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Abstract—Ion-sensors play a major role in physiology and
healthcare monitoring since they are capable of continuously col-
lecting biological data from body fluids. Nevertheless, ion inter-
ference from background electrolytes present in the sample is a
paramount challenge for a precise multi-ion-monitoring. In this
work, we propose the first system combining a battery-powered
portable multi-channel electronic front-end, and an embedded
Multi-output Support Vector Regressor (M-SVR), that supplies
an accurate, continuous, and real-time monitoring of sodium,
potassium, ammonium, and calcium ions. These are typical an-
alytes tracked during physical exercise. The front-end interface
was characterized through a sensor array built with screen-printed
electrodes. Nernstian sensitivity and limit of detection comparable
to a bulky laboratory potentiometer were achieved in both wa-
ter and artificial sweat. The multivariate calibration model was
deployed on a Raspberry Pi where the activity of the target ions
were locally computed. The M-SVR model was trained, optimized,
and tested on an experimental dataset acquired following a design
of experiments. We demonstrate that the proposed multivariate
regressor is a compact, low-complexity, accurate, and unbiased
estimator of sodium and potassium ions activity. A global normal-
ized root mean-squared error improvement of 6.97%, and global
mean relative error improvement of 10.26%, were achieved with
respect to a standard Multiple Linear Regressor (MLR). Within
a real-time multi-ion-monitoring task, the overall system enabled
the continuous monitoring and accurate determination of the four
target ions activity, with an average accuracy improvement of
27.73% compared to a simple MLR, and a prediction latency of
22.68 ± 1.73µs.

Index Terms—Front-end interface, healthcare monitoring,
multi-ion-monitoring, multivariate calibration, physiology, real-
time monitoring.

I. INTRODUCTION

ION-SENSING technology is increasingly receiving interest
due to its ability to provide a non-invasive and continuous
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monitoring of biomarkers that are indicators of physiological
and healthcare status [1]–[3]. In particular, they could be in-
tegrated into smart and portable sensing front-end interfaces
enabling a real-time healthcare monitoring [4]. For instance,
in sport applications, wearable sweat sensors are used to mon-
itor muscle activity and fatigue by tracking potassium and
ammonium ions concentration [5], [6]. Dehydration is indi-
cated by sodium ions level [7], while bone mineral loss is
measured through calcium ions concentration [8]. The afore-
mentioned ions are relevant as well for healthcare monitoring
applications, since they are indicators of cystic fibrosis, hypo-or
hyperkalemia, liver or kidney physiological dysfunctions [9],
[10]. Most research and development around ion-sensors are
focused on improving transduction mechanisms of Ion-Selective
Electrodes (ISEs), endeavoring to increase sensor sensitivity,
selectivity, and robustness, for a single target electrolyte [11].
Nevertheless, a multi-ion-sensing platform is desirable for a
comprehensive physiological insight of the subject under test,
in order to assert a correct electrolytic balance, and because
of correlations between several biomarkers’ concentration [12].
Besides, a multi-sensing platform is suitable to understand
and tackle ion interference phenomena. The latter is strongly
degrading sensing performances due to intrinsic sensor cross-
selectivity bounds [13]. Ion interference is even more severe
in unbalanced electrolyte media such as sweat samples, where
sodium and potassium ions are present at high concentration.
Therefore, tracking diluted analytes such as ammonium or cal-
cium ions becomes intricate because of interference from the
two prevalent ions.

Chemometric tools are increasingly applied in multi-analyte-
sensing, where advanced mathematical and signal process-
ing methods are implemented to improve sensing perfor-
mances [14]. Multivariate calibration models are built in order
to bind the electrical responses transduced by the sensor array
to the concentration or activity of the target ions. Complex
Artificial Neural Network (ANN) architectures were presented
in literature to overcome ion interference phenomena, for sev-
eral ion-sensing applications [15]–[23]. For instance, in [16], a
genetic algorithm followed by a feed-forward neural network
was implemented to simultaneously determine six ions from an
ISE array, in water samples. However, these processing models
require expensive computation and memory resources, mainly
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Fig. 1. Real-time and continuous multi-ion-monitoring of electrolytes in arti-
ficial sweat samples, where a multivariate calibration model is deployed on an
edge device.

during the calibration phase, have a higher latency, and are
aimed to be used in post-processing pipelines in bulky systems.
We have recently presented in [24], a Multi-output Support
Vector Regressor (M-SVR), that has been demonstrated to be
a compact, accurate, robust, and low-complexity multivariate
calibration model for sodium, potassium, lithium, and lead ions
monitoring, in various healthcare applications. The regressor
was trained and evaluated with emulated synthetic datasets of
different size, where a compact ion-sensing model was imple-
mented to simulate ion-sensor responses in artificial sweat.

In this work, we propose a complete electronic tongue sys-
tem coupling: a multi-ion-sensor array, an electronic front-end
interface, and the M-SVR calibration model deployed on an
edge device, enabling an accurate, continuous, and real-time
determination of sodium, potassium, ammonium, and calcium
ions in artificial sweat, for physiology applications (see Fig. 1).
The manuscript is organized as follows: Section II describes
the different parts of the system, i.e., the sensing interface,
the hardware front-end, and the proposed M-SVR model; in
Section III, the material and methods implemented in this work
are detailed; the characterization and validation of the front-end
interface and embedded multivariate regressor are presented
and discussed in Section IV; the conclusions are provided in
Section V.

