
Boolean Rewriting Strikes Back:
Reconvergence-Driven Windowing Meets Resynthesis

Heinz Riener
EPFL, Switzerland

Siang-Yun Lee
EPFL, Switzerland

Alan Mishchenko
UC Berkeley, USA

Giovanni De Micheli
EPFL, Switzerland

Abstract—The paper presents a novel DAG-aware Boolean
rewriting algorithm for restructuring combinational logic before
technology mapping. The algorithm, called window rewriting,
repeatedly selects small parts of the logic and replaces them with
more compact implementations. Window rewriting combines
small-scale windowing with a fast heuristic Boolean resynthesis.
The former uses sophisticated structural analysis to capture
reconvergent paths in a multi-output window. The latter re-
expresses the multi-output Boolean function of the window using
fewer gates if possible. Experiments on the EPFL benchmarks
show that window rewriting is competitive with state-of-the-art
AIG rewriting in both quality and runtime, resulting in an
average size reduction of 9.16% and outperforming the 4-cut
rewriting command drw in ABC by 3.41%.

I. INTRODUCTION

Logic optimizations play a key role in automated design
flows for digital systems and are responsible for substan-
tial area, delay, and power reductions. They are applied to
a simple and technology-independent representation of the
digital logic, typically automatically derived from a high-
level description of the system. Modern logic optimization
algorithms target multi-level logic representations such as And-
inverter graphs (AIGs) [1], composed of two-fanin AND gates
and inverters, or Xor-and graphs (XAGs) [2], AIGs enriched
with two-fanin XOR gates.

Boolean rewriting [3] is a logic optimization methodology
to greedily minimize a multi-level logic representation by
iteratively selecting sub-graphs rooted at a node and re-
placing them with smaller pre-computed sub-graphs, while
preserving the functionality of the root node. DAG-aware AIG
rewriting [4] implements the Boolean rewriting methodology
for AIGs. It has been made scalable by combining cut-
enumeration [5], [6], fast truth table-based manipulation, and
computing a canonical representation of Boolean functions [7].
For each network node v, the DAG-aware rewriting algorithm
enumerates a fixed number of sub-graphs rooted at v with at
most k inputs, called k-feasible cuts. In practise [4], due to
scalability considerations, the cut size k has been fixed to 4
and up to 8 cuts are considered per node. Attempts to further
improve the quality of Boolean rewriting by enumerating
more and larger sub-graph structures per node, such as [8],
[9], were not able to build on the success of DAG-aware
AIG rewriting because they suffer from one or more of the
following limitations:
• The number of k-feasible cuts per node significantly

increases with k such that considering many (or all) cuts

per node is often practically impossible without taking
considerable runtime degradation into account.

• Mining and storing a database with optimum implemen-
tations of Boolean functions of 5 or more inputs, as
well as searching over the database, become more time-
consuming and require more memory. Often only the
most frequently appearing functions are stored [8].

• Approaches based on exact synthesis [9], which compute
optimum implementations for each new cut function on-
the-fly and cache them, do not scale well due to the high
runtime requirements of exact synthesis.

In this paper, we propose a new way to perform Boolean
rewriting. The two main characteristics that distinguish the
proposed rewriting, called window rewriting, from the previous
approaches can be summarized as follows:

1) Reconvergence-driven windowing: Instead of enumer-
ating a large number of single-output cuts per node,
our approach uses sophisticated structural analysis to
construct only one multi-output window per node. The
window is constructed to include reconvergent paths
in the vicinity of the node. The existence of such a
reconvergence in a sub-graph is a necessary condition for
a don’t-care-based size reduction of the circuit. We argue
that one 6-input window (with possibly many outputs)
constructed this way contains many 4-feasible cuts and,
consequently, provides the same or better optimization
capabilities, compared to the classical rewriting based on
cut enumeration.

2) Heuristic Boolean resynthesis: To optimize multi-output
windows, we generalize Boolean resubstitution, a tech-
nique that attempts to re-express a node’s function using
other nodes already present in the network. We have de-
veloped a high-effort Boolean resynthesis engine capable
of efficiently resynthesizing multi-output Boolean func-
tions utilizing don’t-cares and existing node functions.
The computation performed by our engine is local and
does not require any pre-computed database information.
In contrast, traditional resubstitution algorithms run a
trial-and-error search (with filtering) to resynthesize a
target node more compactly using a fixed set of simple
structures of one or two logic gates built upon some ex-
isting nodes. Our heuristic Boolean resynthesis algorithm
searches for an arbitrary dependency circuit composed of
potentially many logic gates to resynthesize the target

14

function.
Experiments on the EPFL benchmarks show that 6-input

window rewriting leads to a better quality-of-results than the
best implementation of AIG rewriting in ABC, drw [4],
while being comparable in runtime. A single iteration of
window rewriting improves by 3.41% over repeating drw
until convergence. The advantage of window rewriting lies
in its ability to analyze larger sub-graph structures (one 6-
input window instead of many 4-feasible cuts per node) and
to exploit don’t-cares and existing node functions during
optimization (in contrast to using a pre-computed database of
optimum implementations).

The paper is structured as follows: Section II presents
the background and notation. Section III details the contri-
butions: window rewriting, reconvergence-driven windowing,
and heuristic Boolean resynthesis. Section IV presents exper-
imental results, and Section V concludes the paper.

II. BACKGROUND

A. Boolean Functions

Let B = {0, 1}. A (single-output) Boolean function f :
Bn → B, f(x) = y, over Boolean variables x = x1, . . . , xn
defines a mapping from assignments of n Boolean val-
ues to single Boolean values. A Boolean function f de-
pend on variable xi if f(x1, . . . , xi−1, 0, xi+1, . . . , xn) 6=
f(x1, . . . , xi−1, 1, xi+1, . . . , xn) and DEPS(f) denotes the set
of all variables on which f depends.

