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Abstract—Adiabatic Quantum-Flux-Parametron (AQFP) is a
family of superconducting electronic (SCE) circuits exhibiting
high energy efficiency. In AQFP technology, logic gates require
splitters to drive multiple fanouts and both the logic gates and
the splitters are clocked, requiring path balancing using buffers
to ensure all fanins of a gate arrive simultaneously. In this
work, we propose a new synthesis approach comprising of two
stages: In the first stage, a database of optimum small AQFP
circuit structures is generated. This is a one-time, network-
independent operation. In the second stage, the input network is
first mapped to a LUT network and then the LUTs are replaced
with the locally optimum (area or delay) AQFP structures from
the generated database in the topological order. Our proposed
method simultaneously optimizes the resources used by 1) gates
that compute logic functions and 2) buffers/splitters. Hence,
it captures additional optimization opportunities that are not
explored in the state-of-the-art methods where buffer-splitter
optimizations are done after the logic optimizations. Our method,
when using a delay-oriented (area-oriented) strategy, achieves
over a 40% (35%) decrease in delay in the critical path (the
number of levels) and a 19% (21%) decrease in area (the number
of Josephson Junctions) as compared to existing work.

Index Terms—AQFP, emerging technologies, majority gates,
exact synthesis, logic synthesis

I. INTRODUCTION

Superconducting electronic (SCE) circuits are getting in-
creasingly popular in the electronics industry due to their low
energy consumption and high-speed operation. The growing
interest in SCE is further fuelled by the escalating challenges
and higher costs of transistor downscaling in traditional CMOS
technologies. The potential of SCE to revolutionize the elec-
tronics industry is widely recognized as evidenced by the
growing involvement of the EDA industry in developing tools
and synthesis flows for SCE, supported by government-funded
programs such as IARPA’s SuperTools program [1].

SCE circuits are based on superconductive inductors and
Josephson Junctions (JJs) [2]. There are several families
of SCE circuits. The examples of emerging technologies
in SCE include Rapid Single Flux Quantum (RSFQ) [3],
Energy-efficient SFQ (eSFQ) [4], Reciprocal Quantum Logic
(RQL) [5], Dynamic Single Flux Quantum (DSFQ) [6], and
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Fig. 1. An example logic network with unit-delay gates (left) and its splitter-
inserted, path-balanced version (right).

Adiabatic Quantum-Flux-Parametron (AQFP) [7]. Some tech-
nologies, like RQL and AQFP, operate in adiabatic mode and
achieve superior energy efficiency using AC-biased junctions.
The AQFP technology enables two orders of magnitude less
energy consumption than conventional semiconductor tech-
nologies even after cooling energy is taken into considera-
tion [8]. This work focuses on the AQFP technology.

The AQFP technology provides efficient implementations
of majority-3 and majority-5 gates that offer more complex
logic functionalities at a comparably low resource usage (see
Section II), leading to more compact circuitry. On the other
hand, AQFP logic gates cannot directly drive more than
one fanout, necessitating clocked splitters to support multiple
fanouts. Moreover, the gates are also clocked, requiring each
gate’s fanins to arrive at the same time via logic paths that
are balanced with (clocked) buffers. Figure 1 shows a simple
logic network with unit-delay gates (left) and its splitter-
inserted, path-balanced version (right). In all figures, green
squares labeled “B” denote buffers while blue rectangles
labeled “SPLk” denote splitters of branching factor k.

The path balancing and splitter requirements of the AQFP
technology pose additional challenges in logic synthesis be-
cause buffers and splitters also significantly affect the area and
delay of a circuit. Hence, tailored-for-CMOS synthesis tools
are ineffective for AQFP optimizations. As such, there have
been several attempts to optimize the splitter insertion and
path balancing of AQFP circuits [9]–[11]. However, existing
work suffers from one or more of the following weaknesses:
i) lack of consideration for interdependent logic paths [10],



ii) the bias towards using balanced splitter trees [9], and iii)
the lack of support for more complex logic gates such as
majority-5 [9]–[11]. In this work, we show how to mitigate
these shortcomings using exact synthesis on small blocks of
logic in a given logic network.

