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Abstract—This paper proposes a versatile mapping approach
for restructuring logic that has two objectives: i) it can map from
one technology-independent graph representation to another; ii)
it can map to a cell library. Our mapping approach for (i) uses a
database of structures obtained using exact synthesis to map into
a graph representation. Depending on the database, arbitrary
2-input and 3-input graph representations are supported (e.g.
AIGs, XAGs, MIGs, etc.). The method is cut-based and uses
Boolean matching to assign each cut to the available structures
in the database before mapping. Consequently, the mapper is
size- and depth-aware with respect to the final representation.
Moreover, this process helps to mitigate logic sharing issues of
LUT-based mapping approaches. The mapper supports delay-
and area-oriented mapping for a global optimization objective.
In the experiments, we show that our approach enables an
average reduction up to 27.10% and 40.07% in size and depth
respectively when mapping for size reduction from AIGs to MIGs
in the EPFL benchmark suite. We then show that our approach
leads to better results when used for logic restructuring reducing
the average size by 10.24% and 14.63% more compared to
LUT-based rewriting and cut rewriting methods. Finally, we map
to a standard cell library and compare it to ABC showing an
average improvement of 1.75%, 0.10%, and 18% in area, delay,
and total run-time respectively.

I. INTRODUCTION

Multi-level logic optimization is a fundamental step in
the realization of competitive integrated circuits. State-of-the-
art logic synthesis describes a circuit using a technology-
independent representation, applies transformations to opti-
mize mainly the size and the depth, and lastly, it maps the
optimized logic to a technology-dependent representation.

Originally, 2-input NANDs and NORs together with in-
verters were used as graph representations thanks to their
efficient implementation in CMOS technology. As logic syn-
thesis evolved, the And-inverter graph (AIG) [1], consisting
of 2-input AND gates and inverters, became the most com-
mon technology-independent representation. As an alternative,
Majority-inverter graphs (MIGs) [2] have been proposed and
motivated by a more expressive potential and by majority-
based emerging technologies, e.g., quantum-dot cellular au-
tomata. Additionally, Xor-And graphs (XAGs) [3] and Xor-
Majority graphs (XMGs) [4] have been proposed for their
compactness in arithmetic circuits and as a basis for logic
rewriting. Moreover, XAGs are commonly used to decrease
the multiplicative complexity of a circuit [5]. Recent work
investigated 3-input gates as new graph representations to
address logic synthesis [6]. The first and only toolbox that
supports optimization over multiple representations has been

proposed in [7]. Since different graph representations are avail-
able to support logic synthesis, in this work, we investigate
the mapping from one graph representation to another while
optimizing the circuit for delay or area.

Mapping is the process of expressing a Boolean network
using a set of primitives. In technology mapping, primitives
depend on the target technology and are typically contained
in a library such as standard cells or field programmable
gate arrays. In the latter case, the logic primitive is the
lookup table (LUT) which can express any function of k
variables. We refer to a k-input lookup table as a k-LUT
and to the process of mapping to k-LUTs as LUT mapping.
In technology-independent mapping, primitives depend on the
target representation. Typically, state-of-the-art technology-
independent mapping relies on LUT mapping followed by a k-
LUT decomposition using exact synthesis to obtain the target
representation [8]. In this paper, we refer to this method as
LUT-based mapping. Although in some cases a technology-
independent mapping may be realized with a direct one-to-
one replacement (e.g., from AIGs to MIGs [9]), this method
does not provide an optimized representation and cannot be
applied universally (e.g., from MIGs to AIGs). LUT-based
mapping is often used also for logic rewriting. Haaswijk et al.
implemented an optimization flow that used iteratively LUT
mapping and exact k-LUT decomposition on MIGs [8] and
XMGs [4]. A drawback of this methodology lies in the LUT
mapping. LUT mapping aims at minimizing the size or the
depth of the LUT circuit. By preferring larger LUTs to cover
more logic, this approach loses information of the shared logic
in the network. An example of this limitation is presented in
the motivation section II-A.