B. Gate-Inverter Graphs

We use gate-inverter graphs (GIG) as a technology-
independent model of combinational logic functions. A gate-
inverter graph N = (V,E, I,O) is a 4-tuple, where (V,E) is
a directed acyclic graph with nodes V and edges E = V 2,
and where I ⊆ V is a set of primary inputs and O ⊆ V is
a set of primary outputs. Each node v ∈ V models either a
primary input or a gate from a predefined gate library. Edges,
connecting nodes, model wires and can either be regular or
complemented.

The fanins (fanouts) of a node v ∈ V , denoted as
FANINS(v) (FANOUTS(v)), are the nodes connected to v via
incoming (respectively, outgoing) edges. The k-bounded tran-
sitive fanin-cone TFIk(v) and k-bounded transitive fanout-
cone TFOk(v) of a node v in N are the subsets of nodes
in N reachable by traversing at most k transitive fanin-edges
and at most l transitive fanout-edges starting at v. We use
TFI(v) = TFI∞(v) and TFO(v) = TFO∞(v) to denote the
unbounded transitive cones. A GIG N is κ-regular if all gates
in N have exactly κ fanins.

Prominent examples of GIGs are And-inverter graphs (And-
xor graphs), which use two-fanin AND gates (respectively,
two-fanin AND and XOR gates) as a gate library. AIGs and
XAGs are 2-regular.

C. Cuts and Cut Expansion

A cut C = (r, L) in a GIG N is a pair of a node r, called
root, and a set L of nodes, called leaves, such that

p

l1 l2 l3

(a) L1 = {p, l1, l2, l3}

p

l1 l2 l3

(b) EXPAND(L1, p) = {l1, l2, l3}

p

l1 l2 l3

(c) L2 = {p, l2, l3}

p

l1 l2 l3

(d) EXPAND(L2, p) = {l1, l2, l3}

Fig. 1: Two examples of cost-free expansions of sets of leaves.

1) each path from any primary input of N to r passes
through at least one leaf in L and

2) for each leaf l ∈ L, there is at least one path from a
primary input to r passing through l and not through any
other leaf.

The cover COVER(C) of a cut C = (r, L) in N is the set
of nodes v in N that appear on a path from any l ∈ L to r,
without L. The expand operation

EXPAND(L, v) =

{
(L− {v}) ∪ FANINS(v), v ∈ L

L, v 6∈ L (1)

replaces a node v in a set L of leaves with its fanins. The cost

∆(L, v) = |EXPAND(L, v)| − |L| (2)

of expanding L with a node v is the difference of the
number of leaves after and before expansion. If ∆(L, v) ≤ 0,
we call an expansion cost-free. It is easy to observe that
EXPAND(L, v) is cost-free iff at most one fanin of v is not
in L, i.e., iff |FANINS(v)− L| ≤ 1.

Two simple examples of cost-free expansions of sets of
leaves are depicted in Figure 1(a)-(b) and Figure 1(c)-(d),
respectively.

D. Node Function and Don’t-Care Conditions

Each node v in a GIG computes a Boolean function
fv : Bn → B, called node function, over variables x1, . . . , xn,
where the elementary variable x1, . . . , xn are assigned to
the primary inputs i1, . . . , in. Internal flexibilities may arise
in the Boolean function fv due to limited controllability or
observability at the node v. These don’t-care conditions at the
node v are modelled as a Boolean function dcv : Bn → B,
whose value is 1 under an assignment if and only if (iff) the
value produced by fv does not affect the primary outputs of
the GIG.

E. Reconvergence

A path p is a finite sequence v0, . . . , vl of nodes such that
(vi, vi+1) ∈ E for 0 ≤ i < l. Two paths are reconvergent if
they start at the same node v0, end at the same node vl, and
contain, respectively, two different fanins of vl. For the sake
of simplicity, we call the corresponding node v0 reconvergent.

15

vl

v0...
...

...
...

Fig. 2: Graph structure with reconvergent paths.

Figure 2 shows a pair of reconvergent paths starting at v0 and
ending in vl.

F. Boolean Resynthesis

Optimization of a node v in a GIG can be of two types:
(1) controllability (CDC)-based optimization that does not
change the node’s function fv during optimization; and (2) ob-
servability (ODC)-based optimization that transforms fv into
another function f?v , but preserves the functions of all primary
outputs because the difference between fv and f?v is included
in the observability don’t-cares of v.

Logic optimization is performed by solving Boolean resyn-
thesis formulated as follows: A target function f : Bn → B
is specified by its on-set function fon and off-set function
foff. The target function can be incompletely-specified if the
union of fon and foff does not cover the Boolean domain.
Given fon, foff and a set {fd1 , . . . , fdr} of completely-specified
divisor functions fdi : Bn → B over the same variables, find
a dependency function h : Br → B, such that

h
(
fd1

(x), . . . , fdr
(x)
)
→ fon(x) and

foff(x)→ ¬h
(
fd1

(x), . . . , fdr
(x)
) (3)

for all assignments x ∈ Bn.
In particular, we are interested in the dependency circuits

that realize h with as few nodes as possible. In the context
of window rewriting, the target function is the function of a
selected node, called the root node, in the window, and the n
Boolean variables it depends on are assigned to the n window
inputs. The divisor functions are the functions of some other
nodes, called the divisors, in the same window.

In this paper, we use truth tables to represent node func-
tions, which are sequences of bits recording the values of the
node under each combination of (local) input values and is
stored in an 64-bit unsigned integer in our implementation.
The number of 1-bits in the truth table of a function f is
denoted as ONES(f).