II. SYSTEM OVERVIEW

The proposed system for real-time multi-ion-monitoring is
shown in Fig. 2. The multi-ion-sensing panel consists of four
solid-contact ISEs fabricated on commercial Screen-Printed
Electrodes (SPEs), enabling concurrent sodium, potassium, am-
monium, and calcium ions sensing in artificial sweat samples.
A double-junction Ag/AgCl reference electrode was used as
potential reference. The sensing panel was interfaced to an
analog front-end carrying out Open Circuit Potential (OCP)

acquisition and signal conditioning. The hardware was powered
by a 3.7 V lithium ion battery. The processed signals were re-
layed to a Raspberry Pi 4B through Bluetooth Low Energy (BLE)
technology. A smartphone was used as control terminal for
the edge device through a Virtual Network Computing (VNC)
session. A Graphical User Interface (GUI) developed in PyQt5
was executed on the Raspberry Pi, enabling user configuration
of the measurements performed by the sensing front-end. Then,
when the measurements started, the collected OCP signals were
fed to the trained embedded M-SVR model that computed the
activity of the four target ions, and the results were displayed
in real-time on the GUI. The sensor panel, the analog front-end
interface, and the proposed M-SVR model are described in this
section.

A. Sensor Panel

The multi-ion-sensing array consists of four solid-contact
ISEs built on ceramic SPEs, as shown in Fig. 3. Such technology
is robust and facilitates the acquisition of large datasets for
the validation of the front-end interface and the training of the
multivariate calibration model. The functionalization of the ion-
sensors is thoroughly described in Section III-B. A temperature
sensor is also needed to monitor in situ temperature for on-body
measurements. As a result, a Resistive Thermal Device (RTD)
was microfabricated on a polyimide flexible substrate. Platinum
serpentine-shaped wire of 20 foldings, with a width of 130μM,
was patterned with lithographic techniques. The complete mi-
crofabrication process flow was described in [25]. The nominal
resistance of the device is of 1.2 kΩ at room temperature.

B. Readout Circuits

The front-end circuit was built with commercial off-the-shelf
components, and comprises four ion-sensing channels and a
temperature readout circuit for monitoring body temperature.

Ion-sensing was accomplished by a potentiometric readout
circuit, as illustrated in Fig. 5(a). The potential of the ISE
was measured against a reference electrode of stable poten-
tial, in open circuit conditions. Namely, MAX44242 voltage
buffers of 500 pA input bias current ensured a quasi-null current
polarization of the electrochemical cell. Such tiny current is
needed, though, in order to increase sensor sensitivity and to
reduce sensor potential drifts [26]. A single-ended differential
amplifier was used to resolve the OCP between the ISE and
the shared reference electrode. An amplification gain of 3.96
was implemented so as to use the whole dynamic range of the
Analog-to-Digital Converter (ADC). A fourth-order low-pass
filter was obtained by cascading two second-order Sallen-Key
low-pass filters of Fig. 5(b). A corner frequency of 1.37 Hz was
designed, considering that the cell potentials are DC signals.
Moreover, four independent readout channels were replicated
to monitor the four target ions.

As for in situ temperature measurement, the resistance of
the RTD varies in a predictable way with temperature [27].
Therefore, a resistance-to-voltage converter was implemented,
where the RTD was polarized by a DC current source, and
the voltage across the device was measured. A straightforward
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Fig. 2. Real-time multi-ion-monitoring system comprising the sensing panel that is interfaced to a battery-powered portable analog front-end, and a Raspberry
Pi on which the M-SVR is deployed for the prediction of the activity of the four target ions. A smartphone serves as terminal for the edge node through a Virtual
Network Computing session.

Fig. 3. (a) Solid-contact ISE fabricated on a ceramic SPE and its cross-section,
(b) microfabricated serpentine RTD.

solution is to implement a voltage divider like in [28], [29],
but loading effects might degrade sensing accuracy. Moreover,
the current source should be designed carefully so as to avoid
over-heating the RTD. The proposed circuit is displayed in
Fig. 5(c). A DC current source was obtained with an improved
Howland current source [30], where a precision shunt-mode
voltage reference of 1 V was the controlling input. The oper-
ational amplifier OA1 sensed the input and the feedback signal
differentially, setting a voltage drop of 1 V across Rref = 1 kΩ.
The DC output impedance of the current source was of 333 MΩ,
and the current pump output a stable DC current of 1 mA to
polarize the RTD. The voltage across the thermistor was sensed
byOA3, and a Sallen-Key low-pass filter was added to attenuate
high-frequency noise. The Howland current source was sized so
as to measure nominal resistances of 1.2 kΩ, that corresponds
to the approximate value of the microfabricated RTD at room
temperature.

Fig. 4. Analog front-end interface including a four-channel potentiometric
readout circuitry and a resistance-to-voltage converter for temperature measure-
ment.