To rewrite the network, other methods are also available
in the literature. Rewriting [10] is a DAG-aware optimization
method that aims at minimizing the size of a representation by
replacing small parts of the network with smaller structures.
The advantage of being DAG-aware is to be able to re-
use existing logic and to exploit structural hashing [11]. The
structures are typically contained in a database obtained using
exact synthesis. This method greedily chooses the best local re-
placement but local decisions create replacement conflicts (e.g.
two replacements cannot happen at the same time). Rewriting
misses a global view that takes conflicts into account. An
example of this limitation is presented in the motivation
section II-A. The first proposed solution to tackle this problem
has been proposed in [12]. The method annotates conflicts in a
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conflict graph and then generates the final solution by solving
a maximum weighted independent set problem on the graph.

In this work, we present a versatile mapping approach
that can be used to: 1) map to a technology-independent
representation; 2) rewrite the circuit for optimization; 3)
map to a technology-dependent representation. We propose
solutions to mitigate the logic sharing issues of LUT-based
mapping and the global view limitation of logic rewriting. Our
approach uses Boolean matching to associate each cut with a
library of structures or primitives previous to mapping. The
mapping can be delay- or area-driven with respect to the final
implementation. A final DAG-aware rewriting iteration can be
enabled to exploit structural hashing.

In the experiment we evaluate the versatility of the mapper
and we compare it to state-of-the-art methods: 1) we map
from AIGs to MIGs showing a size reduction up to 27.10%
when mapping for size and a depth reduction of 45.17% when
mapping for depth; 2) we evaluate our solutions to improve
logic sharing and consider a global view by comparing to pre-
vious state-of-the-art LUT-based rewriting and logic rewriting
obtaining better results in all the 19 optimizable benchmarks;
3) we map to a standard cell library and compare to ABC map
showing an average improvement of 1.75%, 0.10%, and 18%
in area, delay, and total run-time respectively.

II. MOTIVATIONS AND BACKGROUND

In this section, we briefly introduce the motivation, the
basic notations, and the necessary background on technology
mapping and optimization.

A. Motivation

In the introduction, we mentioned the limitations of previous
mapping and rewriting approaches. In this section, we review
the limitations in detail and we propose solutions.

1) Logic sharing: LUT-based mapping [8] consists of a
LUT mapping followed by a k-LUT decomposition to obtain
the target representation. LUT mapping is cut-based. Each
k-feasible cut can be represented by a k-LUT so that LUT
mapping consists of choosing a set of cuts to cover the
network. LUT mapping aims at mapping the network by
minimizing the number of LUTs or the depth. By preferring
larger LUTs to cover more logic, local sharing of logic is often
lost. In Figure 1a, an AIG network contains a shared node p.
When the network is mapped to a 3-LUT network for size
reduction, the network obtains the configuration in Figure 1b
using the minimum number of 2 LUTs to cover the network.
This operation loses the local information of the shared node
p. When the LUTs are decomposed back to an AIG using exact
synthesis, in Figure 1c, the two LUTs are matched to the same
structure which creates an additional node with respect to the
original network. As a remedy to mitigate this problem, we
propose to assign a size and depth weight to each k-feasible cut
of the network based on the matching structures obtained using
exact synthesis. The weight represents the size and the depth
of the structure. Our approach has the objective of minimizing
the total weight in the cover. In Figure 1b the size weight is 4

(2 for each LUT). By minimizing the weight, the best solution
maps each node with a LUT, preserving the shared node p,
with a total weight of 3.
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Fig. 1: Logic sharing limitation in LUT-based rewriting

2) Global view: Rewriting [10] is a cut-based optimization
method that aims at minimizing the size of a representation by
replacing small parts of the network with smaller structures.
The approach chooses the best local replacements but local
decisions create conflicts. An example is shown in Figure 2.
We use 4-feasible cuts. Figure 2a shows the initial AIG net-
work in which dashed lines represent negations. By rewriting
the network, the best structure is obtained by replacing the cut
(b, c, d, e) at root s. The implementation of this replacement
depends on the substitution at the PO node t. In Figure 2b,
rewriting selects the cut (a, p, r) at root t. Consequently,
the best replacement at s cannot be used since s is already
included in the best cut at t. AIG rewriting replaces the sub-
graphs rooted at p and r, thus leading to a size improvement of
a single node. The best result in Figure 2c can be achieved by
evaluating the conflicts globally. To mitigate this issue, we use
global optimization methods typical of technology mapping
such as area flow heuristic and exact area. The details are in
Section III.