III. WINDOW REWRITING

Boolean rewriting is a fast and greedy methodology for
minimizing GIGs. Algorithm R summarizes the conceptual
steps of eager Boolean rewriting at high level: the algorithm
iteratively chooses a node as a pivot p, constructs a sub-graph
in the local neighborhood of p, optimizes the logic of the sub-
graph, and replace it.

Algorithm R (Boolean Rewriting). Given a GIG N .
R1. [Choose pivot.] Select a node p in N as pivot node.
R2. [Construct sub-graph.] Construct a sub-graph struc-
ture (I,O,G) in the local neighborhood of p with local
inputs i1, . . . , in, local outputs o1, . . . , om, and inner
nodes g1, . . . , gr, where n, m, and r are the number of
local inputs, local outputs, and gates.
R3. [Simulate sub-graph.] Compute the functions of all
nodes of the sub-graph in topological order to obtain
output function foi : Bn → B for 1 ≤ i ≤ m.
R4. [Resynthesize output functions.] Resynthesize the
output functions foi , 1 ≤ i ≤ m, to obtain a replacement
(I,O′ = {o′1, . . . , o′m}, G′) with functionally equivalent
output functions. If |G′| > |G|, goto R1. Otherwise,
proceed with R5.
R5. [Replace sub-graph.] Insert the gates G′ in topologi-
cal order into N , replace oi with o′i, and remove oi from N
for all 1 ≤ i ≤ m. Goto R1.

The conceptual steps can be instantiated with different
strategies. In Section III-A, we propose a reconvergence-
driven windowing algorithm to construct sub-graphs in R2
that capture the reconvergent paths of a pair of nodes in
form of multi-output windows. In Section III-B, we present
a fast heuristic Boolean resynthesis algorithm for R4 that re-
synthesizes the logic of a multi-output sub-graph using AND
and XOR gates with cost-free inversions.

A. Reconvergence-Driven Windowing

In this section, we first show that reconvergence are es-
sential for don’t-care-based optimization and then introduce a
reconvergence-driven window construction algorithm.

Reconvergence enables don’t-care-based optimizations.
We show that reconvergence is essential for don’t-care-based
optimizations. In our proofs, we consider controllability and
observability separately.

Theorem 1. For any node v in a κ-regular GIG N , if there
exists a CDC-based optimization for v, then there must be a
reconvergent node in TFI(v).

Proof of Theorem 1. We prove the reversed statement, i.e., if
there is no reconvergent node in TFI(v), then the cone is a
minimum-size implementation of fv . Having no reconvergent
node in TFI(v) means all nodes in TFI(v) has only one fanout
staying in TFI(v). In other words, TFI(v) is a tree. Let S(v)
denote the (structural) support of TFI(v), which is defined as
the leaves of TFI(v). Since N is κ-regular, the sizes of TFI(v)
and S(v) are related by

|S(v)| = (|TFI(v)| − |S(v)|) · (κ− 1) + 1

=⇒ |TFI(v)| = |S(v)| − 1

κ− 1
+ |S(v)|

(4)

Since the functions of all nodes depend on all of their fanins,
fv depends on all nodes in S(v) and none of them can be
taken out. Now, we attempt to build a smaller graph N ′ to
replace TFI(v) starting from S(v). At each step, we add one

16

∧

∧ ∧

∧

∧ ⊕

a b c

f

g4

g6

g7 g8

(a) Original sub-graph.

∧

∧

∧ ⊕

a b c

f

(b) Optimized sub-graph.

Fig. 3: Example of CDC-based optimization.

node into N ′ and connect κ nodes to it, which eliminate at
most κ − 1 zero-fanout nodes. At least (|S(v)| − 1)/(κ − 1)
steps are needed to make N ′ have only one zero-fanout node.
A lower bound on |N ′| is hence derived as

|N ′| ≥ |S(v)|+ |S(v)| − 1

κ− 1
(5)

Thus, |TFI(v)| is minimal.

An example of a CDC-based optimization is illustrated in
Figure 3, where a, b, c denote primary inputs, ∧ denotes an
AND gate, ⊕ denotes an XOR gate, and dotted edges denote
complementation. The assignment fg4 = 1 and fg6 = 1 is a
controllability don’t-care for the XOR function implemented
by the AND gates g7, g8, and g9. Consequently, the three AND
gates can be replaced by a single AND gate (implementing an
OR function) without affecting the output function f . There is
one pair of reconvergent paths ending at f and starting from
g4 and g6, respectively.

Theorem 2. For any node v in a κ-regular GIG N , if there
exists an ODC-based optimization for v, then v must be on a
reconvergent path.

Proof of Theorem 2. Suppose the ODC-based optimization
for v transforms the function of v into f∗v . The necessary
condition to preserve primary output functions is

(fv ⊕ f∗v)→ dcv =⇒ DEPS(dcv) ∩ DEPS(fv) 6= ∅. (6)

Following the computation of ODCs [10], it can be shown that

∃ve ∈ TFO(v), vi ∈ FANINS(ve) : vi /∈ TFO(v)

such that DEPS(fvi
) ∩ DEPS(fv) 6= ∅.

(7)

Hence, starting from a common primary input of DEPS(fv)
and DEPS(fvi

), there is at least a pair of reconvergent paths
ending in ve, one passing through v and the other passing
through vi.

To illustrate the proof of Theorem 2, an example of ODC-
based optimization is shown in Figure 4, where a, b, c are
primary inputs and other nodes are AND gates. An ODC-based
optimization for v transforms its function from fv = b ∧ c to
f∗v = c. This preserves the output function f = a ∧ b ∧ c

∧ ve

∧vi ∧ v

a b c

f

(a) Original sub-graph.

∧

∧

a b c

f

(b) Optimized sub-graph.

Fig. 4: Example of ODC-based optimization.

because dcv = ¬(a ∧ b) and (fv ⊕ f∗v) → dcv holds. The
reconvergent paths are colored in red.