We propose a two-stage approach for optimizing logic
circuits for the AQFP technology. First, we generate a database
of minimum area (the number of JJs for example) AQFP
circuits for all single-output, 4-input functions and for a set
of different input arrival-time patterns. This stage is network-
independent, and is performed only once. The second stage
consists of rewriting logic blocks of a larger network in the
topological order using locally optimum structures from the
database. This stage runs in time linearly in the number of
nodes in the input network. Our approach differs from the
similar-looking method proposed by Amaru et al. [12] for
exact delay synthesis as 1) their database consists of tree
structures whereas we consider DAG structures, and 2) our
rewriting algorithm is different due to its consideration of
multiple fanout nets.

We evaluate our synthesis algorithm on the same subset
of MCNC benchmarks considered by Testa et al. [9] using
two different strategies, delay-oriented and area-oriented. The
former (latter) strategy improves the critical path delay by over
40% (35%) while reducing the area by over 19% (21%) on
average compared to the optimized results of Testa et al. [9].
Note that we use the total number of Josephson Junctions as
the measure of area and the number of gate levels (including
buffers and splitters) as the delay measure.

The paper is organized as follows: In Section II, we describe
the relevant background and our motivation for this work.
In Section III, we describe our database generation method
and introduce the algorithm for synthesizing AQFP circuits.
In Section IV, we present our experimental results, and in
Section V, we conclude with a brief discussion.

II. BACKGROUND AND MOTIVATION

This section discusses the background and our motivation.

A. AQFP logic circuits

Logic gates in the AQFP technology are mainly constructed
using superconductive inductors and JJs [7]. Takeuchi et
al. [13] proposed a simple cell library for AQFP technology
based on four primitive cells—buffer, inverter, constant, and
branch—where a gate is created using an array of primitive
cells together with a branch while a splitter is constructed
using a buffer and a branch. The majority-3 gate consists
of three buffer cells together with a branch, and different
fanin inverted versions of a majority-3 gate are constructed
by substituting a subset of buffer cells with inverter cells [13].
The 2-input AND and OR gates are constructed by substituting
a buffer cell with a constant cell. Each of the three primitive
cells, buffer, inverter, and constant consists of two JJs, and
hence a splitter also uses 2 JJs while all gates—majority-3,
AND-2, and OR-2 as well as all their input-inverted versions—
use 6 JJs each. Additionally, the majority-5 gate and its input-

inverted versions can be implemented with 10 JJs each. As
a majority-3 gate uses the same resources as an AND-2 or
an OR-2 gate, Cai et al. [14] proposed that majority logic
synthesis is more suitable for optimizing AQFP circuits.

AQFP logic gates cannot directly drive multiple fanouts.
Instead, splitters must be used in this case. The gates and the
splitters are clocked, and hence, buffers must be inserted to
make the circuit pipelined. Depending on the clocking schemes
and the design of registers, there can be different requirements
on whether splitters are needed for primary inputs, whether
path balancing is needed for primary inputs, and how the path
balancing is done for primary outputs [15], [16].

B. Majority-inverter graph (MIG)

The k-input majority gate outputs 1 if and only if more
than k/2 of the inputs are 1. A majority-inverter graph (MIG)
is a directed acyclic graph (DAG) where each internal node
represents a majority gate, and each directed edge is either a
regular edge or a complemented edge indicating the absence
or presence of an inverter at the respective fanin [17], [18].

C. NPN equivalence

Two functions f and g are NPN equivalent if f can be
obtained from g using a combination of input negations, input
permutations, and output negation [19]. For example, although
there are 22
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= 65536 different 4-input functions, there are
only 222 different 4-input NPN classes.