B. Technology Mapping

Technology mapping is the process of expressing a Boolean
network using gates from a technology library. Libraries
contain primitives (e.g., NAND, NOR, LUTs) and/or complex
functions (e.g., AOI21, MUX) that are specific to the target
technology. During technology mapping, cells from the library
are used to cover a Boolean circuit while satisfying the
given constraints and minimizing some cost functions (e.g.
on delay, area). Next, we introduce basic terminologies which
are required for the discussion about mapping.

Before technology mapping, the Boolean network is rep-
resented as a k-bounded network called the subject graph. A
k-bounded network contains nodes with a maximum fanin size
of k. AIGs are typically used as subject graphs. Accordingly
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Fig. 2: Local view limitation in cut rewriting

to the definition, other types of representation may be used
like XAGs.

A cut C of a node n in the subject graph is a collection
of nodes called leaves such that each path from the PIs to
node n must traverse at least one leaf. Node n is the root of
the cut. A cut is k-feasible if the number of leaves of the cut
is less than or equal to the bound k. The number of leaves
in the cut determines the size. A trivial cut is a special cut
that contains exclusively the node n. Each non-trivial cut is
typically associated with a truth table representing the function
at its root considered from the leaves. Truth tables are used
for Boolean matching i.e. to bind each cut to the cells of
the technology library. A k-input lookup table (k-LUT) can
implement any k-feasible cut. Thus, we may abstract each cut
as a k-LUT implementing the corresponding truth table.

A maximum fanout free cone (MFFC) of a node n is a subset
of the fanin cone containing only nodes such that every path
from these nodes to the POs passes through n.

A cover is a set of cuts so that all the cuts in the set are
leaves of another cut in the set or are rooted at the POs. A
mapping algorithm selects a set of cuts to cover the subject
graph. A delay-oriented mapping aims to reduce the delay of
the longest path in the cover. An area-oriented mapping aims
to minimize the total area of the cover. While a minimal-
delay mapping is tractable and can be obtained in polynomial
time using a dynamic programming approach when ignoring
loading effects [13], [14], an optimal area mapping is NP-
hard [15] and thus requires heuristics.

C. NPN-equivalence classes

Two functions f(x1, . . . , xn) and g(x1, . . . , xn) are NPN-
equivalent [16] if there exists a permutation of the inputs

(xixj → xjxi), an inversion of the inputs (xi → xi), and
an inversion of the output (f → f̄ ) so that f and g can be
made Boolean equivalent.

For n-inputs, 22
n

different Boolean functions exist. Boolean
functions can be partitioned into NPN-classes which is a much
more compact set. For instance, n-input Boolean functions can
be classified into 14, 222 and 616126 classes, for n = 3, 4, 5
respectively.

NP-equivalence classes are defined similarly without con-
sidering the output inversion.

D. Exact synthesis
Exact synthesis [17] is the problem of finding optimum

representations of Boolean functions in terms of network
primitives. Generally, the cost criterion is the size or the depth
of the structure. Methods such as logic rewriting [4], [10] use
exact synthesis to rewrite parts of the circuit with optimum
implementations.

NPN classification supports exact synthesis by notably
reducing the number of functions to be synthesized and stored.
Due to the problem complexity and the double-exponential
growth in the number of functions with respect to the number
of variables, exact synthesis is generally limited to small
functions of 4 variables.

III. VERSATILE MAPPING

In this section, we describe our contribution. We present
a versatile mapper that can map from a generic technology-
independent representation (e.g., AIG, XAG, MIG) into an-
other representation or a technology. In the former case, it uses
a database of pre-computed structures (e.g. exact synthesis
database) to map or rewrite the network, in the latter case
it uses a standard technology library. Our approach takes
inspiration from state-of-the-art technology mapping [18] and
logic rewriting [4], [12].

Our mapper implements the best characteristics of these two
methodologies and addresses the LUT-based mapping and cut
rewriting drawbacks. Boolean matching is used to bind the cuts
to the available structures or primitives. Thus, size and depth
information are available when generating the cover. The cover
is minimized using size and depth instead of the number of
LUTs and LUT levels. The mapper executes multiple mapping
refinements, from global to local optimization. The algorithm
can take advantage of the local sharing of logic. Our approach
does not need to rewrite each cut. Nevertheless, an option
exploits structural hashing during the last iteration to find
shared nodes among the structures.