Theorems 1 and 2 show that the existence of reconvergence
is a necessary condition for both CDC-based and ODC-based
optimization. This motivates us to develop a reconvergence-
driven windowing algorithm which prioritizes the inclusion of
reconvergent paths.
Remark. Although reconvergence is necessary for optimizing a
single node, when the size of a multi-output GIG is considered,
another type of optimization is possible without the existence
of reconvergence, namely logic sharing. It is possible that
the TFIs of all primary outputs are of minimum size, but
there exist several different implementations of one output
that can be partly shared with the TFIs of other outputs to
further decrease the overall size of the GIG. For example,
for a GIG with two primary outputs f, g and three primary
inputs x, y, z, the following sub-optimal implementation has
no reconvergence:

f = (x ∧ y) ∧ z, g = x ∨ (y ∧ z) (8)

The optimal GIG with logic sharing of y ∧ z is:

f = x ∧ (y ∧ z), g = x ∨ (y ∧ z) (9)

Window construction. For a given pivot node p, Algo-
rithm W identifies another node m such that there exists a pair
of reconvergent paths between p and m and m has shortest
distance to p. The algorithm then collects the nodes on the
two reconvergent pathts and expands the sub-graph structure
towards the input and output boundary.

Algorithm W (Window construction). Given a node p, called
pivot, in a GIG N and two integers k and l, called cut
size and distance, this algorithm computes a small-scale
window in the local neighborhood of p with at most
k inputs and potentially multiple outputs that reaches
a reconvergence in at most l steps. The window is
characterized by a triple (I,O,G), of local inputs I , local
outputs O, and inner nodes G.
W1. [Identify and collect reconvergence.] Use breadth-
first search to identify a node m, called meet, reachable
from two fanins of p in at most l steps and add all nodes
on the two paths from p to m to G.
W2. [Identify and collect inputs.] Mark all nodes in G

as visited. Iterate over all fanins of the nodes in G and
add all nodes without marks to I . If |I| > k, terminate

17

without returning a result.
W3. [Expand towards TFI.] As long as |I| ≤ k and not

all nodes in I are primary inputs, repeat two steps: (a)
first perform all cost-free expansions of I; (b) then choose
a fanin v from I such that |EXPAND(I, v)| ≤ k and v has
a highest fanout count within G. Expand I with n and
go to (a). Otherwise, if no further expansion is possible
in (b), go to the next step.
W4. [Expand towards TFO.] Define a (sorted) map L

which assigns a (initially empty) set of nodes to each
level of N . Iterate over all nodes in I ∪ G, mark them,
and sort them into L at the corresponding levels. Iterate
over the nodes at each level in L from lowest to highest
level. For each node, systematically explore its fanouts.
If a fanout v is an inner node and not marked, but all its
fanins are marked, then add v to G, mark it, and sort it
into L.
W5. [Identify and collect window outputs.] Define a zero-

initialized reference counter for each node in N . Iterate
over all nodes in G and increment the counters of all
fanins of g ∈ G. Iterate again over all nodes in G, observe
their reference counters, and mark a node as output if its
reference counter is lower than its fanout count.
W6. [Topologically sort.] Sort the nodes in G in topo-

logical order with respect to the structure of N and return
the triple (I,O,G).

B. Heuristic Boolean Resynthesis

In this section, we propose a heuristic algorithm to solve
the logic resynthesis problem using AND and optionally XOR
gates with cost-free inversions. The algorithm is based on
a recursive decomposition that classifies divisors on their
intersections with the on-set and the off-set of a target function.

Given the target on-set function fon and off-set functions
foff, a divisor d (or its negation ¬d) is said to be positive
unate if fd ∧ foff = 0 (or if ¬fd ∧ foff = 0). Similarly, a
divisor d is said to be negative unate if fd∧fon = 0. If both d
and ¬d are neither positive nor negative unate, then d is said
to be a binate divisor. For example, in Fig. 5 (a), d is positive
unate because fd ∧ foff = 0; in Fig. 5 (b), ¬d is negative
unate because ¬fd ∧ fon = 0; and in Fig. 5 (c), d is a binate
divisor because neither d nor ¬d is unate. As the unateness
property is independent for d and ¬d, from now on, a divisor
with optional negation is referred to as a literal, i.e., a literal
is either a divisor or a negated divisor.

If a literal l is positive unate and its negation ¬l is negative
unate, then l realizes the target. We call this a 0-resub because
it is a resubstitution with 0 additional nodes. For example,
in Fig. 5 (d), ¬d is a 0-resub because ¬d is positive unate
and d is negative unate. Two positive unate literals may be
combined with an OR gate (implemented in AIGs and XAGs
as an AND gate with input and output negations) to obtain a
larger intersection with the on-set. If all on-set minterms are
contained in the union of two literals l1, l2, then l1∨l2 realizes
the target and we call it an OR-type 1-resub. To find such cases,

fd ¬fd

(a) d is positive unate.

fd ¬fd

(b) ¬d is negative unate.

fd ¬fd

(c) d is a binate divisor.

¬fd fd

(d) ¬d is a 0-resub.

fd1 ¬fd1

¬fd2

fd2

(e) d1 ∨ ¬d2 is an 1-resub.

fd1 ¬fd1

¬fd2

fd2

(f) d1 ∧ ¬d2 is an 1-resub.

fd1 ¬fd1

¬fd2

fd2

(g) d1 ∧ ¬d2 is positive unate.

fd1 ¬fd1

¬fd2

fd2

(h) d1 ⊕ d2 is negative unate.

fd0 ¬fd0

(i) Divide fon with a positive
unate divisor d0.

fd1 ¬fd1

¬fd2

fd2

(j) f ′
on can be more easily realized

with ¬d1 ∧ ¬d2.