D. Exact synthesis

Exact synthesis is the process of synthesizing circuits to
meet exact specifications. For example, it can be used to
synthesize the minimum area circuit structures for a given
Boolean function while meeting a given set of constraints on
the input arrival times. Prior work on exact synthesis includes
[12], [20]–[22] and they use different approaches such as
decomposition-based, SAT-based, and explicit enumeration-
based methods. Since exact methods are computation-heavy,
it is impractical to use them for large networks. Instead,
they are typically used to construct databases of optimum
circuit structures for logic functions with a small number
of variables. The database construction is done once for all.
Building blocks from the database are then used by separate
rewriting algorithms [23] to synthesize circuits.

E. Motivation for our work

The existing work on AQFP synthesis considers logic
optimization and buffer-splitter insertion as two independent
problems. We identify three shortcomings of existing work:

a) Lack of consideration for interdependent logic paths:
Figure 2 shows a logic network on the left, and two possible
splitter tree choices for the fanout net of node u assuming
we have 1-to-2 splitters. (For simplicity, we disregard the
splitter/buffer requirement of all unspecified fanins.) The logic
path interdependencies make the choice on the right a much
better option than the choice in the middle. To elaborate,
consider the three logic paths from node u to node v. The



first arrangement in Figure 2 (middle) increases the length of
the path from u to v that goes through the rightmost fanin of v,
thus increasing the lengths of the remaining paths as well due
to the balanced path requirement. The existing algorithms are
susceptible to making suboptimal choices in such situations as
they reason based solely on the local view in the vicinity of u
and hence consider both splitter trees as equally good options.

b) Bias for balanced-splitter trees: Prior approaches
naı̈vely use balanced splitter trees for multiple-fanout nets
when deciding the levels of those fanouts [9]. However, always
using balanced splitter trees incurs additional buffer costs if
the fanouts of a node have to be placed at uneven depths due
to other constraints. In such cases, an unbalanced splitter tree
can be a better match as shown in Figure 3.

For the given logic network (left), the unbalanced splitter
tree (right) costs fewer buffers compared to a balanced splitter
tree (middle two trees) assuming 1-to-2 splitters. The second
network naı̈vely uses a balanced splitter tree and adds buffers
on top of it whereas the third network optimizes the buffer
count by pushing one of the splitters up in the hierarchy.
Nevertheless, the network on the right with the unbalanced
splitter tree has a better resource usage.

c) Lack of support for more complex gates: None of the
prior works support the generation of optimized netlists with
majority-k gates for k > 3 although the AQFP technology
can support efficient implementations of such gates [24]. For
example, consider the logic function of majority-5 itself. Using
only AND-2, OR-2, and majority-3 gates, computing this
function needs at least four gates which costs at least 24 JJs
whereas using a single majority-5 gate uses only 10 JJs.

In the AQFP technology, the area overhead of buffers and
splitters is quite significant. In [9], the buffers and splitters in
optimized circuits amount to 39% of the total number of JJs.
Improved path-balancing algorithms can result in significant
area and delay reductions, but finding the optimal arrangement
of buffers and splitters is a non-trivial task. However, such op-
timal arrangements can be computed reasonably fast for small
logic networks using an enumeration algorithm, and this elim-
inates the aforementioned drawbacks when synthesizing such
networks. We exploit this fact to mitigate those shortcomings
when optimizing larger networks. To this end, we precompute
a database of minimum area AQFP circuits (i.e., considering
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Fig. 2. A part of a logic network with unit-delay gates (left), and its path-
balanced versions (middle and right) using two choices of locally optimum
splitter trees with 1-to-2 splitters.
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Fig. 3. (a) A logic network with unit-delay gates, (b) its path balanced version
using a balanced splitter tree, (c) an optimized version of (a), and (d) optimum
path balancing with an unbalanced splitter tree.

the buffers and splitters as well) for all logic functions with
a small number of variables under different input arrival time
patterns. We then use the database to efficiently rewrite logic
blocks of larger networks in topological order using the locally
optimum structures from the database.

III. AQFP RESYNTHESIS APPROACH

In this section, we describe our database generation method
and the synthesis algorithm.