The mapper is implemented in a flexible parameterized way
so that it can switch to different cost functions for delay-
oriented or area-oriented mapping. The pseudo-code is shown
in Algorithm 1. The mapper maps for delay by executing a
delay-oriented mapping followed by area-recovery iterations.
Area-oriented mapping is achieved by bypassing the delay-
oriented iteration or by relaxing the required time constraint.
Our method follows equivalent steps for the technology-
dependent and -independent mapping except for a few dif-
ferences that will be fully covered in the next paragraphs. In
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this section, the terms area, delay, and gates are equivalently
used as size, depth, and structures respectively. The algorithm
can be summarized in six steps described in Sections A-F in
detail:
A) Library generation
B) Cut enumeration
C) Boolean matching
D) Delay-oriented mapping
E) Area-oriented mapping
F) Finalization

Algorithm 1 Versatile Mapper
1: Input: Boolean network N , cut size k, library, cut sorting func,

constraints, skip delay, AreaGlobalIter, AreaLocalIter
2: Output: mapped network M
3: cuts ← compute cuts(N , k, cut sorting func);
4: compute truth tables(N , cuts);
5: match cuts(cuts, library);
6: if !skip delay then
7: delay oriented map(N , cuts);
8: end if
9: for it← 0 to AreaGlobalIter do

10: compute required times(N , cuts, constraints);
11: global area oriented map(N , cuts);
12: end for
13: for it← 0 to AreaLocalIter do
14: compute required times(N , cuts, constraints);
15: local area oriented map(N , cuts);
16: end for
17: M ← finalize(N , cuts);
18: return M ;

A. Library generation

We define a library as a hash table that is used to classify
gates for simple and fast Boolean matching. Given a Boolean
function represented as a truth table, the library returns, if
possible, a set of gates that can implement that function. The
library generation is differentiated based on if it operates on
a technology library or a database of structures since two
different matching methods are used.

1) Technology library: For fast matching, the library con-
tains all the NP-configurations of the gates. Given a gate
with fanin size k, the maximum number of NP-configurations
is k! × 2k. Since k ≤ 6, the maximum number of NP-
configurations for a gate with k = 6 is of 46080. However,
this number is often smaller due to function symmetries.
For instance, for the gate AOI22 with k = 4, only 48
unique configurations are found instead of the possible 384.
The library stores the NP-configurations of the gates and
the associated functions. Note that for standard libraries the
number of entries is manageable. For the MCNC standard cell
library [19], only 206 functions and 223 configurations are
stored in the table.

2) Database of structures: The database stores the pre-
computed structures in a hash table partitioned in NPN-
equivalence classes. Since the mapper matches by phase,
and automatically inserts output inverters, each entry must
not implement an output negation. Given an entry S which

implements the NPN-class representative function f , if S
has a negated output, the output negation is removed and
the entry is saved to the new class f . Thus, NPN-classes
are rearranged to NP-classes when necessary. In the library,
the NP-configurations are not enumerated since the entries
will be too many. Consequently, functions are matched by
canonization (more details in Section III-C).

For each entry, the pin-to-pin delay and the area are com-
puted given a cost function. The pin-to-pin delay describes the
depth of the longest path from an input pin to an output pin.
The area is defined as the size of the structure. Additionally,
also the inverter cost is supported.

B. Cut enumeration

Cut enumeration computes a set of k-feasible cuts for
each node in the subject graph (line 7 of Algorithm 1). The
computation proceeds in topological order from the primary
inputs (PIs) to the primary outputs (POs).

Let M(V,E, Y ) be a generic network where V is the set
of nodes, E is the set of edges, and Y is the set of POs. Let
X ∈ V be the set of PIs of the network, and N ∈ V the set
of internal nodes (V \ (X ∪ {1})). Let Nm be the subset of
N containing the nodes with fanin size equal to m. Let Φ(n)
represent the set of k-feasible cuts at node n ∈ V . We define
recursively Φ as:

Φ(1) = {{}}
Φ(x) = {{x}} for x ∈ X
Φ(n) = {{n}} ∪ (Φ(n1)⊗ · · · ⊗ Φ(nm)) for n ∈ Nm

where n1, . . . , nm are fanins of node n, and the merging
operation ⊗ is defined as:

A⊗B = {u ∪ v | u ∈ A, v ∈ B, |u ∪ v| ≤ k}

During the enumeration process, some cuts may be dominated.
A cut is dominated if it is contained set-theoretically in another
cut. Dominated cuts are bailed out during the enumeration to
reduce the cuts considered during the merging operation. This
process does not impact the quality of the mapping. For each
non-trivial cut, the corresponding truth table is computed. For
implementation details we refer the reader to [20].