Fig. 5: Illustration of Algorithm S. Black dots represent on-
set minterms, white dots represent off-set minterms, and dotted
circles represent don’t-care minterms.

we check if ¬(fl1 ∨ fl2)∧ fon = 0, i.e., if ¬fl1 ∧¬fl2 ∧ fon =
0. For example, in Fig. 5 (e), d1 and ¬d2 are two positive
unate literals and d1 ∨ ¬d2 is an OR-type 1-resub because
¬fd1 ∧ fd2 ∧ fon = 0. Similarly, two negative unate literals
l1, l2 can be combined with an AND gate to form an AND-
type 1-resub if ¬fl1∧¬fl2∧foff = 0. For example, in Fig. 5 (f),
¬d1 and d2 are two negative unate literals and d1 ∧¬d2 is an
AND-type 1-resub because fd1 ∧ ¬fd2 ∧ foff = 0.

The definitions of positive and negative unateness are ex-
tended for pairs of literals. A pair p of two literals l1, l2

18

obtained from binate divisors can be combined using an AND
gate (or an XOR gate, if XAGs are used) to construct a new
function fp = fl1∧fl2 (or fp = fl1⊕fl2 if XOR is used). The
pair is said to be positive unate if fp ∧ foff = 0, and is said to
be negative unate if fp∧fon = 0. For example, in Fig. 5 (g), d1
and d2 are both binate divisors and (d1,¬d2) form an AND-
type positive unate pair because fd1

∧ ¬fd2
∧ foff = 0; in

Fig. 5 (h), d1 and d2 are both binate divisors and (d1, d2) form
an XOR-type negative unate pair because (fd1⊕fd2)∧fon = 0.

Algorithm S (Heuristic Boolean Resynthesis). The inputs to
this algorithm are the target on-set and off-set functions
fon, foff and a set D = {d1, . . . , dr} of divisors associated
with divisor functions fd1

, . . . , fdr
.

S1. [Constants.] Check if fon = 0 or if foff = 0. If so,

return the constant 0 or 1.
S2. [Classify divisors.] For each divisor d and its negation

¬d, check if they are positive or negative unate. If both of
them are not unate, classify d as binate.
S3. [0-resub.] Check the collected lists of positive and

negative unate literals for an 0-resub and return it if found.
S4. [Sort unate literals.] Sort the positive unate literals by

the number of on-set minterms ONES(fl∧fon), and sort the
negative unate literals by the number of off-set minterms
ONES(fl ∧ foff).
S5. [1-resub.] Enumerate pairs (l1, l2) of positive unate

literals to find an OR-type 1-resub. With the order sorted
in S4, the enumeration can be terminated earlier if we
know

ONES(fl1 ∧ fon) + ONES(fl2 ∧ fon) < ONES(fon) (10)

for the rest of the list. Similarly, enumerate pairs of
negative unate literals to find an AND-type 1-resub and
return it if found.
S6. [Collect and sort unate pairs.] For each pair of

binate divisors d1, d2, test the unateness of combining
them using an AND gate and with all the four possibilities
of negations. If XOR gates are allowed, test also the
unateness of combining them using an XOR gate or an
XNOR gate. Collect the positive and negative unate pairs
and sort them using the same method as in S4.
S7. [2- and 3-resub] Similar to S5, try to find a 2-resub

by combining a unate literal and a unate pair. Then, try to
find a 3-resub by combining two unate pairs.
S8. [Recursive construction.] When the target cannot be

realized within 3 gates, the algorithm heuristically choose
an unate literal or an unate pair to decompose the function.
If a positive unate literal (or pair) lp is chosen, a new
on-set function f ′on = fon ∧ ¬flp with fewer minterms
is derived using an OR gate on top of the dependency
circuit and having lp as one of the fanins of the OR
gate. Then, Algorithm S is recursively called on the
new f ′on to construct the remaining circuit at the other
fanin of the OR gate. For example, in Fig. 5 (i), the

original target (fon, foff) and the function of a positive
unate literal d0 is shown. Dividing fon with fd0

, the new
f ′on = fon ∧ ¬fd0

is shown in Fig. 5 (j). Then, the new
target (f ′on, foff) is realized by ¬d1 ∧¬d2, resulting in the
final solution d0 ∨ (¬d1 ∧ ¬d2). Similarly, if a negative
unate literal (or pair) ln is chosen, an AND gate is used
on top of the dependency circuit and a new off-set function
f ′off = foff ∧ ¬fln is derived.

C. Multi-output Window Optimization

In the previous sections, Algorithm W constructs a multi-
output window and Algorithm S can be used to resynthesize
the function of a node using the functions of some other
nodes. To optimize the multi-output window, in this section,
Algorithm M runs Algorithm S on each node in a window,
trying to optimize its local implementation using the don’t-
care conditions computed within the window.

Algorithm M (Multi-output Resubstitution). Given a multi-
output window (I,O,G) with input nodes I , output nodes
O, and inner nodes G, this algorithm resynthesizes the
output functions foi , 1 ≤ i ≤ m to obtain a replacement
(I,O′, G′) with functionally equivalent output functions.
M1. [Initialize.] Initialize G′ with G. Let T = ∅ be the

set of already-tried nodes. Associate each input nodes
ij ∈ I with the jth projection function. Simulate the
window in a topological order to obtain the functions of
all inner nodes and output nodes in terms of the input
nodes.
M2. [Choose the node to resynthesize.] Select a node r ∈
G, r /∈ T in a reversed topological order.
M3. [Compute ODC.] Temporarily complement the func-

tion of r, i.e., let f ′r = ¬fr, and re-simulate TFO(r) to
obtain f ′oi for each output node oi. Compute the ODC:

dcr = ¬
∨

oi∈O
foi ⊕ f ′oi . (11)

M4. [Mark MFFC.] Mark the nodes in the maximum

fanout-free cone (MFFC) [6] of r. A node v is in the
MFFC of r if v ∈ TFI(r) and all paths from v to any
output node pass through r.
M5. [Collect divisors.] Collect the divisors D = I∪G′−
MFFC(r)− TFO(r).
M6. [Resubstitute node.] Resynthesize fr using the col-

lected divisors D by calling Algorithm S with

fon = fr ∧ ¬dcr and foff = ¬fr ∧ ¬dcr. (12)

If a dependency circuit (IS ⊆ D,OS = {r′}, GS) is
resynthesized and |GS | < |MFFC(r)|, update G′ with

G′ ∪GS ∪ {r′} −MFFC(r)− {r} (13)

Add r or r′ into the set of tried nodes T . Goto M2.

