resulting
in the reduced counter-example counts (#cex) and faster run-
times. Note that there is no difference in optimization quality
(i.e., circuit size reduction) caused by using different pat-
terns because if an illegal resubstitution is not filtered out by
simulation signatures, it is still disproved by SAT solving.

Furthermore, in practice, when the same design is repeatedly
synthesized during development or when simulation patterns
are reused by different optimization engines, CEXs from the
previous runs can be saved for later use. In this case, the
additional CEX count during later runs can go down to nearly
zero, and the runtime is only spent on logic synthesis or
verification tasks, such as proving equivalences among the
nodes or computing dependency functions and validating them.
The latter scheme will be verified in the next section and be
used from then on.

E. Reusability of Simulation Patterns

In support of our assumption, the reusability of the gener-
ated patterns and the CEXs are verified with a set of ECO
benchmarks [40]. For each design, there is an old version and
a new version which are functionally different. The results
of two runs of resubstitution with the two versions of bench-
marks are reported and compared in Table III. First, a set
of patterns is generated for the old version with “rand 256
+ 1x s-a-obs” where only the first case of observability
check is performed. Columns A and B show the number of
counter-examples (#cex) and the runtime of resubstitution on
the two versions of benchmarks using this generated pattern set.
Comparing them, it is observed that the patterns are as effective
on the new benchmarks, even though they are generated with
the old ones. In columns C and D, resubstitution is performed
again, but using the generated patterns appended with the CEXs
collected in A. There are almost no new CEXs in column C
when the same optimization algorithm is applied on exactly
the same benchmarks, as expected. Moreover, when applying
on slightly different networks in column D, the number of
CEXs is reduced by 73% comparing to the first run (B). The
runtime in D is only slightly higher than C, showing that most
of the runtime is spent on computing dependency functions and
validating the legal resubstitutions, which are inevitable. The
last column compares a flow optimizing first the old networks
and then the new ones without learning of CEXs (A+B) against
one that learns the CEXs from previous runs (A+D).

LEE et al.: SIMULATION-GUIDED PARADIGM FOR LOGIC SYNTHESIS AND VERIFICATION 11

TABLE III
RESUBSTITUTION EFFICIENCY AFTER ECO WITH OR WITHOUT CEX LEARNING

TABLE IV
RESUBSTITUTION QUALITY ON AIGS COMPARING AGAINST ABC’S RESUB COMMAND

F. Quality of Simulation-Guided Resubstitution

This section shows the improvements in terms of resub-
stitution quality. Table IV compares the proposed framework
with command resub [11] in ABC [38], which performs
truth-table-based resubstitution. Because computing simula-
tion patterns in our framework results in detecting combina-
tional equivalences [13], for a fair comparison, the benchmarks
are preprocessed by repeating the command ifraig in ABC
until no more size reduction is observed. The quality of results,
presented in the gain columns, is measured with the reduction
percentage in network size after optimization, i.e., the differ-
ence in the number of nodes before and after resubstitution,
divided by the original network size. Simulation patterns used
in our framework are initially generated with “rand 256
+ 1x s-a-obs,” bit-packed (as described in Section V-C),
and then incrementally supplemented with the CEXs generated

from the previous runs of the same resubstitution settings in
each column. After the resubstitution run in the last column,
the sizes of pattern sets increase by 30% on average.

Two parameters can be set in both flows: the maximum cut
size K used to collect divisors in the TFI of the root node and
the maximum number N of nodes in the dependency function.
Since [11] relies on computing truth tables in the window,
K ≤ 10 is typically used as a reasonable tradeoff between
efficiency and quality. In contrast, windowing in our frame-
work is applied only to avoid potential runtime blow-up for
large benchmarks, and K can be set to arbitrarily large values
when longer runtime is acceptable.

When the algorithms are limited to at most one node inser-
tion (N = 1), the middle part of Table IV shows that our
framework achieves 2.18% network size reduction on average
using the same, small window size (K = 10), comparing to

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

1.58% by the state-of-the-art. This improvement is due to bet-
ter consideration of global SDCs. Moreover, we are able to
arbitrarily extend the window size and achieve up to 2.78%
gain when longer runtime is acceptable.