C. Hardware Front-End

The analog front-end interface is displayed in Fig. 4. It was
manufactured on a 1.6 mm FR4 rigid substrate, with dimensions
of 30× 45 mm that are compliant for an integration onto a
wearable sensing system. A seven-position flat-flex type edge
connector was soldered to interface the hardware to an integrated
sensing platform such as in [31], but micro USB-B connec-
tors were soldered for prototyping and for the measurements
performed on SPEs that are presented in this work. A low-
power ATxMega32E5 Micro-Controller Unit (MCU) operating
at 32.768 kHz, with a 8/16-bit AVR RISC CPU, is the core
processing unit. It embeds a 12-bit resolution sample-and-hold
ADC. Oversampling and decimation were implemented in order
to achieve 16-bit resolution. In multi-sensing mode, the four po-
tentiometric channels were scanned and sampled at 4.096 kHz,
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Fig. 5. Readout circuits for ion-sensing and temperature measurement. (a) Potentiometric readout circuit. (b) Second-order Sallen-Key low-pass filter.
(c) Resistance-to-voltage converter where the RTD is polarized by an improved Howland current source.

where conversions were triggered successively. The MCU fea-
tures a serial port UART interface that was used to convey and
receive commands and data to/from a RN4871 BLE 4.2 module.
The latter was configured through ASCII commands during
firmware initialization. The readout front-end was powered by
a 3.7 V lithium ion rechargeable battery with a capacity of 2 Ah.
MCP1801, low quiescent current, low dropout voltage regulators
were used to supply stable 3.3 V to the analog blocks, to the
MCU, and to the on-board Bluetooth module.

A Raspberry Pi 4B was used as an edge node to configure the
front-end readout circuit, and to perform the real-time determi-
nation of the four target ion activity through the M-SVR model it
embeds. The hardware supports a 64-bit quad core Cortex-A72
processor (armv71 architecture), with 4 GB LPDDR4 RAM. It
features Bluetooth 5.0 BLE, and 2.4 GHz and 5.0 GHz IEEE
802.11ac wireless connectivity. A 32 GB micro-SD card was
used to store the Raspbian operating system image, the open
source software libraries, drivers, and applications, and to store
the data acquired during measurements. A smartphone was used
as display and control terminal of the Raspberry Pi through a
VNC session.

D. Multi-Output Support Vector Regressor

Multivariate calibration is an inverse problem since the
controlled variables (ion activity) are estimated from the
dependent variables (OCP signals). For N observations, let
X = {xn}n=1,...,N , with xn ∈ RP , denote the matrix of OCP

signals from the P = 4 ISEs, and Y = {yn}n=1,...,N , with
yn ∈ RM , denote the matrix of activity of the M = 4 target
ions. The multivariate calibration problem can be formulated
as Y = (XW + b) +E, where (W,b) is the regressor model
comprising the regression coefficients and the bias term, and E
is the matrix of prediction error. The proposed M-SVR model is
a multi-input multi-output regressor that is more robust to noise
and non-linearity than a traditional single-output SVR, since it
considers linear and non-linear cross-correlations between X
and Y. Thus, each column of W are optimized concurrently.
The objective function is

L(W,b) =
1

2

M∑
m=1

‖w∗,m‖2 + C
N∑

n=1

L(un),

with un = ‖en‖2 s.t. en = yn − (WTΦ(xn) + b). (1)

where Φ is the non-linear function defining the kernel function
κ(xi,xj) ≡ Φ(xi)

T · Φ(xj). C is an hyper-parameter trading-
off soft margin violations and minimization of the distance ε
from the support vectors to the SVR model. L is a cost function
defined as

L(u) =

{
0, u < ε.

u2 − 2uε+ ε2, u ≥ ε.
(2)

A quadratic cost-function is necessary to pack the constraints
for all M output dimensions into a single error vector, that is not
possible with L1-based Vapnik loss function typically used in
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TABLE I
ARTIFICIAL SWEAT COMPOSITION

single-output SVR [32]. The M-SVR problem was solved using
an Iterative Reweighted Least-Squares (IRWLS) procedure. The
latter was obtained by performing a first-order Taylor approxi-
mation of (2) over the previous solution (W,b), and by doing a
quadratic approximation of the resulting expansion. The IRWLS
problem at the kth iteration is

L′(W,b) =
1

2

M∑
m=1

‖w∗,m‖2 + 1

2

N∑
n=1

anu
2
n + cste,

where an =
C

uk
n

dL(u)

du

∣∣∣
uk
n

=

{
0, uk

n < ε.
2C(uk

n−ε)
uk
n

, uk
n ≥ ε.

(3)

The proof of convergence of the IRWLS procedure was
demonstrated in [33], and the minimization implementation of
(3) has been presented in [24]. It results that the procedure
converges in less than 15 iterations, each iteration having the
complexity of M Ordinary Least-Squares (OLS) minimization.
This makes the proposed model appealing compared to single-
output SVRs that uses quadratic programming [34].

III. MATERIAL AND METHODS

In this section, the material and methods implemented in this
work are described.