19

TABLE I: Statistics of windowing on EPFL benchmarks.

Property Total Contained

Node containment 467399 458260 98.04%
4-Cut containment 4770189 1949063 40.86%

TABLE II: Heuristic synthesis statistics for completely-
specified 3-input and 4-input Boolean functions.

Heuristic Resynthesis Exact Database

Repr Var Success Failed ANDs XORs ANDs XORs

AIG 3 254 2 890 0 794 0
4 54622 10914 499308 0 365276 0

XAG 3 254 2 528 142 384 206
4 54622 10914 351592 60332 178536 98940

IV. EXPERIMENTAL EVALUATION

Window rewriting has been implemented in C++ and ex-
periments have been conducted using the EPFL benchmark
suite. In the Sections IV-A and IV-B, the performance of Algo-
rithm W (Window construction) and Algorithm S (Heuristic
Boolean Resynthesis) are analysed. In Section IV-C, a com-
parison between 4-cut rewriting and 6-input window rewriting
is presented.

A. Quality of Reconvergence-Driven Windowing

In this section, we investigate the quality of the
reconvergence-driven windowing algorithm (proposed in Sec-
tion III-A) by structurally analyzing the windows constructed
for the EPFL benchmark suite. We consider each node in the
EPFL benchmarks as a pivot node and run Algorithm W
and a conventional 4-cut enumeration algorithm to test node
containment (how many nodes are contained at least once in
a window) and cut containment (how many 4-feasible cuts
are completely contained in a window). We say that a cut is
contained iff its cover is a subset of the window nodes. Table I
summarizes our results. The table lists the total number of
nodes and 4-feasible cuts (Total) generated for all benchmarks
and the number of nodes and 4-feasible cuts contained in
a window (Contained), respectively. The 6-input windows
produced by the algorithm contain 98.04% of all nodes at
least once and 40.86% of all 4-feasible cuts. One node, on
average, contributes to 6.39 6-input windows.

B. Quality of Heuristic Boolean Resynthesis

In this section, we analyse the quality of the heuristic
Boolean resynthesis algorithm (proposed in Section III-B) ex-
perimentally considering all completely-specified 3-input and
4-input Boolean functions. As a baseline for the comparison,
we use an exact database of all NPN-4 functions containing
size-minimum AIG and XAG implementations.

Table II summarizes the synthesis statistics. The table is
structured as follows: the first two columns list the logic
representation (Repr) and the number of variables (Var). The
next four columns present the number of times the heuristic
algorithm is capable to derive a logic implementation for the

function (Success) and the number of times the algorithm
fails to do so (Failed), and the total number of gates (ANDs,
XORs) of the obtained logic implementations. The last two
columns present the numbers of gates (ANDs, XORs) for
the successfully synthesized functions found in a database
of minimum-node implementations. Heuristic resynthesis suc-
ceeds for 99.22% and 83.55% of all 3-input and 4-input
Boolean functions, respectively. The two 3-input functions
heuristic resynthesis fails to synthesize are XOR3 and its
complement, whose possible AIG and XAG structures all
have an XOR2 component on top (either with an XOR gate
or with three AND gates). In Algorithm S, XOR gates are
only used in S6 to construct unate pairs with binate divisors
and are not considered as the top gate in S7 or S8, thus
it is impossible to construct a circuit with a topmost XOR
gate. An XOR2 function realized with three AND gates is
not possible either, because the recursive construction in S8
builds only tree-like circuits with disjoint sub-graphs at the
two fanins of the topmost gate. The average size-overhead
of an implementation derived by the proposed method over
the minimum-size implementation accounts for 0.35 and 2.05
gates per 3- and 4-input function, respectively.

C. Comparison with 4-Cut AIG Rewriting

All experiments targeting AIG rewriting have been con-
ducted on a 3.5 GHz Intel Core i7 CPU with 16 GB RAM.
The resulting AIGs have been verified after rewriting using
the combinational equivalence checker (&cec) of ABC [11].

Table III shows a comparison of window rewriting and 4-cut
rewriting (drw) using the EPFL benchmark suite. The initial
benchmarks have been pre-processed using SAT sweeping [12]
(&fraig -x -C 50000) to merge gates that are proven
equivalent modulo complementation. The table is structured
as follows: the first three columns name the benchmarks and
present their sizes and depths after pre-processing measured in
AND gates. The remaining columns list the synthesis results
for each benchmark after one iteration of drw and window
rewriting and after repeating them until convergence. Window
rewriting achieves an average size reduction of 8.86% in one
iteration, which increases to 9.16% when applied repeatedly.
When compared to 4-cut rewriting, one iteration of window
rewriting improves by 3.61% and 3.41%, respectively.

V. CONCLUSION

This paper presents an unique attempt to enhance Boolean
circuit rewriting. The proposed algorithm builds on (1) so-
phisticated structural analysis to identify and capture pairs of
nodes with reconvergent paths in multi-output windows and
(2) fast heuristic Boolean resynthesis to optimize the logic in a
multi-output window with 6 or more inputs utilizing additional
divisor functions and don’t-care-based optimization.