In the last columns of Table IV, parameters in resub are
set to their extreme values (K = 16, N = 3), and param-
eters in our framework are set to large values semantically
close to infinity. It is observed that our framework can achieve
up to 5.90% reduction while 3.65% is the best resub can
do, and the improvement comes even with faster runtime in
most of the benchmarks. The reason why our framework is
especially slow in the largest five benchmarks is because they
also have large numbers of PIs and large sizes of pattern sets
(shown in Table I), which slow down simulation as well as
the computation of dependency functions. This can be ame-
liorated, however, by fine tuning the tradeoff between quality
and runtime according to the user’s needs.

Furthermore, the proposed framework is also shown to
be applicable on 2-LUT networks, or essentially, Xor-And
Inverter Graphs (XAGs). Table V compares the proposed
framework with command &mfs [4] in ABC.5 The ifraig-
preprocessed benchmarks are mapped into 2-LUT networks
by the command &if -K 2 in ABC and read in as
XAGs in mockturtle. The simulation pattern set generated in
Section VIII-C with the AIG benchmarks and used in the
experiments in Table IV is reused for the XAG experiment.
In Table V, the numbers of 2-LUTs (or XAG nodes) are
reported in column size, and the percentage reduction and run-
time of the two algorithms are reported in columns gain and
time, respectively. Using only an unaggressive parameter set-
ting (K = 10, N = 1), our framework outperforms command
&mfs in both optimization quality and efficiency.

G. Reduction on SAT Calls in CEC With Expressive Patterns

Finally, to show the effectiveness of the proposed paradigm
on other logic synthesis and verification algorithms, we take
CEC as another example. The &cec command in ABC [12]
is considered state-of-the-art. It iteratively generates random
patterns for simulation to find equivalent pair candidates. This
command is modified to take pregenerated patterns and use
them for simulation. The number of SAT results (disproving
equivalence; #SAT) and UNSAT results (proving equivalence;
#UNSAT) in &cec with and without using pregenerated
expressive patterns are reported in Table VI. For simulation
efficiency, an upper limit of 3200 on the number of patterns
is set. It can be observed from the table that the average num-
ber of SAT results is reduced by about 40%; when combined
with the UNSAT results, which are unchanged, the total num-
ber of SAT solver calls is reduced by about 9.5%. In most
cases, the runtime does not decrease because it is dominated
by the UNSAT calls, and that too many patterns slow down
simulation. Nevertheless, the runtime overhead in simulation
can be mitigated if the patterns can be better compacted, or

5While this article was published in 2011, the technical implementation
has been continuously improved over time and there are several versions of
the same concept in ABC, such as commands mfs and mfs2. Among them,
&mfs is believed to be the newest and the best version.

TABLE V
RESUBSTITUTION QUALITY ON XAGS COMPARING AGAINST ABC’S

&MFS COMMAND

if the simulation can be speeded up (e.g., by using Haswell
New Instructions (AVX2) which provides single-cycle bitwise
operations on longer machine words) in a future implementa-
tion of simulation-guided CEC. More importantly, by showing
a decrease in unnecessary SAT solver calls, the idea of guid-
ing CEC with expressive simulation patterns is shown to be
useful in verification as well.

IX. CONCLUSION AND FUTURE WORK

In this article, we 1) present a simulation-guided logic
synthesis and verification paradigm, which leverages pregener-
ated expressive simulation patterns to approximate the global
Boolean functions with reduced need for SAT-based verifi-
cation; 2) propose several strategies to generate expressive
simulation patterns, including random patterns, stuck-at value
checking, and resolving un-observability; 3) demonstrate the
benefits of the proposed paradigm with improved resubstitu-
tion quality and reduced SAT solver calls in CEC; and 4) show
the reusability of the expressive patterns and CEXs across
different algorithms and with ECO modifications.