A. Generation of the database

The exact synthesis database contains MIGs that give the
minimum area (after splitter-insertion and path-balancing) for
each 4-input NPN class1 under different input arrival-time
patterns. We identify the input arrival-time pattern of a single-
output MIG structure by the depths of its inputs with respect
to the output.

The database is generated in three steps which are sum-
marized below. Note that we use the term DAG to mean the
underlying directed acyclic graph structure of an MIG without
considering inverters.

First, we systematically enumerate all single-output DAGs
with two, three, four, and five leaf nodes (up to four inputs and
a constant) and seven2 gates. To avoid duplicates, we generate
DAGs starting with single-level structures and then extending
them in a level-by-level fashion by connecting new gates to
the previously generated structures. Next, for each generated
DAG, we compute the area of realizing those DAGs as a proper
splitter-buffer inserted AQFP circuit. If we fix the levels of
the nodes, the optimal splitter-buffer insertion for any fanout
net can be efficiently computed using a dynamic programming
approach using the recursive algorithm in Algorithm 1 together
with caching. We then use a recursive backtracking algorithm
to enumerate all possible level assignments for nodes and
compute the minimum splitter-buffer area for each such level
assignment using the aforementioned dynamic program. To
limit the search space of the backtracking algorithm, we use

1We store MIGs that compute the function with the lexicographically
smallest truth-table in each NPN class.

2It is known that all 4-input functions can be synthesized with MIGs of at
most seven majority-3 gates [25].



Algorithm 1: Computing minimum cost for a given multiset
of relative fanout levels Slev, buffer cost cb, splitter cost cs,
and splitter branching factor fs.

function cost(Slev = {`1, . . . , `k}, cb, cs, fs):
if 0 ≥ min`∈Slev

` then return ∞
if |Slev| = 1 then return cb(`1 − 1)
cbest ←∞
for all T ⊆ Slev such that 2 ≤ |T | ≤ fs do

cT ← cs, `min ← minT
for t ∈ T do cT ← cT + cb(t− `min)
cT ← cT + cost ( {`min− 1}∪Slev \T , cb, cs, fs)
cbest ← min(cbest, cT )

return cbest

a gradually increasing bound on the maximum number of
levels; this bound is increased until a feasible buffer-splitter
arrangement is found. In our algorithm, we use the number
of JJs (proportional to the number of primitive cells) to
measure the area, but our method can support more general
measures such as the physical cell area. Finally, we enumerate
the 4-input NPN classes computable by each DAG structure
(considering fanin inverters) and store the best-area MIG (i.e.,
the DAG together with a fanin inverter configuration) for each
4-input NPN class and for different input arrival-time patterns
that were discovered during the backtracking search.

B. Synthesis Algorithm

We now describe our algorithm for synthesizing a large
logic network as an AQFP circuit using the generated database.
The algorithm outputs an MIG (which we call the AQFP
circuit) together with an assignment of levels to each gate.

The algorithm, outlined in Algorithm 2, first maps the
input network to a 4-LUT circuit using ABC’s [26] LUT
mapping [27]. Then it considers each LUT in the topological
order and replaces it with the locally optimum circuit structure
selected from the database. To select the best structure, the
algorithm does the following: Consider a LUT n with fanins
n1, . . . , n4. Since the algorithm operates in the topological
order, all of n’s fanins are already synthesized as AQFP gates
and their respective levels are already computed.

Using the computed level information, the algorithm first
computes the arrival times of the fanins of n. To do this, it uses
the number of fanouts of each of those fanins, and assumes
that each of those fanin nodes use balanced splitter trees at
their output to support their respective fanouts. For example,
suppose that n′1 is the synthesized AQFP node for LUT n1.
If n′1 is at level ` and it has 4 fanouts, if we have splitters of
branching factor 2, we need two levels of splitters. This means
that the arrival time n′1 with respect to n is `+ 2.

Next, the algorithm finds the function h of LUT n with
respect to its inputs n1, . . . , n4, its NPN class f , and the
input permutation σ that describes how to permute the inputs
n1, . . . , n4 in order to compute h from f . The algorithm then
permutes the arrival times of the fanins of n according to σ.