The proposed technique addresses the two exponential
bottlenecks for scaling-up Boolean rewriting beyond the ca-
pabilities of 4-cut rewriting. The windowing is driven by
reconvergences in the circuit structure, avoiding enumerating
and prioritizing cuts whose number grows exponentially in

20

TABLE III: Comparison of 4-cut rewriting and 6-input window rewriting.

Benchmark ABC drw Window rewriting

First iteration Until convergence First iteration Until convergence

Name Size Depth Size Depth Time Size Depth Iter Time Size Depth Time Size Depth Iter Time

adder 1020 255 1020 255 0.07 1020 255 1 0.07 892 256 0.01 892 256 2 0.02
bar 3336 12 3141 12 0.09 3141 12 2 0.18 3124 12 0.10 2952 12 17 1.55
div 29040 4374 20952 43724 0.48 20833 4350 4 1.45 20985 4350 1.13 20907 4352 4 2.86
hyp 214306 24800 213118 24800 3.40 213108 24800 5 16.76 205006 24804 5.73 205004 24804 3 15.62
max 2865 287 2862 287 0.09 2862 289 2 0.18 2798 321 0.04 2765 367 3 0.12
sin 5353 222 5124 222 0.13 5108 219 4 0.52 5089 218 0.35 5089 218 2 0.63
sqrt 24506 5057 18379 5057 0.74 18371 6048 3 1.42 18265 7277 1.34 18265 7277 2 1.96
square 18482 251 17754 251 0.29 17629 249 7 1.91 16971 251 0.44 16963 251 3 1.55
arbiter 11839 87 11839 87 0.19 11839 87 1 0.19 11839 87 0.22 11839 87 1 0.22
cavlc 690 16 681 16 0.06 680 16 3 0.20 620 19 0.14 614 19 4 1.14
ctrl 169 10 125 10 0.06 122 9 3 0.18 91 17 0.01 89 17 3 0.03
dec 304 3 304 3 0.07 304 3 1 0.07 304 3 0.00 304 3 1 0.02
i2c 1321 20 1265 20 0.07 1264 19 3 0.21 1262 21 0.01 1262 21 2 0.02
int2float 258 16 224 16 0.06 221 16 4 0.25 222 18 0.01 222 18 2 0.02
mem ctrl 46717 115 46115 115 0.56 46069 117 5 2.88 44008 122 0.95 43318 121 7 6.37
priority 978 250 852 250 0.07 695 250 19 1.32 576 65 0.01 521 47 19 0.07
router 257 54 246 54 0.06 246 52 2 0.12 173 49 0.01 160 45 3 0.01
voter 11925 65 9042 65 0.21 8899 60 3 0.53 8079 62 0.19 7993 61 3 0.63

Total 373366 353043 6.70 352411 28.44 340304 10.69 339159 32.84
Improv. 5.44% 5.61% 8.86% 9.16%

the cut size. A fast Boolean resynthesis engine allows us to
compute replacements online, and avoids the pre-generation
of a database of optimised circuit structures. Pre-generating
the database is a hurdle due to the exponential growth of
the number of Boolean functions. Storing a database for all
6-variable Boolean functions needs an enormous amount of
memory and does not allow to consider multiple outputs
or logic sharing of existing divisors in the current circuit
structure. Optimizing the size of the database by storing only
a subset of circuit structures for frequently-occurring Boolean
functions tends to be a tedious manual task and leads to a
biased rewriting algorithm that is only effective for a fixed set
of benchmarks. By eliminating the dependency of rewriting on
a pre-computed database, the technique keeps all computations
local and has best preconditions for parallelisation—there is
no need for sharing a huge database with slow access times
between writing workers.

In an experimental comparison between our prototypical
implementation of window rewriting and all AIG rewriting
algorithms in ABC (rewrite, irw, drw1) using the EPFL
benchmark suite, a single iteration of window rewriting pro-
duces better results than running any AIG rewriting algorithm
until convergence. Our current implementation of rewriting
considers the number of AIG nodes as the objective function.
An implementation focusing on size optimization of majority-
inverter graphs has been presented by Lee et al. [13]. Other
objective functions are possible, but require novel heuristics
to keep the algorithm fast and practical. Recent experiments
with simulation-guided Boolean resubstitution [14] show that
the proposed resynthesis engine can be also integrated with
other optimization frameworks.

1We have only reported the numbers for drw, the latest and best imple-
mentation of AIG rewriting in ABC.

REFERENCES

[1] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust boolean
reasoning for equivalence checking and functional property verification,”
IEEE TCAD, vol. 21, no. 12, pp. 1377–1394, 2002.

[2] I. Hálecek, P. Fiser, and J. Schmidt, “Are XORs in logic synthesis really
necessary?,” in DDECS 2017, pp. 134–139, 2017.

[3] P. Bjesse and A. Borälv, “DAG-aware circuit compression for formal
verification,” in ICCAD 2004, pp. 42–49, 2004.

[4] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis,” in DAC 2006,
pp. 532–535, 2006.

[5] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA
technology mapping,” IEEE TVLSI, vol. 2, no. 2, pp. 137–148, 1994.

[6] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in FPGA 1999, pp. 29–
35, 1999.

[7] M. A. Harrison, “The number of equivalence classes of boolean func-
tions under groups containing negation,” IEEE Trans. Electron. Comput.,
vol. 12, no. 5, pp. 559–561, 1963.

[8] N. Li and E. Dubrova, “AIG rewriting using 5-input cuts,” in ICCD
2011, pp. 429–430, 2011.

[9] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and M. Soeken,
“On-the-fly and DAG-aware: Rewriting boolean networks with exact
synthesis,” in DATE 2019, pp. 1649–1654, 2019.

[10] M. Damiani and G. De Micheli, “Observability don’t care sets and
Boolean relations.,” in ICCAD, pp. 502–505, 1990.