Parameters influencing the expressiveness of the simulation
patterns are studied. In particular, stuck-at patterns gener-
ated with observability awareness and seeded with a small
set of random patterns are found to be the most expressive.
The expressive patterns are shown to be able to move run-
time from optimization and verification to their pregeneration,
which is advantageous because they are also shown to be
reusable in resubstitution after ECO and in a different algo-
rithm such as CEC. The experimental results show that the
simulation-guided resubstitution framework allows low-cost
consideration of global SDCs and unlimited extension of the

LEE et al.: SIMULATION-GUIDED PARADIGM FOR LOGIC SYNTHESIS AND VERIFICATION 13

TABLE VI
EFFICIENCY OF CEC WITH OR WITHOUT USING EXPRESSIVE PATTERNS

window sizes used, which improves the average network size
reduction from 1.58% to 2.77%, compared to a state-of-the-art
windowing-based resubstitution algorithm. When comparing
the best achievable quality of the two frameworks, a larger
improvement from 3.65% to 5.83% is shown. Effectiveness
of the proposed paradigm in CEC is also supported by exper-
imental results with a 9.5% reduction in the number of SAT
solver calls.

While resubstitution guided by simulation signatures auto-
matically accounts for SDCs, ODCs can also be considered
in resubstitution, resulting in better quality. Our preliminary
result on utilizing ODCs in simulation-guided resubstitution
shows about 1% further circuit size reduction at the cost of
5× more runtime. It remains our future work to enhance the
efficiency of resubstitution with ODCs. On the other hand, as
shown in Section VIII-D, using expressive patterns reduces the
chance of encountering CEXs, making it possible to further
reduce the use of SAT solving by validating several candidates
at the same time if the majority of them are legal.

Other future works include developing strategies to refine
and enhance the generated simulation patterns further and
metrics to evaluate and sort the patterns. To maximize the
benefit of the generated patterns, other algorithms adopting
this paradigm can also be developed so that the patterns can
be reused more often in a logic synthesis flow.

REFERENCES

[1] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
“Multilevel logic synthesis,” Proc. IEEE, vol. 78, no. 2, pp. 264–300,
Feb. 1990.

[2] G. De Micheli, Synthesis and Optimization of Digital Circuits.
New York, NY, USA: McGraw-Hill High. Educ., 1994.

[3] H.-P. Lin, J.-H. R. Jiang, and R.-R. Lee, “To SAT or not to SAT:
Ashenhurst decomposition in a large scale,” in Proc. ICCAD, San Jose,
CA, USA, 2008, pp. 32–37.

[4] A. Mishchenko, R. K. Brayton, J.-H. R. Jiang, and S. Jang, “Scalable
don’t-care-based logic optimization and resynthesis,” ACM Trans.
Reconfigurable Technol. Syst., vol. 4, no. 4, pp. 1–23, 2011.

[5] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and M. Soeken,
“On-the-fly and DAG-aware: Rewriting Boolean networks with exact
synthesis,” in Proc. DATE, Florence, Italy, 2019, pp. 1649–1654.

[6] S. B. Akers, “Binary decision diagrams,” IEEE Trans. Comput.,
vol. C-27, no. 6, pp. 509–516, Jun. 1978.

[7] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[8] C. A. Tovey, “A simplified NP-complete satisfiability problem,” Discrete
Appl. Math., vol. 8, no. 1, pp. 85–89, 1984.

[9] J. P. Marques-Silva and K. A. Sakallah, “Boolean satisfiability in
electronic design automation,” in Proc. DAC, 2000, pp. 675–680.

[10] A. Mishchenko, J. S. Zhang, S. Sinha, J. R. Burch, R. K. Brayton, and
M. Chrzanowska-Jeske, “Using simulation and satisfiability to compute
flexibilities in Boolean networks,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 25, no. 5, pp. 743–755, May 2006.

[11] A. Mishchenko and R. K. Brayton, “Scalable logic synthesis using a
simple circuit structure,” in Proc. IWLS, 2006, pp. 15–22.