During the enumeration phase, cuts are sorted on the fly
based on their depth, area flow and size. The cut prioritization
is selected depending on the desired goal of the mapping.
For a delay-oriented mapping, the sorting function primarily
sorts for the delay while for area-oriented mapping, it orders
primarily for area flow. To decrease the number of candidate
cuts at each node, only a small number l is selected. On top
of that, the trivial cut is added. This guarantees that at most
l+1 cuts are saved at each node, so, for a node with fanin size
equal to m, a maximum of (l+1)m cuts are enumerated. This
technique is referred to as priority cuts [21], [22]. When using
the mapper for technology mapping, the cut size is always the
first criterion of selection. Ordering first by minimum size
guarantees a feasible mapping if the technology library is
complete (e.g. NAND2 and INV) since the first l selected cuts
must contain a function primitive.

25



C. Boolean matching

Given a cut and the corresponding truth table, Boolean
matching finds a set of gates that can implement that function.
The pre-computed library of gates discussed in Section III-A
is used to achieve that. In that section, we mentioned that the
mapper matches by phases. Considering both phases for each
cut function is necessary to enable logic sharing of inverters
or avoid additional inverter delay costs.

In Figure 3a, node p has two negated outputs. Let us suppose
that our library contains an AND2 gate and an inverter. Node p
would be matched to an AND2 gate. Consequently, the mapper
would insert two inverters on the edges (p, r) and (p, s) when
mapping r and s with AND2 gates, creating an unnecessary
inverter duplication. The adopted solution is to construct a
gate composed of an AND2 plus an output inverter for a
negative phase match at p. Hence, r and s can share the
negative phase match avoiding the logic duplication. Although
these redundancies could be removed with a circuit analysis
after mapping, the mapper would be affected by wrong area
estimations during the match selection phase leading to worse
results.

Let us suppose now that the library contains also a NAND2
gate. In Figure 3b, node p has two fanout of different phase.
If p is mapped with only one phase, e.g. to an AND2 gate,
the arrival time at node r would increase by an inverter delay.
By matching both phases separately using an AND2 and a
NAND2 gate we could avoid an additional inverter delay. This
operation is generally evaluated in terms of delay gain and area
increase.
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Fig. 3: Advantages of matching by phases

The Boolean matching technique is differentiated based on
the mapping goal.

1) Technology mapping: Since the library contains all the
configurations of all the gates, each compatible set of gates is
obtained with a simple look-up in the library using the truth
table. If a cut is not matched, it is ignored during the mapping.

2) Exact synthesis database: The library stores the database
of structures in NP-classes. Boolean matching is achieved us-
ing function canonization to get the NPN class representatives
f and f of the library and to match the gates. The canonization
procedure finds the lexicographically smallest truth table (the
NPN-class representative), the permutations, and the input
negations to apply.

D. Delay-oriented mapping

Let the arrival time at a node n using a gate g matching
a cut C be the sum of the pin-to-pin delays of g and the
arrival time at the corresponding cut leaves of C. Delay-
oriented mapping aims to cover the subject graph by selecting
the gates that minimizes the arrival time at each node. The
computation proceeds in topological order, over the internal
nodes of the subject graph. For each node, the cut and the
gate with the best arrival time are selected. In case of ties, tie-
breakers are used as shown in Table I. Both the positive phase
p and negative phases p of a node n are mapped separately
if ta(np) < ta(np) + dinv and ta(np) < ta(np) + dinv where
ta(np) (ta(np)) is the arrival time of the best match at n with
phase p (p) and dinv is the inverter delay.