Algorithm 2: Algorithm to synthesize a given logic network
as an AQFP circuit.
ntkaqfp ← Empty AQFP circuit.
ntklut ← ABC_LUT_MAP(ntkmig).
mlev ← Empty map from ntkaqfp nodes to integers.
msig ← Empty map from ntklut nodes to ntkaqfp signals.
foreach primary input p of ntklut do

Create new primary input p′ in ntkaqfp.
mlev[p

′]← 0, msig[p]← p′.

foreach node n ∈ ntklut in topological order do
ni ← The i-th fanin of n for i = 1, ..., 4.
`i ← Arrival time of msig[ni] for i = 1, ..., 4.
h← Node function of n.
f ← NPN class of h.
σ ← Input permutation to get h from f .
(`′1, . . . , `

′
4)← σ(`1, . . . , `4).

g ← Best DAG from DB for f and (`′1, . . . , `
′
4).

g ← Input permuted g according to inverse of σ.
g ← Fanin inverted g such that it computes h.
Create g in ntkaqfp with inputs (msig[n1], . . . , msig[n4])

and let n′ be the root node.
Update mlev[n

′] and msig[n].

Next, the algorithm iterates over the database entries with
different input arrival-time patterns for NPN class f , and
finds the locally optimum entry for the considered arrival-time
pattern. The local optimality is defined either as the entry that
gives the minimum area or the entry that gives the minimum
delay for n. Depending on how the local optimality is defined,
we thus have two strategies: area-oriented and delay-oriented.
In either case, after selecting the locally optimum structure
from the database, the algorithm transforms it such that it
computes the function h (instead of the NPN class f ). The
transformed structure is then constructed in the target AQFP
network and the levels of the newly created gates are updated.

Our database consists of a constant number of entries for
each NPN class. A look-up by NPN class is done in constant
time using a hash-table. Computing an NPN transformation on
a 4-input node function also takes constant time. Moreover,
as the size of each DAG structure in the database is upper
bounded by a constant, transforming a DAG structure back
and reconstructing it in the target network also takes constant
time. Since ABC’s LUT mapping algorithm also runs in linear
time due to its dynamic programming approach, the overall
running time of our synthesis algorithm is linear in the number
of nodes in the input network.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
from our AQFP synthesis algorithm and compare them with
the results of the AQFP synthesis flow presented in [9]. We
compare with [9] as other flows [10], [11] are not open source
and hence their results cannot be reproduced. We consider the
same subset of 18 MCNC benchmarks [28] used in that work.



TABLE I
RESULTS FOR THE EXPERIMENT WHERE THE PROPOSED AQFP SYNTHESIS ALGORITHM IS APPLIED FOR 10 ITERATIONS UNDER THE ASSUMPTION THAT

NO SPLITTER-BUFFER INSERTION IS NEEDED FOR PRIMARY INPUTS BUT PRIMARY OUTPUTS NEED PATH-BALANCING.

Reference All iterations use DB1 Last iteration uses DB2
Area-Oriented Delay-Oriented Area-Oriented Delay-Oriented

Benchmark Delay
(Levels)

Area
(#JJs)

Delay
(Levels)

Area
(#JJs)

Delay
Impr. %

Area
Impr. %

Delay
(Levels)

Area
(#JJs)

Delay
Impr. %

Area
Impr. %

Delay
(Levels)

Area
(#JJs)

Delay
Impr. %

Area
Impr. %

Delay
(Levels)

Area
(#JJs)