A. Chemicals

All chemicals were purchased from Merck (Germany)
unless otherwise stated. These include H2PtCl6, H2SO4,
4-tert-Butylcalix[4]arene-tetraacetic acid tetraethylester
(Sodium ionophore X), Valinomycin (Potassium ionophore I),
Nonactin (Ammonium ionophore I), N,N-Dicyclohexyl-N,’
N’-dioctadecyl-diglycolic diamide (Calcium ionophore IV),
Potassium tetrakis(4-chlorophenyl)borate, 2-Nitrophenylocty-
lether (o-NPOE), bis(2-ethylhexyl)sebacate (DOS), Poly(vinyl
chloride) (PVC), Tetrahydrofuran (THF), NaCl, KCl,
NH4Cl, CaCl2, MgCl2, Urea, L-Lactic acid, D-glucose,
L-Ascorbic acid.

The artificial sweat composition is detailed in Table I, con-
sidering the nominal concentration of the electrolytes and or-
ganic compounds typically constituting sweat samples. Sodium,
potassium, ammonium, and calcium ions are the target ions for
this application. Magnesium ions are diluted in artificial sweat,
so they are not relevant to monitor.

TABLE II
ISM COMPOSITIONS FOR 100 MG MIXTURE

B. Ion-Sensors Fabrication

Ceramic SPEs (platinum working electrode with 12.56 mm2

active area; platinum counter electrode; silver reference elec-
trode) were purchased from Metrohm (Switzerland). An Autolab
PGSTAT 302 N potentiostat was used for the electrochemical
nanostructuration of the ISEs.

The working electrodes of the SPEs were cleaned by cyclic
voltammetry cycles in 0.5 MH2SO4. Then, platinum nanostruc-
tures were deposited by applying −1V in (25 mMH2PtCl6,
50 mM H2SO4) solution, following the conformal procedure
from [35]. Next, 10μL of ion-selective membrane (ISM) cock-
tail was drop-casted on top of the electrode. The composition of
the different ISMs are summarized in Table II. The ISEs were
left to dry overnight. The ion-sensors were conditioned with a
solution of the corresponding target ion at least one day before
the measurements. Namely, solutions of 10 mM were prepared
for sodium and potassium ion-sensors, while solutions of 1 mM
were prepared for ammonium and calcium ion-sensors, since
these are approximately the nominal concentrations of these
analytes in sweat.

C. Design of Synthetic Training and Test Sets

The multivariate calibration model was trained and optimized
before being deployed for inference. The training dataset should
be representative enough of sweat compositions obtained during
physical exercise, but acquiring Big Data is extremely expen-
sive in terms of chemical resources and time. As a result, an
experimental dataset was obtained following a factorial design
of experiments. Taguchi method was implemented to generate
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TABLE III
OA16(4

5)

TABLE IV
DISCRETE LEVELS OF ION ACTIVITY OF THE FIVE CONSTITUTING IONS

(activity · 1e− 3)

a subset of independent artificial sweat electrolyte composi-
tions, leveraging the orthogonal array OA16(4

5) shown in Ta-
ble III. The five factors C0− C4 represent the five constituents,
sodium, potassium, ammonium, calcium, and magnesium ions.
The four levels in the orthogonal array correspond to discrete
values of ion activity. Therefore, the activity of the electrolytes
were quantized over their detection range, as shown in Table IV.
Seven levels were used so as to obtain a finer subdivision of
the detection range, and in order to tune the size of the training
set. Namely, eight four-level factor combinations of these seven
discrete ion activities were used in the orthogonal array, yielding
a synthetic dataset of 16 · 8 = 128 samples, as illustrated by
Fig. 6. This dataset size is large enough to train the M-SVR
model accurately [24].

As for the validation and test set, artificial sweat compo-
sitions were designed by random sampling over the range of
activity of the constituting ions. A Weibull distribution was
used (scale = 0.5, shape = 2), yielding 32 validation, and 32
random test samples.

D. Real-Time Multi-Ion-Monitoring Validation Setup

Real-time multi-ion-monitoring in artificial sweat was per-
formed, emulating physical activity that leads to a steady

Fig. 6. Four-level factor combinations used for the design of the synthetic
training set consisting of 128 samples.

TABLE V
ACTIVITY OF THE CONSTITUTING IONS EMULATING REAL-TIME

MULTI-ION-MONITORING

increase of the activity of the five constituting ions. The initial
sample consisted of the five electrolytes at their nominal activity
in sweat. Then, sodium, potassium, ammonium, calcium, and
magnesium ions were added successively in the sample, every
2 min. The activity of the ions over the experiment are reported
in Table V. Such experimental design enables a quantitative
assessment of the accuracy of the M-SVR model deployed on
the edge device.

E. Software

Data processing pipeline and multivariate models were imple-
mented within a Python 3.7 environment. OLS minimization was
performed with Singular Value Decomposition (SVD), where
LAPACK routine [36] was used. The other multivariate calibra-
tion models used as benchmark for M-SVR were implemented
as follows. Multiple Linear Regression (MLR) was carried out
as multiple OLS minimizations. Single-output SVRs were con-
structed leveraging LIBSVM library that supports quadratic pro-
gramming [34]. Moreover, feed-forward neural network models
were implemented through Keras high-level API [37], with
TensorFlow 2.0 deep learning library as computational
back-end.