[12] A. Mishchenko, S. Chatterjee, R. K. Brayton, and N. Een,
“Improvements to combinational equivalence checking,” in Proc.
ICCAD, 2006, pp. 836–843.

[13] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton, “FRAIGs: A
unifying representation for logic synthesis and verification,” Dept. Elect.
Eng. Comput. Sci., UC Berkeley, Berkeley, CA, USA, ERL Rep., 2005.

[14] H. Cox and J. Rajski, “Stuck-open and transition fault testing in
CMOS complex gates,” in Proc. ITC, Washington, DC, USA, 1988,
pp. 688–694.

[15] M. Damiani and G. De Micheli, “Observability don’t care sets and
Boolean relations,” in Proc. ICCAD, Santa Clara, CA, USA, 1990,
pp. 502–505.

[16] T. A. W. Jarratt, C. M. Eckert, N. H. M. Caldwell, and P. J. Clarkson,
“Engineering change: An overview and perspective on the literature,”
Res. Eng. Design, vol. 22, no. 2, pp. 103–124, 2011.

[17] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean
reasoning for equivalence checking and functional property verification,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 21, no. 12,
pp. 1377–1394, Dec. 2002.

[18] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A novel data-structure and algorithms for efficient logic optimization,”
in Proc. DAC, San Francisco, CA, USA, 2014, pp. 1–6.

[19] I. Háleček, P. Fišer, and J. Schmidt, “Are XORs in logic synthesis really
necessary?” in Proc. DDECS, Dresden, Germany, 2017, pp. 134–139.

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

[20] W. Haaswijk, M. Soeken, L. Amarú, P.-E. Gaillardon, and
G. De Micheli, “A novel basis for logic rewriting,” in Proc. ASPDAC,
Chiba, Japan, 2017, pp. 151–156.

[21] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 26, no. 2, pp. 240–253,
Feb. 2007.

[22] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” in Automation of Reasoning. Heidelberg, Germany: Springer, 1983,
pp. 466–483.

[23] T. J. Schaefer, “The complexity of satisfiability problems,” in Proc. ACM
Symp. Theory Comput., 1978, pp. 216–226.

[24] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA
technology mapping,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 2, no. 2, pp. 137–148, Jun. 1994.

[25] A. Mishchenko and R. K. Brayton, “SAT-based complete don’t-
care computation for network optimization,” in Proc. DATE, Munich,
Germany, 2005, pp. 412–417.

[26] H. Sato, Y. Yasue, Y. Matsunaga, and M. Fujita, “Boolean resubstitution
with permissible functions and binary decision diagrams,” in Proc. DAC,
Orlando, FL, USA, 1991, pp. 284–289.

[27] V. N. Kravets and K. A. Sakallah, “M32: A constructive multilevel logic
synthesis system,” in Proc. DAC, 1998, pp. 336–341.

[28] V. N. Kravets and P. Kudva, “Implicit enumeration of structural changes
in circuit optimization,” in Proc. DAC, San Diego, CA, USA, 2004,
pp. 438–441.

[29] W. Craig, “Linear reasoning. A new form of the Herbrand-Gentzen
theorem,” J. Symb. Logic, vol. 22, no. 3, pp. 250–268, 1957.

[30] H. Riener, E. Testa, L. Amaru, M. Soeken, and G. De Micheli, “Size
optimization of MIGs with an application to QCA and STMG tech-
nologies,” in Proc. Int. Symp. Nanoscale Archit., Athens, Greece, 2018,
pp. 157–162.

[31] L. Amarú et al., “Improvements to Boolean resynthesis,” in Proc. DATE,
Dresden, Germany, 2018, pp. 755–760.

[32] S. Chatterjee, A. Mishchenko, R. K. Brayton, X. Wang, and
T. Kam, “Reducing structural bias in technology mapping,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 12,
pp. 2894–2903, Dec. 2006.

[33] J. P. Roth, “Diagnosis of automata failures: A calculus and a method,”
IBM J. Res. Develop., vol. 10, no. 4, pp. 278–291, Jul. 1966.