Delay
Impr. %

Area
Impr. %

5xp1 8 824 8 716 0.00 13.11 8 742 0.00 9.95 8 674 0.00 18.20 8 730 0.00 11.41
c1908 53 5242 39 4512 26.42 13.93 36 5204 32.08 0.72 36 4082 32.08 22.13 32 4498 39.62 14.19
c432 50 2198 35 2178 30.00 0.91 36 2944 28.00 -33.94 32 1994 36.00 9.28 35 2696 30.00 -22.66
c5315 49 18932 33 14976 32.65 20.90 30 16312 38.78 13.84 31 14410 36.73 23.89 29 14850 40.82 21.56
c880 36 4520 24 3406 33.33 24.65 21 3678 41.67 18.63 22 3200 38.89 29.20 20 3402 44.44 24.73
chkn 28 4022 18 3312 35.71 17.65 14 3398 50.00 15.51 15 2900 46.43 27.90 13 2988 53.57 25.71
count 18 1426 13 1184 27.78 16.97 11 1346 38.89 5.61 13 1126 27.78 21.04 11 1326 38.89 7.01
dist 17 4208 13 3802 23.53 9.65 11 3990 35.29 5.18 12 3502 29.41 16.78 10 3480 41.18 17.30
in5 20 4312 15 3522 25.00 18.32 13 3754 35.00 12.94 12 3042 40.00 29.45 12 3116 40.00 27.74
in6 17 3472 12 2978 29.41 14.23 10 2952 41.18 14.98 10 2572 41.18 25.92 8 2552 52.94 26.50
k2 29 18294 19 16380 34.48 10.46 18 16306 37.93 10.87 16 14326 44.83 21.69 16 14372 44.83 21.44
m3 13 3118 12 2964 7.69 4.94 10 3016 23.08 3.27 10 2654 23.08 14.88 9 2680 30.77 14.05
max512 19 5536 14 5018 26.32 9.36 13 5334 31.58 3.65 13 4610 31.58 16.73 12 4636 36.84 16.26
misex3 29 14996 18 11922 37.93 20.50 15 12598 48.28 15.99 17 10580 41.38 29.45 14 10584 51.72 29.42
mlp4 19 3622 13 3222 31.58 11.04 11 3326 42.11 8.17 11 2938 42.11 18.88 10 2998 47.37 17.23
prom2 22 28774 16 26300 27.27 8.60 14 27302 36.36 5.12 14 24374 36.36 15.29 13 24586 40.91 14.55
sqr6 11 1102 9 962 18.18 12.70 8 978 27.27 11.25 8 896 27.27 18.69 7 902 36.36 18.15
x1dn 15 1296 11 1126 26.67 13.12 10 1148 33.33 11.42 10 988 33.33 23.77 10 1010 33.33 22.07

Total 453 125894 322 108480 28.92 13.83 289 114328 36.20 9.19 290 98868 35.98 21.47 269 101406 40.62 19.45

Similarly, we also use the same AQFP cell library discussed
in Section II and use the number of JJs in the synthesized
network as the area measure and the number of levels on the
critical path as the delay measure. We construct two exact
synthesis databases assuming we have 1-to-4 splitters. The
difference is the set of DAG structures considered during
the construction. Let D(n, n3, n5, `) denote the set of DAG
structure that has at most n gates in total, at most n3 3-
input gates, at most n5 5-input gates, and at most ` levels.
To generate the first database, DB1, we consider all DAGS
in D(7, 7, 0, 7). To generate the second database, DB2, we
consider all dags in D(7, 7, 0, 7)∪D(4, 3, 3, 4)∪D(5, 3, 3, 3).
To generate the databases, we used a cluster with 48 cores
of Intel Xenon E5-2680 v3 CPUs running at 2.5GHz, and
256GB main memory, and each of the three steps was executed
using 48 parallel threads. The generation of all DAGs for DB1
consumed ∼20 minutes, and the output consists of 440 million
DAGs (including different versions obtained by designating
one leaf node as the constant node). The cost computation took
∼1.5 hours whereas enumerating the computable NPN classes
and constructing the final database took ∼30 hours. Extending
DB1 to DB2 using the DAGs with the given constraints took
∼25 hours in total. After removing redundant input depths
patterns, DB1 and DB2 consist of only 5744 and 4317 DAGs
respectively over all 222 4-input NPN classes.