IV. RESULTS AND DISCUSSION

In this section, all the parts constituting the proposed elec-
tronic tongue system are characterized and validated in order
to assess its performance for a real-time multi-ion-monitoring
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Fig. 7. Electrical characterization of analog front-end circuits: (a) single
potentiometric readout circuit, (b) resistance readout circuit.

task, where accuracy, robustness, latency, and portability are the
principal figures of merit considered.

A. Analog Front-End Electrical Characterization

The readout circuitry of the analog front-end interface were
characterized electrically. First, a DC voltage between 0 mV and
540 mV was applied between the potentiometric channel input
and the grounded reference electrode terminal. The output volt-
age was measured and plotted in Fig. 7(a). A voltage gain of 3.96
was obtained for the four channels, that corresponds to the gain
of the amplification stage of the differential amplifier. An excel-
lent linearity was observed (R2 > 0.9999, RMSD = 0.70 mV
with respect to the linear fit), with an input range of [20; 520]mV.
An integrated input-referred voltage noise of 0.2286μV was
computed in the range [1e− 3; 1.4]Hz. Likewise, the resistance-
to-voltage converter implemented for temperature measurement
was characterized by sampling the output voltage while different

high-precision value resistors ranging from 120Ω to 1.9 kΩ
were applied at the input of the readout circuit. The results are
displayed in Fig. 7(b), showing a sensitivity of 1.0032 mV/Ω,
and a good linearity (R2 > 0.9998, RMSD = 6.74mV with
respect to the linear fit), with an input range of [120; 1800] Ω.
For both potentiometric and resistance readout, the results of
the PSpice model simulations of the circuit blocks are displayed
in Fig. 7, highlighting an excellent electrical behavior of the
readout circuitry.

Regarding portability and connectivity, the BLE module fea-
tures a Received Signal Strength Indicator (RSSI) of −51 dBm
at 1 m. It was only active during data transactions, where a
sampling rate of ten samples per second was used for single-
channel acquisition (single ion, or temperature measurement),
and five samples per second for monitoring the four potentio-
metric channels simultaneously. The sensing interval time could
be tuned by the user through the GUI executed on the Raspberry
Pi. As for the power budget, the average power consumed by
the hardware was of 135 mW, where 90.45 mW was absorbed
by the analog circuitry (four ion-sensing channels: 68.2 mW,
temperature readout: 22.25 mW), 35.1 mW was consumed by
the digital components, and 9.45 mW was spent during BLE
transactions. With the 3.7 V and 2 Ah capacity Li-ion battery
used, the front-end interface supports a lifetime of 54 hours of
multi-sensing measurements, largely sufficient for continuous
monitoring applications.

B. Analog Front-End Electrochemical Characterization

The analog front-end interface was characterized with the
fabricated ISEs and the RTD sensor. The ISEs were first charac-
terized in water samples to assess a correct Nernstian behavior.
Then, they were used in artificial sweat samples. Sensor cali-
brations were performed with target ion concentrations ranging
from 10−9 M to 10−0.5 M, for sodium, potassium, ammonium,
and calcium ions. Identical experiments were carried out with
an EMF6 Lawson Labs precision electrode interface in order
to evaluate the performance of the hardware front-end. The
results are reported in Table VI, where five sensors were built for
each type of ISE, for statistical significance. Typical calibration
curves are displayed in Fig. 8, with sodium-ISEs, in artificial
sweat. We observe that all solid-contact ISEs exhibit Nernstian
responses in both water and artificial sweat. Sensor sensitivity
are slightly lower in artificial sweat background due to ion
interference. The sensor lower LODs are reported as well. It
indicates the minimum detectable quantity of target ion. It is
computed as the intersection of the two linear portions of the
calibration curve. Namely, the flat potential regime, and the
detection range exhibiting a Nernstian slope (see Fig. 8 for
illustration). Sensor lower LODs are much larger in artificial
sweat than in water. This is due to the interfering background
electrolytes that shift the flat potential up, pushing the elbow
of the calibration curve to higher ion activity, thus reducing
the lower detection range [38]. Nevertheless, the lower LODs
remain several factors of magnitude below the lower bound of
range of interest of the target ions. Besides, the results obtained
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TABLE VI
CALIBRATION OF SODIUM, POTASSIUM, AMMONIUM, AND CALCIUM IONS SOLID-CONTACT ISES IN WATER AND ARTIFICIAL SWEAT

1EMF6 Lawson Labs electrode interface.
2Artificial Sweat.

Fig. 8. (a) Sodium-ISE calibration in artificial sweat performed with the
proposed hardware front-end, and (b) with an EMF6 Lawson Labs potentiometer.
The time traces acquired during measurements are displayed in the top left
insight.

with the hardware front-end are comparable with the ones ob-
tained with the bulky EMF6 Lawson Labs potentiometer.

Next, RTD sensors were characterized with the hardware
front-end. The temperature was controlled using a VWR Profes-
sional Hotplate in the range [34; 43]◦C. The sensors patterned

Fig. 9. Resistive thermal device calibration with the hardware front-end.

on a flexible polyimide substrate were directly interfaced to the
edge connector of the hardware, reducing contact resistances.
The calibration curve is displayed in Fig. 9, showing a sensi-
tivity of 6.56 mV/◦C, and an excellent linearity (R2 = 0.9983,
RMSD = 0.7719mV). Thus, the readout circuit has been de-
signed correctly, around the operating point of the RTD, i.e. at
1.2 kΩ.