After the delay-oriented pass, the cover is extracted by
visiting in reverse topological order the nodes reachable from
the POs using the best matches. The delay of the cover is
defined as the latest arrival at the POs. To guide the area
heuristics in the following steps and preserve the worst delay,
the required times are computed by back-propagating the delay
or the given required times from the POs to the PIs.

TABLE I: Gates selection criteria

Mapping Type Cost criterion Tie-breaker 1 Tie-breaker 2
Delay arrival time area flow cut size
Global area area flow arrival time cut size
Local area exact area arrival time cut size

E. Area-oriented mapping

Area-oriented mapping or area recovery are performed in
multiple passes over the nodes in the subject graph. Various
heuristics that guide area minimization during technology
mapping have shown good results [23], [24]. In particular,
it has been shown in [22] that applying a first heuristic called
area flow and a second method called exact local area leads to
a good quality of the results. Our algorithm maps and adjusts
the cover using these two methods iterated multiple times if
necessary (line 10-17 in Algorithm 1)1. The area passes are
constrained by the required time so that the worst-case delay
is not increased. If the slack window is large enough, the
algorithm tends to keep only one phase mapped per node to
save area. The other phase is obtained by adding an inverter
on the output pin of the match. If the slack window is too
narrow, both phases are kept mapped.

1) Area flow: Area flow [24] for a node n estimates the
area in its transitive fanin cone. During technology mapping,
it can be formulated directly on a cut C with root n as follows:

AF (n) = [AC +
∑

i ∈ leaves(C)

AF (i)] / |fanout(n)|est

where AC is the area of a match for the cut C, and
|fanout(n)|est is an estimation of the fanout size. For primary
inputs or constants, the area flow is considered to be zero.
Area flow is computed in a bottom-up traversal while mapping.

1Configuration details can be found in the experimental results section.
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During this process, the fanout size of the nodes is unknown
until the whole network is covered. Let the reference count
ref(n) for a node n in the subject graph be the number of
times n appears as a leaf or as a PO in the cover. Informally,
the reference counter represents the fanout in the cover. It is
computed with a reachability analysis from the POs to the
PIs. During the first covering iteration, the estimations are
initialized using the fanout sizes of the subject graph. In the
next passes, the fanout size estimation at pass j is computed as
a linear combination of the reference count and the previous
estimation:

|fanout(n)|jest = α× ref(n) + (1− α)× |fanout(n)|j−1est

where α is a factor that takes values between 0 and 1. In our
implementation we used α = 1/3. The factor α is decreased
after each pass.

2) Exact area: Exact area [21] is a local refinement of
the cut selection which is driven by the area in the MFFC.
The area is locally reduced by selecting a cut so that the
sum of the area of the best cuts in the MFFC is minimized.
Given a current cover of the subject graph, the exact area for
a node n, can be computed using recursive referencing and
dereferencing shown in Algorithm 2. A recursive referencing
(dereferencing) algorithm recursively explores the leaves in
the MFFC of a current cover. First, the best cut at node n is
recursively dereferenced to remove it from the current cover.
Then, each cut with root n is recursively referenced and then
dereferenced to measure the exact area in the MFFC. The new
best cut is then selected accordingly to the last line of Table I
and it is recursively referenced to insert it in the cover.

Algorithm 2 Recursive dereferencing and referencing
1: Input: node n, cut C
2: Output: exact area
3: function RECURSIVE DEREF( n, C )
4: area← AC ;
5: for each node i in leaves(C) do
6: if decr ref(i) == 0 then
7: area = area+RECURSIVE DEREF(i, best cut(i));
8: end if
9: end for

10: return area;
11: end function
12: function RECURSIVE REF( n, C )
13: area← AC ;
14: for each node i in leaves(C) do
15: if incr ref(i) == 0 then . post-increment
16: area = area+RECURSIVE REF(i, best cut(i));
17: end if
18: end for
19: return area;
20: end function

In technology-independent mapping, we extend exact area
with an option for high-effort optimization that enables a
rewriting of the l best cuts to exploit structural hashing. In
this case, the area of the structures (AC) is measured on the
fly during mapping similarly to rewriting [10].