[34] J. Cong and K. Minkovich, “LUT-based FPGA technology mapping for
reliability,” in Proc. DAC, Anaheim, CA, USA, 2010, pp. 517–522.

[35] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in Proc. Int. Conf. Comput.-Aided Verif.,
2000, pp. 154–169.

[36] B. Alizadeh and Y. Abadi, “Incremental SAT-based correction of gate
level circuits by reusing partially corrected circuits,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 67, no. 12, pp. 3063–3067, Dec. 2020.

[37] S. Mitra and K. S. Kim, “XPAND: An efficient test stimulus com-
pression technique,” IEEE Trans. Comput., vol. 55, no. 2, pp. 163–173,
Feb. 2006.

[38] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Proc. CAV, 2010, pp. 24–40.

[39] M. Soeken et al., “The EPFL logic synthesis libraries,” 2019. [Online].
Available: arXiv:1805.05121.

[40] V. N. Kravets, J.-H. R. Jiang, and H. Riener, “Learning to automate
the design updates from observed engineering changes in the chip
development cycle,” in Proc. DATE, 2020, pp. 738–743.

Siang-Yun Lee received the B.Sc. degree from
the Department of Electrical Engineering, National
Taiwan University (NTU), Taipei, Taiwan, in 2019.
She is currently pursuing the Ph.D. degree with
Integrated Systems Laboratory, EPFL, Lausanne,
Switzerland, led by Prof. G. De Micheli.

In NTU, she worked with Prof. J.-H. R. Jiang on
threshold logic synthesis. She is currently a main-
tainer of the EPFL logic synthesis library mockturtle.
Her research interests include logic synthesis and
design automation for emerging technologies.

Heinz Riener received the B.Sc. and M.Sc. degrees
from the Technical University Graz, Graz, Austria,
in 2008 and 2011, respectively, and the Ph.D. degree
in computer science from the University of Bremen,
Bremen, Germany, in 2017.

He is a Researcher with EPFL, Lausanne,
Switzerland. From 2015 to 2017. His research
interests are logic synthesis, formal methods, and
computer-aided verification of hardware and soft-
ware systems.

Alan Mishchenko (Senior Member, IEEE) received
the M.S. degree from the Moscow Institute of
Physics and Technology, Moscow, Russia, in 1993,
and the Ph.D. degree from the Glushkov Institute of
Cybernetics, Kiev, Ukraine, in 1997.

In 2002, he joined the EECS Department,
University of California at Berkeley, Berkeley, CA,
USA, where he is currently a Full Researcher. His
current research interests include computationally
efficient logic synthesis, formal verification, and
machine learning.

Robert K. Brayton (Fellow, IEEE) received the
Ph.D. degree in mathematics from Massachusetts
Institute of Technology, Cambridge, MA, USA, in
1961.

He was a member of the Mathematical Sciences
Department, IBM T. J. Watson Research Center,
Yorktown Heights, NY, USA, until he joined the
EECS Department, University of California at
Berkeley, Berkeley, CA, USA, in 1987, where he
held the Buttner Chair, the Cadence Distinguished
Professorship of Electrical Engineering and is cur-

rently a Professor with the Graduate School.
Dr. Brayton is a member of the National Academy of Engineering.

Giovanni De Micheli (Life Fellow, IEEE) received
the Nuclear Engineer degree from the Politecnico
di Milano, Milan, Italy, in 1979, and the M.S.
and the Ph.D. degree in electrical engineering and
computer science from the University of California
at Berkeley, Berkeley, CA, USA, 1980 and 1983,
respectively.

He was a Professor of Electrical Engineering
with Stanford University, Stanford, CA, USA. He
is a Professor and the Director of the Integrated
Systems Laboratory, EPFL, Lausanne, Switzerland.

His current research interests include several aspects of design technolo-
gies for integrated circuits and systems, such as synthesis for emerging
technologies.

Prof. De Micheli is a member of the Academia Europaea and an
International Honorary member of the American Academy of Arts and
Sciences. He is a Fellow of ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