C. Multi-Output Support Vector Regressor Training,
Optimization, and Testing

This section discusses the training and optimization of the
proposed M-SVR model. Training, validation, and test datasets
were acquired following the design of experiments described
in Section III-C. Namely, OCP from sodium, potassium,
ammonium, and calcium ion ISEs were measured in different
samples, with pre-determined electrolyte composition. In
practice, the potentials were measured, first, in blank samples
(artificial sweat containing only organic compounds), and
then the sensor responses were measured in presence of
the constituting ions. Such differential measurement lowers



HANITRA et al.: REAL-TIME MULTI-ION-MONITORING FRONT-END WITH INTERFERENCE COMPENSATION 1101

Fig. 10. Experimental synthetic datasets acquired to train, optimize, and
evaluate the multivariate calibration models.

TABLE VII
PEARSON CORRELATION COEFFICIENTS BETWEEN MEASURED OCPS AND ION

ACTIVITIES, FOR THE TRAINING SET

the impact of sensor drifts from one sample to another.
The obtained dataset is displayed in Fig. 10. The 128 training
samples were designed with an orthogonal array, explaining
the grouping of sensor responses around the seven discrete
ion activities chosen for each analyte. The Pearson correlation
coefficients between measured OCPs and ion activities, for
the training set, are reported in Table VII. They reflect the
non-linearity in the sensing channels due to ion interference,
that is highlighted by the potential dispersion in y-axis in
Fig. 10. The non-linear effect is enhanced at lower ion
activity, as expected. Moreover, potassium and ammonium
sensors suffer more from ion interference due to lower
sensor cross-selectivity. Namely, selectivity coefficients
of log Kpot

K+,Na+ = −0.66, log Kpot

K+,NH+
4

= −0.28,

log Kpot

NH+
4 ,Na+

= −1.79, and log Kpot

NH+
4 ,K+

= −1.37 were

measured with fixed-interference method, suggesting that the
interfering ions have a higher contribution to the potential
observed at these ISEs. As for the 32 validation and 32 test
samples, they were acquired with random sample composition,
thus, the activity of the analytes span the whole detection range
of the four target ions.

Next, the experimental dataset was used to train the M-SVR
model. The input tensor was standardized to zero-mean and

TABLE VIII
METRICS OBTAINED DURING TRAINING AND EVALUATION OF A POLYNOMIAL

M-SVR (d = 4, b = 1, γ = 1e− 3, C = 1e3, ε = 1e− 7)

unit-variance. The labels used were the logarithm in base 10
of the activity, since E vs log a is linear for sensors exhibiting a
Nernstian response, without ion interference. Non-linear kernel
functions were used to cope with the non-linearity introduced
by ion interference in the dataset. Therefore, polynomial kernel
κpoly(xi,xj) = (γ〈xi,x

T
j 〉+ b)d, and Gaussian Radial Basis

Function (RBF) κrbf (xi,xj) = exp(−γ||xi − xj ||2) were im-
plemented. The model hyper-parameters (C and ε) and the kernel
hyper-parameters were optimized using a grid-search procedure.
Namely, for each set of hyper-parameters, the M-SVR model
was trained and evaluated with the validation set. The Normal-
ized Root Mean-Squared Error (NRMSE) and Mean Relative
Error (MRE) were the metrics used throughout this work. They
are defined as

NRMSE =
100

y

√
1

Ntest

∑Ntest

n=1
(yn − ŷn)

2, (4)

MRE =
100

Ntest

Ntest∑
n=1

|yn − ŷn|
yn

, (5)

Where y is the mean of the test set labels, yn and ŷn are
the ground truth and predicted log-activity of the primary ions,
respectively. Normalized metrics are required to balance error
contributions from analytes highly concentrated (sodium ions),
and diluted analytes in the sample (calcium ions). In addition,
the two metrics do not over-penalize outliers. Compact metrics
are obtained by summing the NRMSE and MRE for each of the
four target ions, yielding Total_NRMSE and Total_MRE.

The heatmaps displayed in Fig. 11 show the Total_NRMSE
obtained with a polynomial and Gaussian RBF kernel. For
visualization purposes, the hyper-parameters d, b, and ε were
fixed, and the plot illustrates the impact of C and γ on the
accuracy of the regressor. C and γ were selected by trading-off
model generalization capability, and risk of over-fitting to the
training dataset. Lower values of C were chosen, for identical
accuracy achieved, since it constrains less the model, hence,
reduces over-fitting. The best M-SVR model was then evaluated
on an external test set, of one-fourth of the size of the training set.
Polynomial M-SVRs yield slightly better results than Gaussian
RBF ones. The metrics obtained with such kernel M-SVR are
reported in Table VIII.