F. Finalization

In the finalization process, the resulting network is created
using the computed cover and the associated gates (line 18 of
Algorithm 1). In technology-independent mapping, once the
mapping is finalized, the network is always strashed to remove
redundant nodes.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the versatility of the mapper and
compare it to state-of-the-art methods. We first use the mapper
to map from one representation to another. For this experiment,
we map from AIGs to MIGs since MIG mapping and MIGs
in general and are well investigated in the literature (e.g. [8]).
We evaluate the mapper in different settings for depth and size
optimization showing considerable depth and size reduction.
Then, we evaluate the mapper for logic restructuring and we
compare it to state-of-the-art LUT-based rewriting and cut
rewriting. The results support the advantages of our mapper:
exploiting logic sharing, being size and depth aware, and
having a global optimization view. Lastly, we use the mapper
to map to a standard technology library and we compare it to
ABC.

The mapper has been implemented in C++ 17 in the logic
synthesis framework Mockturtle2 [25]. The experiments have
been conducted on an Intel i5 quad-core 2GHz on MacOS. All
the results were verified using the combinational equivalent
checker in ABC3.

A. Mapping into MIG

In this first experiment, we use the versatile mapper to
obtain a MIG representation starting from an AIG. For the
experiment, we use a database obtained with exact synthesis
with size-optimum structures for the 4-input NPN classes.
Up to 10 alternative structures are available for each NPN
class. The mapper computes cuts of size 4 and stores up
to 25 cuts per node. We compare using different settings
for depth-oriented and area-oriented mapping. Depth mapping
executes a delay mapping followed by one global area and
two local area recovery iterations. Area mapping skips the
delay mapping and performs two global area and two local
area recovery iterations. Lastly, a high-effort area mapping
additionally rewrites the best 8 cuts in the last local area
iteration to exploit structural hashing. The benchmarks have
been taken from the EPFL arithmetic benchmark suite [26]
containing combinational circuits in the Aiger format.

The results are shown in Table II. We evaluate the quality
of the mapper in terms of size and depth improvement over
the baseline. Depth-oriented mapping reduces the depth by
45.17% while still improving the size by 23.52%. Area
mapping improves the size by 25.32%. At the price of a con-
siderably higher run-time, high-effort area mapping improves
the size by an additional 1.78% thanks to structural hashing.

2Available at: https://github.com/lsils/mockturtle
3Available at: https://github.com/berkeley-abc/abc
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TABLE II: Experimental results for mapping from AIGs to MIGs

Benchmark Baseline Depth mapping Area mapping High-effort area mapping
Size Depth Size Depth Time (s) Size Depth Time (s) Size Depth Time (s)

adder 1020 255 384 129 0.02 384 129 0.02 384 129 0.13
bar 3336 12 3016 12 0.07 3016 12 0.08 2693 14 0.39
div 57247 4372 57300 2217 1.60 53225 2467 1.57 50705 2359 10.89
hyp 214335 24801 136108 8762 8.34 136299 8911 8.35 134968 8903 53.60
log2 32060 444 24457 200 1.55 24419 204 1.54 24310 207 8.09
max 2865 287 2413 150 0.22 2413 152 0.19 2413 153 0.44
multiplier 27062 274 19716 133 1.18 19355 142 1.14 19317 143 6.06
sin 5416 225 4307 110 0.25 4274 126 0.24 4244 127 1.23
sqrt 24618 5058 23238 3366 0.76 21042 4933 0.74 20718 4208 4.90
square 18484 250 12179 126 0.75 12184 126 0.78 12048 126 3.83

Total 14.74 14.66 89.66
Improvement +23.52% +45.17% +25.32% +40.24% +27.10% +40.07%

B. Logic restructuring

In this experiment, we compare our mapper to LUT-based
rewriting and cut rewriting to optimize MIGs. The LUT
mapping is realized with the synthesis package ABC [27]
using the command &if -a -K 4 followed by a node
re-synthesis in Mockturtle that decomposes each LUT with
a matching structure contained in the database. Rewriting
is achieved using the standard cut rewriting algorithm [12]
implemented in Mockturtle. The versatile mapper is set for a
standard area-oriented mapping plus a high-effort rewriting of
the single best-matched cut, for a low impact on performance.
The experimental setting is equivalent to the previous one. The
three restructuring methods are iterated until no improvement.