We perform two experiments with the two databases: In
the first experiment, we first synthesize the initial MIG as an
AQFP circuit using our proposed algorithm with DB1. Then
using the underlying MIG in the synthesized AQFP circuit as
the input, the same algorithm was repeatedly applied for a
total of 10 iterations, and considered the best result obtained
among all iterations. In the second experiment, we additionally
consider entries from DB2 as replacement candidates.

The two experiments were done using both the area-oriented

and delay-oriented strategies for selecting an appropriate DAG
from the database. When using the area-oriented strategy, we
select the circuit with the minimum area over the 10 iterations
as the best result. Similarly, when using the delay-oriented
strategy, we select the circuit with the minimum critical-path
length as the best result.

We first perform all experiments under the same assump-
tions used by Testa et al. [9] that no splitters or buffers are
needed on primary inputs but all primary outputs have to be
path-balanced using buffers. The results are shown in Table I
together with the improvements as compared to the results of
Testa et al. [9] (shown in column reference). As seen from
Table I, the repeated application of our proposed algorithm
reduces the delay by 40.62% and decreases the area by 19.45%
when the delay-oriented strategy was used, while achieving a
35.98% reduction in delay and a 21.47% decrease in area
when the area-oriented strategy was used. It is evident that
having majority-5 gates in the database allows the algorithm
to achieve up to 7% delay improvements with further area
reductions as compared to the case where only majority-3
gates were allowed in the database. Note that, in the output
circuits of our algorithm, the percentage of path balancing
resources, i.e., the percentage of JJs in splitters and buffers
compared to the total number of JJs, is ∼25% on average
whereas that quantity is over ∼39% in [9].

In our results, we also observed that, when majority-5 gates
are allowed, 28% (33%) of the logic resources are used by the
majority-5 gates in the area-oriented (delay-oriented) strategy,
implying that majority-5-like functions often occur as parts of
larger logic networks. Such functions include 5-input functions
that are in the same NPN-class as majority-5, as well as their
versions where one input is repeated. For example, w(xy +
yz + xz) + xyz = 〈w,w, x, y, z〉 is a four input function
synthesizable with a single majority-5 gate.



We also performed the same experiments under the assump-
tion that splitters are needed for primary inputs to support
multiple fanouts and primary outputs have to be balanced
(but, as before, we assumed that path balancing is not needed
for primary inputs). Even with these relaxed assumptions, our
algorithm achieves better area and delay as compared to [9],
which did not use splitters on primary inputs. We remark that
our flow supports other assumptions on the need of buffers
and splitters on primary inputs and outputs, but due to space
constraints we are unable to present the results.

V. CONCLUSION

We propose a two-stage AQFP synthesis approach: a one-
time generation of an exact synthesis database and an efficient
algorithm for rewriting small logic blocks with locally opti-
mum structures from the database. Our algorithm performs
simultaneous optimizations of logic and path balancing re-
sources that capture more optimization opportunities as com-
pared to prior work in the field and achieves much improved
circuits in terms of both delay and area (more than a 40% delay
improvement and a 19% area improvement). To the best of
our knowledge, our approach is also the first AQFP synthesis
approach that can produce AQFP circuits with majority-5
gates. Our results demonstrate that having majority-5 gates can
help significantly improve resource usage and reduce delay.

Our database generation method is not restricted to using
the number of JJs as the area cost. Instead, it can work
with more general cost functions such as the cell area and
consider multiple types of splitters with varying branching
factors and area. Our database can be further improved by
considering more DAG structures at the expense of the one-
time computational cost of generating the database.

Our synthesis algorithm depends on an external LUT map-
ping algorithm. Thus improvements to the LUT mapping stage
or skipping LUT mapping altogether by directly integrating the
database with a technology mapper may yield better results.

Optimizing path balancing resources in AQFP circuits is a
non-trivial problem, and effective path balancing can heavily
reduce resource usage in AQFP circuits. The superior perfor-
mance of our approach makes it attractive as a state-of-the-
art AQFP synthesis flow. We believe that expanding on the
insights of this work will yield even better results.
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