Calcium-ISEs seem to be predicted better since they have
a higher selectivity with respect to monovalent cations, and
magnesium ions that are interfering with calcium sensors are
rather diluted in artificial sweat. Larger prediction errors were
obtained for potassium and ammonium sensors that suffer from
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Fig. 11. Heatmaps of grid-search on hyper-parameters C and γ for the
optimization of polynomial and Gaussian RBF M-SVRs. The optimal hyper-
parameters are the ones yielding the lowest Total_NRMSE.

interference due to lower sensor cross-selectivity. As for sodium-
ISEs, they exhibit a rather good linearity in the training dataset
(see Table VII), suggesting the use of a linear model. However,
we recall that M-SVR is a multivariate multi-output regressor
that optimizes the calibration of the four ions concurrently, and
not independently like with single-output SVRs. This explains
the higher prediction error observed for sodium sensors. The
M-SVR model accuracy was evaluated by plotting the pre-
determined ion activities against the predicted ones, for the
four target ions (see Fig. 12). The scatter plots are dispersed
along the 1:1 line for both sodium and potassium ions, where
the 95% confidence interval of the slope and intercept of the
fitted model contain one and zero, respectively. It results that
M-SVR is an unbiased estimator for sodium and potassium
ions prediction. The model prediction is not consistent for the
determination of ammonium and calcium ions. This is due to
dataset scarcity and/or to the severity of ion interference for these
sensors.

D. Benchmarking With Other Multivariate Calibration Models

Different multivariate calibration models were used to bench-
mark the proposed M-SVR model. Namely, a simple MLR,
single-output SVRs, and Multi-Layers Perceptron (MLP) mod-
els were implemented. For the configuration of MLP models,
refer to the work presented in [24]. An hyper-parameters grid-
search similar to the one detailed in Section IV-C was performed.

Fig. 12. Scatter plot of target log aX vs predicted ̂log aX for Na+, K+,
NH+

4 , and Ca2+ ISEs (32 test samples). The linear fit and its 95% confidence
interval are plotted, where R2 is the coefficient of determination. The red plot
is the 1:1 line.

Fig. 13. Metrics obtained during training and evaluation of different multi-
variate calibration models. The total metrics are reported.

The metrics obtained during the training and testing phases are
displayed in Fig. 13. Non-linear regressors improve prediction
accuracy compared to a simple linear model. NRMSE improve-
ments of 9.14, 6.97, 7.85%, and MRE improvement of 18.45,
10.26, 12.31% were achieved with single-output SVRs, M-SVR,
and MLP model, respectively. The multivariate calibration mod-
els generalize well with unseen data since the metrics during
the test phase are better than in validation phase. Single-output
SVRs provide the least prediction error. However, we recall that
the latter consist of four uncorrelated regressors that optimize
the prediction of the four target ion activity independently.
Hence, a SVR closer to a linear-SVR was obtained for predicting
sodium ions activity, and a non-linear SVR was more suitable
for ammonium ions. Conversely, M-SVR and MLP models
are multivariate models. They are built by taking into account
correlations in the multidimensional output, namely, the four
target ions activity.
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TABLE IX
BENCHMARKING OF MODEL ACCURACY

1Root mean-squared deviation.
2Theil’s partial inequality coefficients.

Moreover, the multivariate models accuracy was evaluated by
regressing the pre-determined ion activities against the predicted
values. The slope and intercept of the linear fit with a 95%
confidence interval, the Root Mean-Squared Deviation (RMSD)
of the predicted ion activities against the 1:1 line, and the Theil’s
partial inequality coefficients are reported in Table IX. The latter
are the decomposition of the sum of squared of predicted errors
into the proportion associated with mean difference between
log aX and ̂log aX (Ubias), the proportion associated with
the slope of the linear fit and the 1:1 line (Uslope), and the
proportion associated with the variance in log aX unexplained
by ̂log aX (Uerror). The coefficients provide an assessment of
model goodness-of-fit [39]. It results that a bare MLR model is
an inconsistent estimator for the prediction of all four target ions,
plus it has larger prediction errors that reflect its inability to cope
with ion interference. SVR models are unbiased estimators for
the prediction of sodium ions only. M-SVR and MLP models are
unbiased estimators of sodium and potassium ions. We observe
that the prediction of ammonium and calcium ions are more
intricate due to the larger prediction error owing to bias and
slope misleading.

Furthermore, the multivariate models complexity was com-
pared. An average training runtime of 1.81 ms, 13.97 ms,
8.18 ms, and 14.01 s was obtained with MLR, single-output
SVRs, M-SVR, and MLP models, respectively. The iterative
procedure of the proposed M-SVR converges quickly, typically
in 11 iterations. Each iteration having the complexity of M
OLS minimizations. The single-output SVR model embeds four
times more support vectors than M-SVR, since four independent
regressors were trained. Eventually, the extremely slow training

of the neural network model, with 1079 trainable parameters
and 228 training epochs, highlights the larger complexity of
such multivariate regressor. Therefore, the proposed M-SVR is
a low-complexity model suitable to be implemented or deployed
on energy and memory-constrained computational resources
such as a microprocessor unit or a smartphone.