The results are shown in Table III. We evaluate the results
in terms of size improvement with respect to the baseline.
The versatile mapper obtains the best results in all the 19
optimizable benchmarks. While LUT-based rewriting is the
fastest optimization method, the final average run-time is
comparable with the one of our mapper when considering
the optimization gain. Generally, our mapper converges in a
couple of iterations. The results support our motivations and
the proposed solutions to exploit shared logic and account
for global optimization. Moreover, our mapper supports a
considerable reduction in depth that the other methods cannot
achieve.

C. Technology mapping

In this experiment, we use our mapper for technology
mapping starting from an AIG representation. The mapping
is delay-oriented using one iteration of global area followed
by two iterations of local area. We use the MCNC standard
cell library [19] to bind the network. We compare to the ABC
command map. In this experiment, we compute cuts of size 5
storing a maximum of 25 cuts per node.

The results are shown in Table IV. We compare in terms
of area and delay improvement with respect to the result in
ABC. While the results are comparable, the versatile mapper
improves the area by 1.75% on average with a better run-time.
Although delay-oriented mapping can achieve optimal delay,
the versatile mapper leads to better delay results for some
benchmarks such as log2 and sin. One possible explanation

may have to do with the quality of cuts that are stored at each
node.

V. CONCLUSION

In this work, we presented a versatile mapper for delay
or area optimization that is independent of the underlying
graph data structure and the target representation. Our ap-
proach better exploits the sharing of the logic with respect
to LUT-based mapping thanks to a Boolean matching phase
previous to mapping so that decomposition costs (area and
delay) are evaluated directly during mapping. Consequently,
the mapper is size- and depth-aware with respect to the final
representation. Our mapper supports delay and area mapping
for a global optimization objective. An option uses structural
hashing during the last area iteration to exploit common nodes
among the structures. The experiments show better results in
logic restructuring compared to LUT- and cut-based rewriting
methods over all the 19 optimizable benchmarks. Moreover,
the mapper shows better run-time and an average improvement
of 1.75% and 0.10% in area and delay for technology mapping
when compared to ABC.
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[9] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A novel data-structure and algorithms for efficient logic optimization,”
in Proc. DAC, 2014.

[10] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting: a fresh look at combinational logic synthesis,” in Proc. DAC,
2006.

[11] A. Mishchenko, S. Chatterjee, and R. Brayton, “FRAIGs: A unifying
representation for logic synthesis and verification,” tech. rep., EECS
Department, UC Berkeley, 2005.

[12] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and M. Soeken,
“On-the-fly and DAG-aware: Rewriting Boolean networks with exact
synthesis,” in DATE, Mar 2019.

[13] J. Cong and Y. Ding, “FlowMap: an optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs,”
in Proc. ICCAD, 1994.

[14] Y. Kukimoto, R. Brayton, and P. Sawkar, “Delay-optimal technology
mapping by DAG covering,” in Proc. DAC, pp. 348–351, 1998.

[15] A. H. Farrahi and M. Sarrafzadeh, “Complexity of the lookup-table
minimization problem for FPGA technology mapping,” IEEE Trans.
CAD, 1994.

[16] L. Benini and G. De Micheli, “A survey of Boolean matching techniques
for library binding,” ACM Trans. Design Autom. Electr. Syst., July 1997.

[17] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, “SAT-
based exact synthesis: Encodings, topology families, and parallelism,”
IEEE Trans. CAD, 2020.

[18] S. Chatterjee, On Algorithms for Technology Mapping. PhD thesis,
EECS Department, University of California, Berkeley, Aug 2007.

[19] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide:
Version 3.0. Microelectronics Center of North Carolina (MCNC), 1991.

[20] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” IEEE Trans. CAD, 2007.

[21] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in Proc. FPGA, 1999.

[22] A. Mishchenko, Sungmin Cho, Satrajit Chatterjee, and R. Brayton,
“Combinational and sequential mapping with priority cuts,” in Proc.
ICCAD, 2007.

[23] D. Chen and J. Cong, “DAOmap: a depth-optimal area optimization
mapping algorithm for FPGA designs,” in Proc. ICCAD, 2004.

[24] V. Manohararajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for area
minimization in LUT-based FPGA technology mapping,” IEEE Trans.
CAD, 2006.

[25] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, and G. D. Micheli, “The EPFL logic synthesis libraries,”
CoRR, vol. abs/1805.05121, 2019.
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