[11] R. K. Brayton and A. Mishchenko, “ABC: An academic industrial-
strength verification tool,” in CAV 2010, pp. 24–40, 2010.

[12] L. G. Amarù, F. S. Marranghello, E. Testa, C. Casares, V. N. Possani,
J. Luo, P. Vuillod, A. Mishchenko, and G. D. Micheli, “SAT-sweeping
enhanced for logic synthesis,” in DAC 2020, pp. 1–6, 2020.

[13] S. Lee, H. Riener, and G. D. Micheli, “Logic resynthesis of majority-
based circuits by top-down decomposition,” in DDECS 2021, pp. 105–
110, IEEE, 2021.

[14] S. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De Micheli,
“Simulation-guided Boolean resubstitution,” 2020. arXiv:2007.02579.

21

	做文档0
	QED and Symbolic QED Dramatic Advances in Hardware
	Boolean Rewriting Strikes Back
	From Logic to Gates A Versatile Mapping
	Structure Aware Partitioning for Mixed Logic
	Exploring Logic Gates Susceptibility and Circuit
	Circuit Learning A Classical Problem from a Modern Perspective
	RUCA RUntime Configurable Approximate Circuits
	A method to join the On-set and Off-set of an
	On the Rectification of Finite Field Arithmetic
	Introduction
	Preliminaries
	Modeling Circuits with Polynomial Ideals

	Rectification Check
	Computing Rectification Functions
	Greedy Approach for MFR
	Don't Care Conditions for MFR
	Computing Rectification Functions with Don't Cares
	Synthesizing Rectification Functions

	Experimental Results
	Conclusion
	References

	Two-Level Approximate Logic Synthesis
	On A Design of Multi-Layer LUT Networks
	Henkin Synthesis DQBF meets Machine Learning
	Introduction
	Preliminaries
	Background
	Related Work
	Overview
	Algorithmic Description
	Example
	DepManthan as DQBF solver
	Limitations of DepManthan

	Experimental Results
	Comparison with Henkin Functional Synthesis Engines
	Comparison with DQBF Solvers
	Improvement in Virtual Best DQBF Solver

	Conclusion
	References

	Two Methods Based on AIG Constant Propagation
	Unit Time Modelling of Asynchronous and
	A Supervised Learning Approach for Technology Mapping
	Quantized Neural Network Synthesis for Direct
	RL-Guided Runtime-Constrained Heuristic
	Introduction
	Fundamentals
	And-Inverter Graph
	Majority-Inverter Graph
	Markov Decision Process

	Related Work and Motivation
	Related Work
	Motivation

	Methodology
	Reinforcement Learning Framework
	MDP Formulation
	State Space
	Action Space
	Reward Function

	Reinforcement Learning Algorithm
	Graph Convolutional Network
	Neural Network Architecture
	Runtime Indicator and Inference Framework

	Experimentation
	Env 1 (Baseline script: compress2rs)
	Env 2 (Baseline script: compress2rs - without balance)
	Env 3 (Baseline script: compress2rs; dch; balance -l)
	Env 4 (Baseline script: compress2rs; dch; balance -l)
	Env 5 (Baseline script: 10 runs of balance; rewrite)

	Results
	Conclusion

	Superconducting accelerators circuits, design and synthesis
	Irredundant Buffer and Splitter Insertion and
	Abstract
	1 Introduction
	2 Background
	2.1 Adiabatic Quantum-Flux Parametron
	2.2 Terminology

	3 Technology Assumptions
	3.1 Path-Balancing of PIs
	3.2 Path-Balancing of POs
	3.3 Branching of PIs
	3.4 Branching and Inversion of POs
	3.5 Problem Formulation

	4 Irredundant Buffer Insertion
	5 Optimization on Depth Assignment
	5.1 Obtaining an Initial Depth Assignment
	5.2 Chunked Movement

	6 Experimental Results
	6.1 Balancing of PIs and POs
	6.2 Branching of PIs and Splitting Capacity

	7 Conclusion and Future Work
	Acknowledgments
	References

	Constraint-based hierarchical placement for FPGAs
	Linear Feedback Shift Register Reseeding for Stochastic Circuit
	Optimizing Adiabatic Quantum-Flux-Parametron
	Introduction
	Motivation
	Background
	MIG-based logic synthesis
	AQFP logic circuits
	NPN Equivalence
	Exact synthesis

	AQFP Resynthesis Approach
	Generation of the database
	Generating DAG structures
	Computing Area of DAGs
	Enumerating NPN classes and constructing the database

	Synthesis Algorithm

	Experimental Results
	Conclusion
	References

	A Circuit-Based SAT Solver for Logic Synthesis
	Introduction
	Preliminaries
	Boolean Satisfiability
	SAT Solving Framework
	And-Inverter Graph
	SAT Solving with Structural Guidance

	Contributions
	Activity-Based Justification
	Management of Activity Values
	Non-Chronological Restoration of J-frontier
	Engineering J-watch into CDCL framework
	Interpreting Implication Graph On-the-fly
	Topological Abstraction for Solving Scope

	Experimental Results
	The Effect of J-Heap and J-Watch

	Conclusions
	References
	Appendix A: User manual
	Foreword
	A Hands-On Example
	Summary

	Compatible Equivalence Checking of X-Valued Circuits
	Polynomial Formal Verification of Prefix Adders
	Introduction
	Preliminaries
	Prefix Adders
	Binary Decision Diagrams

	Complexity of Verifying Prefix Adders
	First and Third Stage Complexity
	Prefix Operation Complexity
	Verification Complexity of a Serial Prefix Adder
	Verification Complexity of a Ladner-Fischer adder
	Verification Complexity of a Kogge-Stone adder

	Experimental Results
	Conclusion
	References