E. Real-Time Multi-Ion-Monitoring

After optimizing and characterizing the ion-sensors, the ana-
log front-end interface, and the embedded multivariate calibra-
tion model, these blocks are co-integrated to form an electronic
tongue system evaluated for a real-time multi-ion-monitoring
task. Before the measurement, the solid-contact ISEs were cali-
brated in water samples. These calibration curves will be used to
estimate ion activities with a classical MLR model. The real-time
multi-ion-sensing experiment started by exposing the four ISEs
to an artificial sweat sample. The Raspberry Pi was powered-on,
and a VNC session was launched through a smartphone. The
control GUI was executed on the edge node. Then, the ana-
log front-end circuit was powered, and the different on-board
modules were configured during firmware initialization (system
clock, sleep manager module, ADC module, UART interface,
Bluetooth module). The BLE module started advertising neigh-
boring devices, acting as a Generic Attribute Profile (GATT)
server. Once a connection was established between the on-board
Bluetooth module, and the one on the Raspberry Pi, a private
Transparent UART GATT service was used to serially transfer
data from one device to another. In particular, the sensor panel
was configured through the user interface (type of measurement,
channels to be measured, sampling time interval). Next, the start
of the measurements was requested on the GUI. The sensor
OCPs were continuously acquired, processed, and plotted in
real-time on the user interface, with three concurrent threads. A
default sampling interval of five samples per second was used
for this multi-ion-sensing task. For each 30 samples acquired,
the OCP signals were averaged on that time window, and the
ion activity of the four target ions was predicted through the
M-SVR model. The numerical results were updated on the GUI.
The screenshot of the smartphone at the end of the experiment is
displayed in Fig. 14. The potential peaks in the sensor responses
highlight the increase of electrolyte activity at each time stamp
of 2 min.

In a post-processing phase, the continuous sensor responses
were fed to different multivariate calibration models in order to
compare their prediction accuracy with the proposed M-SVR
model. The results are shown in Fig. 15. The beforehand sensor
calibration was used to estimate ion activity for MLR, while the
non-linear regressors were trained with the experimental dataset
presented in Section IV-C. We observe that for all models, the
prediction accuracy worsens in time. This is due to ion interfer-
ence that is more severe with the addition of electrolytes through-
out the experiment. In particular, calcium-ISE exhibits a steadily
increasing OCP. An online re-calibration could be implemented
when the prediction error exceeds a threshold value, or for
instance when a sensor response starts drifting. Nevertheless, ion
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TABLE X
HARDWARE AND SOFTWARE INTERFACES PROPOSED FOR MULTI-ION-MONITORING

1Analog front-end.
2Feed-forward neural network.

Fig. 14. Screenshot of the smartphone serving as display terminal for the GUI
executed on the Raspberry Pi.

activity prediction is more accurate with non-linear regressors.
Namely, an average accuracy improvement of 18.99, 27.73, and
35.49% was achieved with single-output SVRs, the proposed
M-SVR, and an MLP model, respectively, compared to a bare
MLR model. An MLP model has a slightly better prediction
accuracy than the proposed M-SVR, but at expense of a higher
computation complexity, as previously mentioned. Moreover,
the multivariate ion activity prediction latency was computed.
The tasks included the column-averaging of the last 30 samples
acquired, the standardization of the input vector with the param-
eters taken from the training dataset, and the inference of the
trained regressor. Latency of 18.34± 4.74μs, 39.07± 1.8μs,
22.68± 1.73μs, and 3.89± 1.33 ms were obtained with MLR,
single-output SVRs, M-SVR, and MLP model, respectively.
Therefore, the proposed M-SVR model is suitable for real-time
multi-ion-sensing applications, providing a low-latency and a
meliorated ion activity prediction accuracy compared to a simple
linear model.

Fig. 15. Prediction accuracy achieved by multivariate calibration models
during the real-time multi-ion-monitoring task.

V. CONCLUSION

We presented a novel framework enabling an accurate,
continuous, and real-time multi-ion-monitoring, suitable for
physiology and healthcare applications. The proposed system
includes an ion-sensor array, a battery-powered and portable
multi-channel readout front-end, and a multivariate calibration
model deployed on a Raspberry Pi. The sensing interface fea-
tured Nernstian sensitivity and sensor lower LOD comparable
to a bulky laboratory potentiometer, for the determination of
sodium, potassium, ammonium, and calcium ions in artificial
sweat samples. A temperature readout circuit was added, ex-
hibiting an excellent linearity, and a sensitivity of 6.56 mV/◦C.
The readout front-end supports 54 h battery lifetime, largely suf-
ficient for continuous measurements. Besides, ion interference
that is significantly distorting sensor response, was compensated
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by a non-linear M-SVR. It is shown that the multivariate cal-
ibration model is an accurate, compact, low-complexity, and
unbiased estimator for sodium and potassium ions sensing, with
global NRMSE and MRE improvement of 6.97%, and 10.26%,
with respect to a traditional MLR. The different blocks were
co-integrated to form an electronic tongue system that was eval-
uated in a real-time multi-ion-monitoring scenario, where the
activity of the target electrolytes were steadily increased during
continuous ion-monitoring. It results that the sensing front-end
and the embedded M-SVR achieved an accurate tracking of the
four target ion activity, with an average accuracy improvement
of 27.73% with respect to a simple MLR, and with a latency of
22.68± 1.73μs. Future works will consider the integration of
the proposed front-end interface with fully-integrated sensing
platforms, paving the way for real-time and accurate multi-ion-
monitoring for wearable physiology.
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